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Electrons drifting relative to ions across a magnetic field are found to drive a set of inter-
mediate-frequency long-wavelength waves (~«& & ~„)unstable for any temperature ratio
T~/T&. One instability is caused by the coupling of a drift wave in a nonuniform plasma to
either the ion pl.asma oscillation or a lower hybrid oscillation, depending on density and field
strength. Another instability is a form of the two-stream instability, shown here to exist
even for drift speeds less than electron thermal speeds. Growth rates are on the order of the
ion plasma (or lower hybrid) frequency, depending on the density and field strength.

I. INTRODUCTION AND SUMMARY

Ion-acoustic-wave instabilities have been widely
invoked to explain the large resistivity observed in
fast 8- and Z-pinch experiments' ' and especially
to explain the widths of collisionless shock waves
which often form in these experiments. 5 9 A recur-
rent difficulty with explanations in terms of ion
sound instabilities is that they typically require
T, /T, ~ 10 in order for the growth of the instability
to be fast enough to affect the experiment. This
generally requires that some mechanism be pro-
posed to preheat the electrons; often little evidence
exists for such preheating. 3'4'0

In this paper, we demonstrate that the plasma
configurations typically found in 8- and Z-pinch
plasmas are unstable to various intermediate-fre-
quency (&u„& ~ «u„) long-wavelength waves even
for T, & T, . One instability is caused by a coupling
of ion plasma or lower hybrid oseillations to drift
waves in a nonuniform plasma. Another is a mod-
ified electron-ion streaming instability, which

grows even when the stream is subthermal. Both
are nonresonant fluidlike branches of resonant par-
ticle instabilities previously explored. 6' ' The
existence of these ~odes has been shown previously
using the cold-fluid hydrodynamic equations"; the
present treatment emphasizes their behavior in a
warm magnetoplasma treated through the Vlasov
equation, showing especially the dependence of the
modes on the size and direction of magnetic, den-
sity, and temperature gradients in the plasma.

In Sec. II, we derive the dispersion relation for
electrostatic waves in a plasma equilibrium appro-
priate to magnetic shock and diffusion experiments.
This equilibrium is magnetically confined
[B=B(r)z], inhomogeneous [n, T, =n, (r)T, (r)], and,
in general, includes an electric field perpendicular
to the magnetic field [ E = Ear]. It is assumed that
this electric field drives a drift (va = cEQB) in the
electrons, but because of the time scale or some
other feature of the experiment, does not affect the
ions.

In Sec. III, we treat analytically two distinct
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types of instability: (a) flutelike drift modes. If
both the electric field Eo and a gradient in n„T„,
or B are retained, we find that the plasma is un-
stable to a flutelike wave, propagating across the
field, of frequency and growth rate

&uz = &u„(1+4wnmc /B ) ~, y= ~2a&R,

Vn T»ee

VE

FIG. 1. Slab geometry.
where m is the electron mass and ~„ is the ion
plasma frequency. The condition for this strong
instability is that the particle drifts and currents
not be too weak:

) 2v~vz- cs

where

vx = cEO/B,

T, 1 dn, 1 dB k, g, 1 dT„
mm„n, dx B dx 2 T, dx

with (d„, the cyclotron frequency of electrons
(&u =

l eB/mc I); a„ the electron gyroradius; and

c,~= T, /M, the ion sound speed with M the ion
mass. This instability grows even when T, & T„ in
contrast with other calculations of instabilities in
this frequency range which look only at ion sound
waves, '9 and either neglect the gradients in n, and
T„' ' or concentrate on resonant particle insta-
bilities. If the plasma pressure is homogeneous
and the magnetic gradient is balanced by the cEO/B
current, this strong nonresonant mode stabilizes
at high P=4vnT, /B &0. 02. (b) modified two-stream
instability. Even if the gradients in n„T~, and B
are neglected, a two-stream instability persists for
modes with a small component of k parallel to the
magnetic field. This long-wavelength (k,a, & 1)
mode propagating almost perpendicular to 80 sees
the electrons, tied to the field lines, as a cold fluid,
and is unstable as long as

Frequency and growth rates are given by

(u„=y „=&u„(I+4vnmc/B )
' (vx/c, )

~

In Sec. IV, we present numerical results for the
frequency and growth rate of the drift instability
for a variety of parameters. These results agree
well with the analytic results of Sec. III, but extend
the calculation into ranges where no analytic results
can be obtained.

In Sec. V, we discuss the types of experiments
to which these results can be applied.

II. DISPERSION RELATION FOR UNSTABLE WAVES

The plasma equilibrium we consider is typical of
that found in various 8-pinch experiments and, in-
deed, in most magnetically confined plasma. All
of these plasmas include regions of nonuniform den-
sity supported by magnetic field gradients, which

for simplicity, we treat in a slab geometry. The
plasma is considered as shown in Fig. 1, to be in-
finite and uniform in the y-z plane; all equilibrium
variations are in the x direction. A linear approxi-
mation is made to the changes in the magnetic field,
density, and temperature perpendicular to B:

n, (x) =n. (1 —gx),

In the class of experiments we consider, the
plasma also supports an electric field in the x
direction

Eo= Ex .
It is assumed that E drives an electron current

with velocity cE/B, but that the ions are not af-
fected by the electric or magnetic fields. This as-
sumption restricts the stability analysis to fre-
quencies well above the ion gyrofrequency and also
restricts the application of the theory to experi-
ments where some feature prevents the electrons
and ions from acquiring equal drifts cE/B For.
example, in magnetic-shock and diffusion experi-
ments, the ions do not acquire a drift because of
the time scales involved: The ion-cyclotron time
is longer than the time scale on which E forms,
excites instability and decays. Figure 2 shows the
typical situation in magnetic-shock-wave experi-
ments. '

Thus, we take the equilibrium distribution for the
electrons to be a local Maxwellian with a uniform
electric field Ex and weak gradients in density and
temperature:

2 T xp
2

Ex T,

where v, = v„+v, , while the ion distribution is
treated as a simple Maxwellian distribution at rest:

f n (M/2v T )$IR e Nv l2r~-2

The electron density gradient is

1 dn, , eE
Q

ne dx Te

while the temperature gradient is
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Electron Orbit

Pulse Propagation

n Orbit

(6 + 26f) = p(E +2Q)
1 dB 4vnT,
B dx

The equilibrium current across the magnetic field
is given by

1 I Te
v, = — fp, v, dv, = (p'+2ct)

no mb)

T, 1 dn T~, cg
(2)

dT~e = —Q .
dx

Maxwell' s equation

4nVxB=-
C

d v v(fpt —
fp q )

gives for the above distributions

FIG. 2. Magnetic profile of a pulse propagating into
the plasma. Drift velocities are perpendicular to both the
magnetic and electric fields. Density and temperature
also have gradients in the x direction.

Part of this electron current is due to the Ex B
drift, vx = —(cZ/B)y, and part is due to the gradient
in pressure. We now assume that this equilibrium
is perturbed by an electrostatic wave

E ej(k g-ctlt)

of frequency co» co„, so that the ion response to
the wave can be calculated neglecting the magnetic
field B. The time development of the perturbation
is given by the Vlasov-Maxwell equations; the cal-
culation, leading to a dispersion relation for p&(k)

is done by techniques used in previous calcula-
tions, '~ with the familiar result

one 4mne m

mv 2

&«o — " ' e + a '
(tv —k, vp —k, v, —l&u ) J, exp —2, (3)

(dce e

where Z is the plasma dispersion function

The drift velocity vp in (3) has two contributions;
one is from the VB drift and one is from the Ex B
drift

Evg cE
ce B

Both are in the y direction.
In the derivation several other approximations

have been made. We have made the local approxi-
mation, '4'" treating the gradients as weak and then
expanding about x=0. The equilibrium electric
fieM has been treated as uniform, so we require
it to be constant over at least a wavelength. The
perturbations were treated as pure electrostatic

l

(assuming 5E = —V5$), which restricts Eq. (3) to
P «1 in which limit neglect of pertrubed magnetic
fields is justified. '

It is well known that if the gradients in n„B, and

T, are neglected, the dispersion relation (3) de-
scribes only short-wavelength high-frequency
(td & td„) waves propagating perpendicular to the
magnetic field' ' and unstable ion-acoustic
waves ' which require T, » T,. By retaining any
of the gradients dn, /dx, dT„/dx, dB/dx, or a
small component k, parallel to B, a low-frequency
long-wavelength (tv„& pt «o„, k,a, & 1) branch opens
up which is unstable for any T, /T, .

Restricting our attention to these low-frequency
long-wavelength modes (d «{d„, we keep only the
l=O term in the sum.

With this limitation, the starting equation for
analysis of the stability of the plasma equilibrium
common to the 8 pinch and other systems becomes

k &~= —~ 1+— Z — —1+™m
dv dv v,
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cE k, &v, 2 k,v, —mv, +v,

where kj = k„+k
In the uniform magnetic field zero-temperature

limit [(1/B)dB/dx-0, T, -O, T, -O] Eq. (4) re-
duces to the hydrodynamic equation for waves in a
cold plasma of nonuniform density explored pre-
viously. " In Secs. III and IV, we solve (4) analyt-
ically in a variety of limiting cases and numerical-
ly for k, =0 and e = 0. The numerical solutions con-
tain fully the effect of ion and electron temperature,
through the plasma dispersion function Z.

the magnetic gradient drift as weak,

k&cE 1 dB v 2

8 'B dx 2~ce, '

and expand the denominator in (4) around

1 dB&=- ——=0
B dx

From (1) and (2) it can be seen that for 1 v, I

- IcE/Bl:

III. ANALYTIC RESULTS

A. Drift Modes, k, =0
1 dB v,2

8 dx 2coc e

1 dB T, cEe

m~c e

Examples of modes resonant with the magnetic
gradient drifts have been studied elsehwere ' and
require T, » T, for instability. Therefore we treat

l

so (5) is equivalent to a low-p approximation. Ne-

glecting all products of gradients, the electron in-
tegral in (4) then becomes, with k, =0,

dv, v, u — "
& 2T ~0 exp ™2T

T cE k„Ev,
2ce

k„T, ) d,
& ) I, )b) ) dB ) dT l„(b)

m&ar«n, dx Iz(b) B dx T, dx Io(b)

k,cE
QP+

Io(b) e '

Io and I, are modified Bessel functions of argument

Assuming the ion thermal velocity is small com-
pared to the phase velocity of the wave
(~ M/2T, k~ « I), the ion contribution in (4) can be
approximated by

where Xv is the electron Debye length

X~v = T, /4vne' .
The dispersion relation then becomes

(dA.' =k'~' ", —I+I (b) e '

k„T, 1 dn, 1 dB I |(b) 1 d „TbI~( )b

Expanding the Bessel function for b= & k ae (1 and
using the identity a, /2Xv 4vnmc /B=—, (4) becomes

upi 8 - k2XD M. i

where ve= —cE/B is the E&& B drift velocity and

e 1 dne 1 dB k ae 1 dTje
mco„n, dx 8 dx 2 T, d„

(s)

From (7) it can be seen that if v~ = 0 the dispersion
relation (7) would yield a stable drift wave

Qp = kyvg

and a stable oscillation

2 2 4mnmc 2 -1
CO =

Carpi
1+ = &@~i, B &&4vnmc 2

= cga&, , zs ((4mnmc2 2
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k AD=~ 1+ 1 —2

~c 1
47Tnm c

The frequency and growth rate are given by

4..m.2 -»2
E'ER

= kyVE —
(dpi' 1 +

(9)

(10)

where ra» = eB/(Mm)' c is the lower hybrid fre-
quency. The gradients couple these two stable
modes.

1. 8'elk Drift, VEV~ «c,
When the drift velocity and the gradients satisfy

the condition vzv~ «c, , the solution to (7) is an un-
stable drift wave &u =k, v, +iy E. quation (7) can be
SO1Ved by eXpanding abOut co = k,vE+5 and dropping
terms of order 53. Maximum growth occurs roughly
when 5 is pure imaginary. This occurs when

stable if the temperature and magnetic gradients
are in the same direction. This is the usual situa-
tion in magnetic-pulse experiments where the pulse
heats the plasma as it passes through. When the
density gradient is larger than the magnetic and
temperature gradients, it can be seen that the den-
sity and magnetic gradients must be in opposite
directions for the instability. This situation
occurs down stream from magnetic-shock waves
and in many other experimental configurations. '

When the magnetic gradient is sufficiently larger
than the density gradient, the plasma will always
be unstable for low P.

The approximation 2 k a, & 1, from the expression
for k„ in Eq. (9), requires simply that vz& c,. Ne-
glect of finite-ion-temperature effects will be just-
ified if vz & v, where v, = (T, /M)'~z is the ion thermal
speed. Therefore vz & [(T,+ T, )/M)'~z is required
for the instability.

2. Strong Drift, vzv~ c,

mm (dpi 1 +

k, 1 —2(k„/k) vz vz/c, vzvz
k 1 —3(k„/k) v~vz/c, c,

=- ("":")'"("-)(")'"

When the gradients and drift velocity are
stronger, satisfying VEV~ ~ c, , the growth rate be-
comes large, and the analytic expressions (9)-(11)
are no longer valid. For &uz-y, (7) can be solved
by writing u& = &uz + iy and breaking (7) into real and
imaginary parts. The imaginary equation can be
solved for y as a function of coR, the real equation
can then be solved by expanding

Various combinations of density, temperature, and
field gradients can be included in (ll) by making
appropriate substitutions in

4«mc2 -»2
1+ 1+5

and keeping terms linear in 5. The maximum
growth of the instability occurs when

(12)

Te 1 dn 1 dB k ae 1 dT1e
mes„n dx B dx 2 T, dx

using the ka, given in (9).
From the expression for y ~, it can be seen that

there will be growth only if V~VE& 0; otherwise the
frequency would be real. Using (1) and (2) to write

Te 1 dneTe 1 1 dB
nT, x P Bdx

this condition becomes for a low-p plasma

The maximum growth rate is

2 2 4«mc -1"1/2
3(uz —

(aP&q 1 +

4«mc
(14)

kg 1 dT„1 dB

In the absence of a density gradient or in the many
cases in which

As in the weak-drift case the instability requires
VIVE & 0.

The approximation —,
' k a,z «1 requires, from (13)

that v~/vz «1. For this analytic result,

kV) ~T vg

1 dT„1 dne

(see e. g. , Ref. 20), the plasma will be most un-

so for v~ & vE, neglect of finite ion temperature will
be valid even for T, T, .

Note from (9)-(11)and (12)-(14) that when the
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density is low,

ae 47tnmc cv.,2 2 2

2 (1,
2hz B (dsz

the frequency and wavelength are characterized by
~» and XD, while for high density they are charac-
terized by &usz and a, .

B. Modified Two-Stream Instability, k, 4 0

If the gradients are weak, the instability pre-
sented above competes with a modified two-stream
instability. Neglecting the gradients in (4), but
retaining a small component of k parallel to the
magnetic field,

Ik.(T./~)'"I & I~+k, cE/Bl,
and expanding the denominator of the electron in-
tegral in k„ the dispersion relation (4) becomes
(taking k,a, «1, k, «k, )

4mnmc cvpi k co& e p
2 2 2 2

B &u k, (&u —k,vz}
(15)

under the approximations described above.
Note that the usual condition for the two-stream

instabilityzz vz & (T, /m)'~z is replaced by the much
weaker condition vz & (k, /k)(T, /m)' . Because
the magnetic field limits thermal motions across
8 to a distance a„electrostatic waves with longer
wavelength k,a, & 1, propagating nearly perpendicular
to 8, see the electrons as a cold fluid, even if the
drift (and wave) speed is much less than the true
thermal speed of the electrons. Another point of
view is that k, «k, produces a wave whose phase
velocity along B, where the electrons are free to
move, exceeds the thermal speed, but whose speed
in the direction of the drift (perpendicular to B,
where the electrons do not spread thermally) is of
the same magnitude as the drift speed, even when
vz «(T, /m)'".

Equation (15) is solved by the same techniques
as for the field-free two-stream instability. Choos-
ing k, and k, to maximize the growth rate and still
satisfy the restrictions above gives

R = ymax
= pi 1+

(16)

vz & [(T, + T,)/M]'". (17)

is required for instability. Note that the frequency

(kg /k, ) (m/M) (vz/c, )

The expansion in k,a, and k, limits the calculation
to drifts above the ion sound speed, while ion damp-
ing stabilizes the mode for drifts below the ion
thermal speed; thus

and growth rate of this mode scale with density
in the same way as the mode discussed above in
Sec. GIA1, and essentially the same stabilization
criterion (17) obtains for the two modes. Both are
quite happy growing a T, = T, plasma.

IV. NUMERICAL RESULTS

In order to both verify the approximate analytic
results presented in Sec. III, to extend the results
to parameter ranges where analytic solutions can-
not be obtained, and especially to find the effects
of finite electron and ion temperature, we have
solved the dispersion relations Eqs. (4) and (6) for
the drift-wave branch (k, =0) in a variety of cases.
These solutions employ a routine due to Barberio-
Corsetti to calculate the plasma dispersion func-
tion Z(X).

A. Dependence onk; T; ~0

This range was explored analytically in Sec. IH
for both weak (vzv~ «c, ) and strong (vzv~ & c,')
drifts, where solutions to Eq. (6) for maximum
growth rate were given. We have solved (6) nu-
merically to find the dependence of ~R and y on wave
number k, retaining specifically only a density
gradient so that

—Te 1 e
Vg =

mc e ne dx

Note, however that for k'a, «1, density and mag-
netic gradients enter in the same way so that a
selected value of v~ from Eq. (8) includes a variety
of gradient combinations.

Figure 3(a) shows the frequency and growth rate
as a function of k for weak drift (vzv~ «c,z). Dif-
ferent curves show various combinations of F. &&8

drift (vz) and gradient-produced velocity (v~) with
the total velocity of the electrons relative to the
ions kept fixed at c„ the acoustic speed. Triangles
are analytic results from Eqs. (9)-(11).

Figure 3(b) shows the frequency and growth rate
as a function of k for the transition between the weak
(vzv~ «c, ) and strong (vzv~ & c,z) drift. The ratio
v~/vz is held fixed at —,', and vz/c, is varied. This
is the parameter range in which no analytic solution
could be obtained. Triangles are analytic results
for the weak drift (vzv~ «c, ), Eqs. (9)-(11).
Squares are analytic results for the strong drift
(vzv~ & c,'), Eqs. (12)-(14).

Figure 3(c}shows the frequency and growth rate
as a function of k for strong drift (vzv~ & c,z), with
various combinations of v& and v& but fixed v~+ v&
= 10c,. Squares are analytic results from Eqs.
(12)-(14). Note for this low-density case
[A = (8vnmc /B ) ~ =0. 1] frequencies are charac-
terized by ~„and wavelengths by AD.

Figure 4 shows the effect of changing
A = (8vnmc /B ) ~ for an intermediate-strength
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FIG. 3. Numerical solutions to Eq. (6). (a) Weak drift. Triangles are analytic results. (b) Transition between weak
and strong drift. Triangle is the analytic result for v@=0.75cs. Squares are analytic results for the strong drift for
vg=3c, and vg=15c,. (c) Strong drift.

drift (vzv~ = —,
' c,), with vz = 1.Sc, and v~ = 0. 5c,.

No analytic expression is available for this case.
Analytic results for maximum growth rates for

the high-density and strong-drift case (vrv~ & c, )
are contained in Sec. III, Eqs. (12)-(14). Because
of the approximation Io(b) =1- b, these are valid
only for v~ «v~, since for high density & k a,
= v~/vr, and thus the corrections for finite gyro-
radius become important for v~ - vz. Figure 5
shows the numerical solutions of (6) for frequency
and growth rate as a function of k for various
gradient-produced velocities v& for a fixed sum
v&+v~=10c, and shows the breakdown of the ka, «1
approximation. Analytic results, shown by tri-
angles, correspond to Eqs. (12)-(14).

B. Temperature Ratio and Drift-Speed Thresholds for Drift-
Wave Instability

In order to investigate the effects of electron-ion
temperature ratios, Eq. (4) with k, =0 and

1 dT„&e 0
~B dx

was solved numerically without further approxima-
tion. Thus both finite electron and ion temperatures

2.0

I
I

I
I 1

I

0.5

ew nmc~
B2

VE'15 Cs
Vgs 0.5CS

0.0
0

koe

~ ~ I i s

I I I / I

0.6- ~ ~ f
~ I

04

~ 0.2

0.0
0

FIG. 4. Effect of changing density A = (87lnmc /B )
for an intermediate drift. Curves are numerical solu-
tions of Eq. (6).
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The result is summarized by Fig. 8 which shows

the maximum growth rate as a function of 6 = 4vnT, /
B; the squares show the analytic estimates (12)-
(14). The growth rates are significant only when

P is small, P&0. 2.

V. CONCLUSIONS

0.5—

00 '

0.5 1.0

We conclude that in addition to the intermediate
frequency waves which require either strong beams
[vz& (T, /m) ] or hot electrons (T, » T, ) for
growth, there are a number of modes, described
above, which are unstable with large growth rates
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FIG. 5. Numerical solutions to Eq. (6) for high density
87I'nmc»B and a strong drift. Analytic results break
down when v~-vE as discussed in the text.
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are included in these results. Figure 6 shows that
the instability persists with large growth rates even
for T, «T, . However, Fig. 6(c) shows that the
range of unstable wave numbers becomes increas-
ingly small as T, is reduced far below T,. The
analytic results from Eqs. (12)-(14) shown by
squares in Fig. 6 are too high when T, & T, as ex-
pected: Neglect of ion damping is not fully justified
since for the parameters in Fig. 6, kv, /&u&-,' for
Te & T).

If the electrons are colder than the ions so that
c, & v„ then the important parameter in determining
stability is the ratio of the drift speed v~ to the ion
thermal velocity v„rather than vs/c, . Figure 7
shows the growth rate as a function of vs/v, . It
can be seen that the growth rate becomes insignif-
icant for vE

& v&. If the result of this instability is
to heat ions, as discussed elsewhere, the limiting
ion temperature should correspond to v, =vE.
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C. Numerical Results for Instabilities in Plasmas with No Pressure
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Even when the pressure gradient vanishes, the
magnetic gradient can drive the instability. This
is seen analytically in Eq. (6). However, as shown
in Sec. III A, the approximations leading to (6)break-
down with increasing electron temperature. We
therefore have solved Eq. (4) numerically in this
case, including the effect of finite temperature.

FIG. 6. Finite electron and ion temperature effects.
These curves are numerical solutions to Eq. (4) with
k, =0 and no temperature gradient. (a) and (b) Maximum
growth rate plotted against temperature ratio. Analytic
results (squares) are too high for T~& T&. (c) Frequency
and growth rate as a function of wave number. Note that
as T, /T& decreases, the range of unstable k decreases.
For (c), vE = 32v&, v& = 0.25vE, and A = 0. l.
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FIG. 7. Maximum growth rate as a function of vE/v~.
As the drift speed approaches the ion thermal speed, the
growth rate becomes insignificant.

FIG. 8. Maximum growth rate as a function of P for a
plasma with no pressure gradient. Curve is the numerical
solution to Eq. (4). Squares are analytic results for the
strong drift with vg =(T, /m(d~~) (1/B)dB/dx = Pv g. Note
the breakdown of the low-p approximation, as predicted.

even when the electrons are cool (T, —T, ) and
drifts moderate (vs & [(T,+ T, )jM]'~2). Because of
the hydrodynamic nature of these modes we expect
that they will have a strong influence on the macro-
scopic properties of geometries in which they grow.
They would be expected in magnetic collision-free
shock waves, ' ' magnetic pulse-diffusion experi-
ments, and other experiments involving electric
fields perpendicular to the confining magnetic
field. 2~ Although the nonlinear aspects of these
modes are still being explored, they have already
been invoked to explain a number of features (ion

heating, turbulent fields) of several such experi-
ments 12f 24
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