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cross section with a value of o„=(l. 0+0. 15)&&10 "
cm' was determined for the resonant-transfer col-
lision process between the He 2'8 metastable level

and the Ne 3s, level.
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The Schrodinger equation for two electrons in a Coulomb field is studied in the critical re-
gion where both electrons have near-zero kinetic energies. The main feature of this problem
is that the mutual screening between the two electrons determines and is determined by the
partition of the available energy between them. This energy-dependent screening can be taken
into account to yield a complex potential in the radial variable & = (r&+x~) of the six-dimen-
sional configuration space of the two electrons. Solutions of this equation are obtained and
are shown to correspond to the classical orbits given in an early paper by Wannier. A possible
way is indicated of using these wave functions to establish the Wannier threshold law which,
for ionization of neutral atoms, is 0 c E . Finally, the interplay between the total energy
and the Coulomb potential is discussed both for this problem and for the case of one electron
in the field of a nucleus.

I. INTRODUCTION

The increasing attention being given, in both
experimental and theoretical atomic physics, to
correlation effects between electrons makes the
prototype system of two electrons in the field of
a nucleus of increasing conceptual and practical
interest. The correlation effects are expected
to be especially significant when the two elec-
trons have near-zero energies. This is a situa-
tion that obtains in the classic three-body problem
of the threshold behavior of the cross section for
ionization of atoms by electron impact. As we
will see, a crucial feature of the two-electron
continuum wave functions near threshold is that
they include a large number of spherical harmonics
of either electron, even when the total wave func-
tion is restricted to an 8 state. The divergence
of this number distinguishes the ionization thresh-
old from the threshold for excitation of any level
that lies below the ionization limit by a finite
amount. Arguments for a linear threshold law for

ionization on the basis of extrapolation from ex-
cited states are invalidated by this feature, which
puts the ionization threshold on a qualitatively
different footing. The same divergence in I values
is of practical interest because it represents a
long-range correlation which will be important
for electron-atom scattering calculations at en-
ergies approaching the ionization limit from
either direction. The influence of this effect has
already been felt in close-coupling calculations of
collision processes, which agree quite well with
experiment when the energy is near the n = 2 or
3 levels and again when the energy is appreciably
above the ionization limit, but depart very signif-
icantly from experiment in the intermediate range.
The two-electron wave functions derived in this
paper emphasize precisely this long-range angular
correlation which has so far not been included in
any calculation. Analogous effects should occur,
of course, near the threshold for breakup into a
still larger number of particles and may be ana-
lyzed along similar lines.
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The threshold law for the ionization of atoms
by electrons was first considered by Wannier,
who, in an elegant treatment of Hamilton's clas-
sical equations of motion and of the phase space
relevant to ionization, established a threshold
law which takes into account the "dynamic" or
energy-dependent screening of one electron by
the other. This work seems very convincing to
us and we can only attribute the hesitation of many
in accepting his results to the fact that it is a
classical and not quantum-mechanical treatment.
Some progress towards extension of the classical
analysis has been made by Peterkop and I iepinsh,
who carried out the WEB treatment of a simplified
problem (the electrons are taken to be in one
dimension) and also arrived at Wannier's result.
The study of the two-electron Schrodinger equation
that we attempt in this paper is guided strongly
by the lines Wannier's argument takes.

The arrangement of the paper is as follows.
The main treatment begins in Sec. III with a qual-
itative discussion of the principal features of the
electron-electron interaction. However, as a
preliminary, Sec. II discusses aspects of alterna-
tive normalizations of continuum wave functions,
particularly with a Coulomb potential, indicating
their connection to threshold laws and particularly
emphasizing assumptions which have led to dif-
ferent proposals for the threshold law for electron-
atom ionization. This serves to motivate the
features emphasized in Sec. III and further is
important for considerations of the normalization
of the two-electron wave functions that we derive
in Sec. V. Section IV considers the solution of the
two-electron equation to arrive at zero-energy
wave functions which incorporate the ideas of
Sec. III; a way of arriving at the Wannier thresh-
old law starting from these zero-energy wave
functions is then considered in Sec. V. The main
thread of solutions of the two-electron equation is
again taken up in Sec. VI, where solutions that
are more general than those in Sec. IV are derived.
This brings out the connection of zero-energy
wave functions with those at finite energy and also
the role of various regions of space in problems
with a Coulomb potential; the Appendix discusses
mathematical aspects of the connection between
these regions and the alternative expansions of
the Coulomb wave function relevant to them.

II. PHASE SPACE, CONTINUUM NORMALIZATION,
AND THRESHOLD LAWS

The problem of the threshold behavior of pro-
cesses involving scattering from potential wells
and two-particle scattering dates back to a 1948
paper by Wigner. He emphasized the crucial
feature that the threshold behavior is a feature

of the escape process and does not involve details
of what goes on in the "reaction zone" where the
particles are close together and interact strongly.
This has an important implication which we will
exploit, namely, that threshold laws can be worked
out even in the absence of a full quantum-mechanical
solution in the reaction zone, which is usually the
most complicated region of the problem. Further,
the physical significance of the Wigner argument
is that the way the "initial complex" is prepared
in the reaction zone is irrelevant for the thresh-
old law. For our problem this implies that the
threshold law for electron-atom ionization is the
same as that for double ionization of an atom by
a single photon.

The energy dependence of the cross section for
an inelastic process enters through the phase-
space factor and through the wave functions ac-
cording to

o = (phase space) &
~
(Pz, Vz @;)

~

'

where the wave functions are normalized per unit
volume. g& is the unperturbed final-state wave
function, V& the perturbation in the final channel,
and 4& is the exact wave function which includes
the incident wave and outgoing scattered wave.
Various alternative forms may be used for the
transition matrix element in Eq. (1); for example,
(4z, V, g, ), where the minus indicates that an in-
going scattered wave is included. For the purpose
of deriving threshold laws, however, these com-
plexities are not relevant because it is well known'

that the Born approximation form of the matrix
element in which only unperturbed wave functions
enter is adequate. But it must be emphasized that
we must use the correct forms for these wave
functions, which requires that for the electron-
atom ionization problem, (& must be solutions of
the full three-body equation. We will shortly see
that so far all attempts to derive the threshold
law have used instead a product of wave functions
for each electron and not true two-electron func-
tions.

But first let us consider the phase-space factor
which is necessary when one adopts normalization
per unit volume. When a single electron leaves
the reaction zone, this factor is k&(dk&/dE) and

hence equal to k& because E=2k&, where E is the
energy available in the final channel (we use a.u.
througliout). Explicit use of this factor could be
avoided by using wave functions normalized per
unit energy range. We choose, however, to work
with functions normalized per unit volume and

keep the phase space separate, partly because
this factor has its own physical significance and

it is useful to display its influence separated from
the specific dynamics of the process. Further,
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we shall in later sections consider mave functions
in six-dimensional space; normalization per unit
volume takes the dimensionality of space into
account more readily. For ordinary three-dimen-
sional wave functions, the various normalizations
are connected by the rule

(functions normalized per unit momentum)

= k(functions normalized per unit volume)

=k'~ (functions normalized per unit energy).

This rule expresses how the terms in the phase-
space factor, k (dk/dE), are successively taken
into account in going from normalization per unit
volume to that for unit energy. Wave functions
with a short-range potential with these three
alternative normalizations (per unit momentum,
per unit volume, and per unit energy) are, re-
spectively, kj, (kr), j,(kr), and k' j,( rk). The
second of these, when combined with the knowledge
thatj, (kx)~ (kx)' as k-0, gives the Wigner result
through Eq. (I), a~a'', for excitation thresholds
mhen there is no long-range interaction in the
final channel. Notice that phase space alone con-
tributes the factor k& or E' . S-wave thresholds
display this characteristic square-root behavior.

If there is a Coulomb potential in the final
channel, the radial wave function Rz(kx) =Pz(kr)/
kx obeyss the equation

where g = Z/k and is negative for an attractive po-
tential. The regular solution, normalized per
unit volume, is

x M(l + I —i q, 2l + 2, 2ikr),

which reduces to the zero-energy form P&(kx)
= (kr)'~ J'z„,[(8Zr)'~ ]. Zero-energy solutions,
normalized per unit energy, then turn out to be
R&(kr) =x ' J2„,[(8Zr)'' ] and hence independent
of energy. It is clear from these energy depen-
dences that Eq. (I) now yields a constant thresh
old law for the cross sections when there is a
Coulomb potential in the final channel, which is a
well-known result.

The volume normalization admits immediate
generalization to N-dimensional Coulomb functions.
The transformation Rz(kr) =P&(kr)x (kr) '" "~~

leads always to Eq. (2) for P&(kr), which may,
therefore, be considered to be the equation for
one-dimensional Coulomb functions. Thus N-di-
mensional Coulomb functions, n0rmalized per
unit volume, have the k dependence near thresh-

old given by Rz(kx)~k '" ~'~2.

Let us now consider some three-body threshold
laws. Since we have two particles leaving the
reaction zone, the phase-space volume element
is proportional to &,(dz, /dE, )tcz(dz2/dE, ), where
v, and &3 are the tmo wave numbers. With the
condition E =-,'(v, + xz) =E,+E2 we have to integrate
over all possible energy partitions between the
two electrons. The double integral ff dE, dE2
x 5(E —E, —E3) reduces to an integral over the energy
of just one electron. We have finally

O'= J &&azdtc~~matrix element~
0

where E= —'k .
Several results now follow from Eq. (3) and we

mish to focus on these as a background for later
results in this paper:

(a) If the matrix element brings in no energy
dependence (recall that we have to use wave func-
tions normalized per unit volume), then Eq. (3)
gives cr~E, a result given by Delves for
deuteron breakup by neutrons. Note that this is
just a phase-space factor.

(b) In the context of atomic physics, when two

electrons leave a positive ion, there has been no
unequivocal derivation of the threshold law. This is
because so far there has been no unambiguous
form for the wave function of the final state and

various authors have made various assumptions
for this form. One form, in which one electron is
assumed to screen the nuclear potential completely,
takes for the final state a product. of a Coulomb
wave for this electron and a plane mave for the
other. Hence, P&~ && or &z . Either of these
gives through Eq. (3) the result o ~ E~~2. An al-
ternative assumption, that both electrons can be
represented by Coulomb waves, gives P&~(wp&)
and hence o ~ E; this law mould follow, for instance,
if neither electron screens the field for the other.
Note also that if we mrote a joint wave function for
the two electrons as a six-dimensional Coulomb
wave, we know from the earlier discussion that
R&~k ~ and hence a-const, a result noted earlier
by Peterkop. ' No one of these results can be ac-
cepted as the correct threshold lam; as pointed out
earlier, we have to use in Eq. (3) a final-state
wave function that is a solution of the full two-elec-
tron Schrodinger equation. It is these solutions
that we derive in the next sections.

Summarizing, we can see through consideration
of phase space and normalization factors the
assumptions which underlie different proposals for
the electron-atom ionization threshold law. The
main result to bear in mind in later sections is
that assuming no screening gives a linear law

whereas the opposite extreme of full screening
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gives the 8' ' law,

III. DYNAMIC SCREENING AND WANNIER ORBITS

In the ionization of an atom by an incident elec-
tron, the main feature of the outgoing configuration
is the interaction of one electron with the other —a
mutual screening effect. The last paragraphs of
Sec. II have emphasized that for threshold behavior
this effect must be properly treated. In a time-
dependent framework the escape process may be
viewed as follows. As the electrons move away
from the nucleus, the way in which the total avail-
able energy is part~tioned into the kinetic energies
of the electrons will determine their velocities
and hence their distances from the nucleus. If we
consider the system as an electron in a screened
Coulomb field due to the nucleus and the other
electron, then we will have one such configuration
at any one instant of time (or, alternatively, at
any one value of distance parameter R which will
be introduced later). The configuration at any
instant will in turn determine the subsequent en-
ergy exchange between the two electrons which
mill, of course, lead to new values of the relative
distances of the electrons and hence to a new
configuration. Thus there will be a sequence of
such configurations in time, representing the
escape process. This phenomenon, which we call
"dynamic screening, "plays a particularly signifi-
cant role near threshold because the electrons are
slow and if one gains energy at the expense of the
other, the latter may be prevented from escaping.
This dynamic screening has been considered only
in the work of Wannier, ' who solved the classical
equations of motion in a restricted region of con-
figuration space which is relevant to this critical
interaction between two slow electrons. He
derived a threshold law with a Z-dependent ex-
ponent which lies between 1 and —,'. Section II has
made plausible the supposition that the exponent
will lie between 1 and -', . The remarks on dynamic
screening make clear that the escape process is
a continuous competition between the nuclear at-
traction and the interelectronic repulsion. The
former is Z dependent and the latter is not; hence
the decreasing effect of dynamic screening as Z
increases makes the appearance of a Z dependence
in the threshold law quite natural. In fact, the
exponent in the Wannier threshold law decreases
towards 1 as Z increases, which is just what we
would expect.

The phenomenon of dynamic screening has been
described in the last paragraph in a time-depen-
dent or perturbative framework. There will, of
course, be a time-independent or stationary-state
picture, which we adopt in the rest of this paper.
This is particularly suitable near threshold be-
cause the two electrons have about equal energy

and it is artificial to single out one to give a
screened Coulomb field for the other. It is much
more natural to treat the whole complex of nu-
cleus and two electrons as a single system. This
is suitably done by using hyperspherical coordi-
nates:

R= (~', +&2)' ', tano. =&2/&g,

3„=arccos r, ~ r2,
where r„r& are the radius vectors of the electrons
from a center of charge +Ze. We further restrict
ourselves to I- = 0' (total angular momentum of
the two electrons). With this choice, a coordinate
set (R, n, 3,2) defines the location of a configuration
point of the whole system. The mutual positions
of the two electrons are now given by the values
of o, and 3&3, where the former, apseudoangle,
represents radial correlation and the latter,
angular correlation. The effect and importance of
dynamic screening translates in these terms into
the effect and importance of the (o, S,z) part of the
Schrodinger equation on the remainder of the
equation in R. This process of converting the two-
electron problem into one of the motion of a point
in a six-dimensional space could, of course, be
generalized to more particles.

Wannier argued that near threshold the region
relevant to ionization is one in which the two elec-
trons recede from the vicinity of the nucleus in
opposite directions, ~p2 —&, and with nearly equal
velocities, i.e. , r, = r~ or ~ = 4m. The first is
plausible because the 1/x, 2 repulsion acting be-
tween the two slow electrons would tend to push
their radii vectors apart. Further, tI s has an
important physical significance. Even when L,
the total angular momentum, is zero there is no
restriction on the magnitudes of the l values of the
individual electrons so long as they are equal. In
fact, the tight correlation 3,z= m demands that there
be a superposition of a large number of spherical
harmonics. As remarked in the Introduction, this
large multiplicity, infinite in the limit of threshold,
is what distinguishes the ionization threshold from
those that involve a finite excitation. It is inter-
esting that the presence of several l values near
threshold is apparent in angular correlation exper-
iments' of e+He ionization which show that there
is still structure in the angular differential cross
section several eV above threshold.

The second condition, ~ = —,'m, is a consequence
of dynamic screening. If instead of having equal
energies, one electron gets a little faster, then
the other lags behind, screens the nuclear field
more, and thus enhances the discrepancy in the
energies. Thus the slower electron will be pro-
gressively slowed domn and finally prevented from
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Thus, with Sec. III in mind, let us look for
solutions of the two-electron Schrodinger equation
along the Wannier direction. The wave function
for L = 0 can be written as

+(~, e, &») =R "'csc2a y(R, o., a»),
where P satisfies

(4a)

gR R2 R2 8z 2 R2 sin22e sin8)2

2ZB(o. , 8»)

2 4 1
gR2 + ~ + R2 + R2

1
+ 4(1+4p ) 3 + ——~v

Bp y y J

—2)7R - 4gZRP2+ ~ R, P, y = 0,

with

5=2~2-(~2Z) ', q=(3/v 2) —(4~2Z) ' . (6)

The three terms in the last large parentheses
represent the potential multiplied by R . This
potential consists of (a) a Coulomb term in R with
effective charge 2)Z, (b) a harmonic oscillator
term y /R, and (c) an "antiharmonic oscillator"
potential P /R. This and the nonappearance of
linear terms in P and y are expectedbecause the

& y(R, &, V») = O, (4b)

—,'k is the total energy, and —ZB(e, 3»)/R is the
potential with

B(e, 8») = 1 1 1/Z
coso, sino, (1 —sin2n cosa») '~~

As an aside here, let us remark that Eq. (4b),
insofar as it is a two-electron L = 0 Schrodinger
equation, applies equally to bound states and to the
continuum, the only difference between them being
in the sign of the energy. We should actually
expect an intimate connection between the ioniza-
tion problem and the doubly excited states of the
same two-electron atom that lie on the other side
of threshold. " Actually, Eq. (4b) has been con-
sidered by Macek' in the context of doubly ex-
cited states of He.

Expanding all terms in Eq. (4b) about the Wan-
nier direction and retaining terms up to the first
nontrivial order in P= —,'v —o.' and y=v —8», we
have

%'annier point is a saddle point of the potential
B(n, 3»). Notice also in Fig. 1 the deep attractive
wells at & = 0 and" —,'& which explain the earlier
remarks about the instability of wave-function
propagation along cy = —,'m.

By inspection of Eq. (5), the form of a solution,
at least near zero energy, suggests itself. Re-
call from the form of the zero-energy Coulomb
functions discussed in Sec. II that in the ordinary
Coulomb problem, the potential 2Z/R is canceled
by factoring exp[i(8ZR)' ] out of the wave function.
This operation leaves a residual potential pro-
portional to R ~~3 which converges faster than 1/R.
The analog in our problem,

2

L

would similarly cancel the potential terms of Eq.
(5) were it not for the effect of the derivatives in

P and y. To allow for these derivatives, we should
expect to factor out a more general form, exp[icR'
x (1+ ,'aP +iby )], w—here a, b, and c are constants
that can be adjusted to cancel all 1/R terms in Eq.
(5). There is also another reason for expecting
this form, this time by looking at the equation as
an equation in 9 and y. The ground-state wave
function of a harmonic oscillator potential Ry /4W2
has the form exp( —bcR'~ y ). A similar situation
occurs for the P behavior, where we expect an
oscillatory function, instead of a Gaussian.

Hence we write

y(R, P, y)=e xp(ic R'~ + ,'iacP R—'~ bcR'~—3y~) Z(R) .
(7)

This form, which has been written down in anal-
ogy with the single-particle zero-energy Coulomb
wave functions, is really not restricted to zero
energy. Its validity depends on the relative im-
portance of the two terms, 0 and the Coulomb
potential, in the Schrodinger equation. We can
use this comparison to define two zones in which
one or the other of these energies is dominant.
In the "Coulomb zone, " k «2(ZR ', the potential
is dominant and the wave function will be of a zero-
energy type with the form Eq. (7). Exactly at
zero energy, the Coulomb zone stretches all the
way to R =. At any finite energy, however, there
will always be a "far zone" in which the potential
is negligible compared to k3 and the solution (7)
will not be valid. In keeping with the spirit of the
threshold problem we will not look for solutions
in the reaction zone which extends to finite R, but
study only solutions for larger R. Further, of
the two large-R regions one would expect the
Coulomb zone to be dominant near threshold and
we will argue, as did Wannier, that the threshold
law is a feature of the wave functions in this zone.
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In this section then we will study the solutions of
the form Eq. (7). In Sec. VI we will look for more
general solutions which are valid both in the Cou-
lomb and in the far zone.

Let us also remark on the spin state to which
the wave functions (7) belong. Interchange of r,
and ra corresponds to y-y, P- —P. Hence Eq.
(5), which depends on P~, represents a singlet
wave function. We will, therefore, see that the

Wannier theory implies that for L =0, singlet wave
functions determine the threshold behavior. This
is because all L = 0 triplet wave functions have a
node along ~ = 4m. ~ Restriction to the Wannier
region automatically excludes triplet states.

We will now determine P(R, P, y) by substituting
the form (7) in Eq. (5) and again retaining terms
up to the first nontrivial order, i.e. , 8 /R, y /R,
and R ~~. This yields

2)Z ——,'c 4ttZ —a c ~ac —
z 16b c ——,'v 2 —wibc

ic 8 a+16ib —
4

BR R

c = (6$Z)~~~ (as expected),

a = —.'[-!+ (~+2n/()"']=-.'[- —,"-,' p], (9)

We now choose a, b, and c to cancel all the 1/R
terms. This gives

I

die point. This close resemblance to the ordinary
Coulomb problem justifies the adoption of the
same steps that are used to analyze the ordinary
Coulomb equation. '

We are left then with sn equation for )((R) valid
for R«25Zk

9-4Z
64 4Z —1 64 [

d2
~ ~ ic d a+ 16ib ——,

'

where p, and p are the parameters introduced by
Wannier (see Sec. III).

The only approximation we make now is to drop
in Eq. (6) the terms of higher order involving
either higher powers of R ~ or of P~ or y~. This
means we consistently take into account the po-
tential to order R ~~3, PIR ~, and y~R ~. We ex-
pect this to be adequate for large R. The following
are arguments to justify this statement. First
of all, in Eq. (6) there are, among others, two
terms 6 R ~ (8/BR) and y R ~ (8/BR). So long
as X(R) has such a form that these derivatives do
not regenerate terms of lower order than P~/R,
the above procedure is consistent. In particular,
we will see that for large R, g(R) is indeed a
power of R and hence the neglected terms have
higher order, 82R 3~~. A second point is that if in
Eq. (7) we had not written y(R) but g(R, P, y), there
would have been no approximation at that stage.
In Eq. (6) then we would also have had R 2(82/Bpe)
and R (8 /By ) acting on g. Again, if the depen-
dence of g on R turns out to be a power of R, these
are higher-order terms. The final plausibility
for these steps is obtained by remarking that the
potential in Eq. (5) is almost like an ordinary
Coulomb potential with the main dependence con-
tained in Z/R. Everything else constitutes a
slowly varying quantity in the vicinity of the Wan-
nier point. This is particularly clear from Fig. 1,
which shows that the potential remains near —2Z/R
a.u. over a wide range of P and y around the sad-

x X(R)=O. (10)

If we write P(kr) = exp(icr~~2) g, (r) in the ordinary
Coulomb equation [Eq. (2)], the equation we obtain
for g, (r) coincides with Eq. (10) with a= b =0,
$ = 1, and l = ——,'. (The formal appearance of a
half-integer value of l in the Schrodinger equation
for an n-body problem, n odd, has been noted pre-
viously. ) We have, therefore, arrived at a gen-
eralization of the ordinary Coulomb equation with
extra potential terms in R . The dynamic screen-
ing in e has led to an effective —iacR potential.
That this potential is complex is again expected
because we have sought solutions in a limited
region of configuration space. A complex poten-
tial is the hallmark of a procedure that treats only
a part of phase space; it represents the coupling
of this part to the rest of the space.

The preceding development relates to Wannier's
work not only through the appearance of his coef-
ficients p and p in Eq. (9), but also through a con-
sideration of the surfaces of constant phase in
Eq. (7). These surfaces consist of two alternative
sets of paraboloids in lnR (or, equivalently, R)
against P and W, one for each sign in the expression
for a in Eq. (9). Cross sections of these paraboloids
in the (R, P) plane are shown in Fig. 2. The orthog-
onal trajectories of these paraboloids coincide
with the Wannier orbits. In the 'V direction, all
orbits are converging though they also oscillate
according to the cosine factor in Wannier's equa-
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I"IG. 2. Sketch of surfaces of constant phase in
(R, 0.') plane with corresponding classical trajectories.
a, and a„refer to converging and diverging orbits,
respec tively.

tion. Note that we have to choose the positive
sign for Re(b) in Eq. (9) to ensure that the wave
function (7) remains finite as R' y increases.
Let us also remark here that for Z & 2, b becomes
purely imaginary. Inspection of Eq. (9) however
shows tha. t both roots lead to converging orbits (in
contrast with the behavior in ~) because in either
case Im(b) is positive; hence the gradient of the
phase converges in either case towards ~ = 0 as
R increases. Note that the negative root leads to
b = 0 at Z=~ (where the angula. r correlation might
be expected to disappear). The Appendix discusses
the solutions of Eq. (10) for zero energy and their
extension to finite energy. However, we only wish
to illustrate how the converging and diverging so-
lutions are to be superposed in the Coulomb zone
and point out the implications of this superposition
for the threshold law. For this purpose, it is suf-
ficient to look at the solutions for zero energy and
large R„. they are

y(R) Rt/

with b =16ib.
Hence, the full solutions P(R, g, y) in Eq. (7) have

y(R) just as a power of R. Further, with a=b=0,
the result is in agreement with the ordinary zero-
energy Coulomb functions because R'~a J'o[(8ZR)'~ ]
goes like R' for large R. The relation of the
phase of P to Wannier's orbits has already been
discussed. The alternative values of a yield two
independent solutions in Eq. (11) and the general
form of the wave function is some linear combina-
tion of them,

y(R P y)-Ae R' -'c-'+Be,R'~ -'z (12)-
Here a, and a~ are the values of a in Eq. (9) with
the negative and positive signs, respectively, and

e„,= exp [(icR'~') (1+ —,'P'a, , + iy'b) ]
A and 8 are constants which, it is envisaged,

will be determined by the solutions of the Schrod-

inger equation in the reaction zone. The understand-
ing is that these small-R solutions are expanded
at the boundary of the reaction zone into a basis set
that is valid for the Coulomb zone. We have sought
here solutions in the Coulomb zone which will con-
stitute the elements of such a basis set that dominate
for large R because the threshold law is a feature
of these solutions, which represent the coupling
of the reaction-zone solutions to infinity. For the
purpose of establishing the threshold law, we only
need to note that A. and 8 are determined by the
small-R solutions and that B/A is k independent

V. THRESHOLD LAW FOR ELECTRON-ATOM IONIZATION

%'e now have wave functions that are accurate
to O(R ') in the Coulomb zone which extends for
zero energy all the way to R =~. What we wish to
consider in this section is a procedure to establish
the Wannier threshold law starting from these
wave functions. General solutions of the two-elec-
tron Schrodinger equation at arbitrary energy will
also have two terms in the Coulomb zone, one cor-
responding to converging and the other to diverging
orbits. Wannier's work suggests that we determine
the amplitude of the divergent solution present in
the full solution; more precisely, we only require
the k dependence of this amplitude.

This determination will be carried out by adapting
a method'7 for establishing the threshold dependence
of the phase shift for scattering by a short-range
potential. The zero-energy solution outside the
range of the potential has the form A.r'+Br '""
analogous to Eq. (12). This solution can be rep-
resented as a superposition of solutions of the
free-particle wave equation at nonzero energy and
normalized per unit volume, through multiplication
by a normalization factor f(k) = k' and algebraic
manipulation:

f(k)[Ay'~By ""]=A(ky)'+k@' B(ky) " '(13)

The factors (ky)' and (kx) '""necessarily represent
the leading terms of the kr-0 expansion of the
regular and irregular solutions (normalized. ver
unit volume) of

which is the relevant equation for this problem at
r values outside the range of the potential. This
statement does not depend on explicit knowledge
of the full solutions j,(kr) and n, (kx). Once we
know the zero-energy form and observe from the
structure of the equation that r occurs in the com-
bination kr, we can infer the small argument ex-
pansion of the solutions for arbitrary energy and
further conclude that the leading term of tan6,
where 6 is the phase shift, has the k dependence
k ' given in Eq. (13).
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C(k) = k"-"= k"" . (18)

Further, if we want these two-electron wave func-
tions (14) to be normalized per unit volume, we
can get the form of F(k) because Eq. (15) must
reduce to the ordinary Coulomb solution when a
=b =0. We saw in Sec. II that volume-normalized
Coulomb solutions are, in the Coulomb zone,
k R' exp[i(8ZR)' ~]. Hence F(k)~k

With these choices for F (k) and C(k), Eq. (14)
does represent the structure of general two-elec-
tron wave functions with the right limiting property
that in the Coulomb zone they match the zero-
energy form [Eq. (12)] as k-0. In the asymptotic
limit on the other hand, kaR» 2t'Z, the expression
(14) should reduce to the asymptotic solution given
by Peterkop, which in the Wannier direction has
the form

$(R, P, y)

- exp[ikR+ (iZ/k)($ + 2qP~ —y~/8v 2Z)ln2kR] .
(17)

We will actually demonstrate in Sec. VI that this
is so, but for the present we only need the result
that the k dependence of the diverging part is
k" " . Notice particularly that this expression
does not involve b but only the parameters a, in
agreement with Wannier's conclusion that only the
behavior in ~, not the one in 3», is crucial to the
threshold law.

Wannier argued from statistical considerations
that the converging orbits form a set of measure

In our problem we know that the converging and
diverging waves, multiplied bye and 8 as in Eq.
(12), must represent the zero-energy Coulomb-
zone forms of unknown functions of R, p, and y.
We concentrate here on the dependence on R be-
cause the dependence of the potential on p and y
in the Wannier region has already been taken into
account. Since the dependence of the potential on
R in this region is of the form Z/R, it is clear
that the unknown functions are functions of kR and
Z/k. We expect then that the general solutions
have the structure

F(k) [Au, (kR, Z/k, P, y)+ BC(k)u„(kR, Z/k, P, y)] .
(14)

In the Coulomb zone, this must match Eq. (12)
and hence must take the following form so that the
R dependence agrees with Eq. (12):

F(k)[Ae, (kR)~~4 'c ~+BC(k)e~(kR)' 4 '& '] . (l5)

When k- 0 this should continue smoothly into Eq.
(12), which means that a common k dependence
should factor out of the expression inside the
brackets. For this we must have

zero compared to the diverging ones and hence are
not important for the threshold law. This would

imply that though in Eq. (12) or Eq. (14), A and
I3 are determined by the small-R solutions, for
the orbits relevant to double escape, A is very
small (of measure zero) compared to B Wan-
nier's argument may imply that A. vanishes for
ionization, in the "initial feeding" into the Coulomb
zone from the small-R solutions at the boundary of
the reaction zone. This question remains as a
topic for further research. For the present, if
we adopt Wannier's argument that it is the diverging
orbits that are important for the threshold law,
we have the correct k dependence of the final state
of the wave function to go into Eq. (3). Combining
C(k), F(k), and k ', which stands for volume
normalization as discussed in Sec. II (N= 8), one
has k~ ' as the k dependence of the wave
function to go into the matrix element in Eq. (3);
therefore,

~ Eg /2-1/4 (18)

which is Wannier's result. We again emphasize
that the preceding paragraphs in this section
have indicated a possible &cay of understanding the
Wannier threshold law starting from the wave
functions derived earlier. It is still possible that
the "true" threshold law is different, arising from
other quantum-mechanical effects which make
regions of configuration space other than the Wan-
nier region (n =z'v, 3,~= w) important for double
escape. Further, it may be possible to use the
wave functions derived here in a different way from
the one we have given to arrive at Eq. (18). What
is certain is that the quantum-mechanical equation
does have solutions in the Wannier region which
correspond to his classical orbits.

For Z=1, Eq. (18) gives a~E'". This is not
inconsistent with experimental observations,
which do show a nonlinear behavior of the cross
section at threshold.

Let us now consider the implications of the
finite-energy solutions [Eqs. (15) and (17)] for the
correlation in energy and angle. In our picture,
the two electrons start from the reaction zone cor-
related both in energy and angle; the correlation
is expressed by the form of Eq. (15) and the fact
that Eq. (15) holds only near the Wannier direction.
In the Coulomb zone, the angular correlation re-
mains, even increasing slightly, but there are two
kinds of behavior in ~ —the converging orbits lead
to a greater energy correlation and the diverging
orbits to less. However, since it is necessary
that the wave function still be confined to around
the Wannier direction until it emerges into the far
zone, there is still energy correlation for all the
orbits. Once in the far zone, the electrons are
essentially free and double escape cannot be pre-
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vented. However, in this zone, the energy cor-
relation is gradually lost. We will see this ex-
plicitly when me derive far-zone solutions in Sec.
VI, but this result is anticipated by the asymptotic
form [Eq. (1V)]. Analyzed in terms of orbits, the
gradient of the phase of this expression converges
to y = 0, but diverges from P = 0 as R increases.
The implication for experimental observation is
that for observations near threshold, there is
strong angular correlation but, with regard to en-
ergy, any partitition of energy between the two
electrons is equally likely, a result borne out by
computer calculations. 3~ The significant point is
that equipartition of energy is as likely as any
other partition near threshold, whereas above
threshold, it is highly unlikely; one electron
normally carries away most of the available en-
ergy. Again, it is interesting that in the experi-
ments of Ehrhardt' on e+He ionization, which
show angular correlation near threshold, when
the incident energy is 30 eV or lower, he readily
picks up the two outgoing electrons with equal en-
ergy.

YI. WAVE FUNCTIONS AT FINITE ENERGY

The central argument in Sec. V was that thresh-
old laws could be derived once the zero-energy

P(R, p, y) = exp(if+igP2+iky~)y(R), (7')

where f, g, and k are functions of R.
As before, we will substitute this form in Eq.

(5) and retain terms up to the first nontrivial order
in the potential.

Substituting Eq. (V') in Eq. (5), we have

wave functions are known. Thus in Sec. IV we
focused on obtaining a limited solution of the
Schrodinger equation which would be valid only in
the Coulomb zone. We will now sketch a derivation
of solutions to Eq. (5) that are more general,
stretching out into the far zone and all the way to
R= ~ for nonzero (though small) energy. This
mill also illustrate mhat was involved in the argu-
ments in Sec. V that went from Eqs. (12) to (16).

Close to zero energy, for large R, but in a
region dominated by the Coulomb potential
(k~R«2)Z), we showed that the solution has the
form (V). The R~~~ in the exponent was introduced
as characteristic of the Coulomb zone. To get
more general solutions but still focusing on the
Wannier direction, we have only to relax the
assumption (7) for the dependence on R. The de-
pendence on tt and y is, of course, unaffected be-
cause it is characteristic of the Wannier direction.

Therefore let us put

+ — ~ + &h" -2 'h'- —,—,y' ~R =0, 8'

where primes denote differentiation with respect to
R.

First of all choose f so that

k +2(Z/R —f'2= 0.

If k R «2(Z, this equation leads back to the old
result f= (8(ZR), as it should. In the opposite
limit k R»2)Z, it gives f=kR+($Z/k)ln2kR, in
agreement with Eq. (1V).

To determine g and h, we know that in one limit,
k R«2(g, g and ho-R . In the opposite limit we
know from Eq. (17) that g and k~lnR. In either
case, in both the last two large parentheses in
Eq. (8'), the second and fifth terms are of higher
order than the others in powers of R . Therefore
we can consistently drop these terms [ they are
the terms we had dropped in Eq. (8) also] and set
the remaining sums equal to zero, so that we
eliminate coefficients of P and ya in Eq. (8').
This gives

4gZR ~ —2f'g' —4g~R ~=0

(4~M) ~2f'k'+16k R 2=0 (9')

g= —,'Ra(k + 2)Z/R) g

This then casts the equations for g and 5 into Ric-
cati form from which a standard transformation
gives linear, but second-order differential equa-
tions for exp(fgdR) and exp(fKdR) These s.teps
cari be condensed into the statement that from g
and h we can pass over to new functions u and v

which obey the hypergeometric differential equa-
tion. We have

It is easily verified that with f= cR, g= —,'acR
and k=ibcR~~3, Eq. (9') reduces to Eq. (9),
giving the values of a, b, and c that we obtained
earlier in the Coulomb zone. The presence of g
and k suggests that Eq. (9') can be cast in Riccati
form. For this purpose, one needs to pass over
from g and h to new functions g and h, such that
in the nonlinear equations for g and 5 the coef-
ficient of the quadratic terms g~ and h~ is unity:
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1/2

2)Z dI=8R' k'+
R dR

lnR'5

where

u= 2E,(2a, 2a+1, 4a+-,', —k R/2)Z),
(9 II

)

v=gEg(b, k+1, 2k+ —,', —k R/2$Z)

with a and k defined by Eqs. (9) and (11), b = 16ib.
Notice that the SE~ in Eq. (9")are related to

the Legendre functions P~~~[(1+k R/2)Z)~~ ]; hence
these equations correspond to the more general
orbits given by Wannier in an appendix. Of course,
in the two limits kmR «2(Z and k~R» @Z, the
limits of u and v are such that Eq. (7') reduces to
the solutions for the Coulomb zone and the asymp-
totic form, i.e. , to Eq. (7) and Eq. (17), re-
spectivelyy.

Equation (8') now reads

( „,+ 2ff' + „', +if"+ „-, g(R)=0 .

(1o')

This is the generalization of Eq. (10). Substitu-
tion off and g shows that the dynamic screening
gives a R ~ potential in the Coulomb zone but a
R lnR potential~~ asymptotically [see Eq. (17)].
We will not consider the general solutions of Eq.
(10') here, but for large R a Glauber-type approx-
imation that drops the first and third terms leads
to the solution

g(R)=R v ~u ~ [R/(k R+2(Z)]~ 4

For k R «2$Z, this reduces to Eq. (11). For
ksR»2)Z, the asymptotic form ' of SF~ gives
u- (kmR/2)Z) ~. Hence Eq. (11')becomes in this
limit )((R)- km' ~~ "' ', which is independent of R,
as one would expect from Eq. (17).

We thus have general solutions agreeing with
our earlier knowledge of the Coulomb zone and
the asymptotic solution (17). The steps from Eq.
(12) to (16) can now be understood as follows.
Since Eq. (11') reduces to Eq. (11) in the Coulomb
zone, in this zone we have to take a superposition
of the two solutions with alternative values of a
such that their relative ratio B/A is independent
of energy, just as we did in Eq. (12). This auto-
matically leads to an energy dependence k" for
the relative ratio of the diverging and converging
parts at R = ~. Once again, because R should ap-
pear in the combination (kR), we have to cast this
superposition in the form of Eq. (15); the relative
ratio then has the k dependence given by C(k) in
Eq. (16) over the entire range of Coulomb and far

zones.
Note that in Eqs. (7'), (9'), and (11'), we have

obtained a wave function which continuously evolves
from the form in the Coulomb zone (corresponding
equations in Sec. IV) to the final asymptotic form.
Here then we have a solution which carries com-
plete information on the energy and angular cor-
relation at each state of the escape process and
gives a quantitative realization of the remarks at
the end of Sec. 7 on what happens to these corre-
lations during the escape.

VII. CONCLUDING REMARKS

We conclude with a few remarks on the range
of validity of the threshold law and the connection
of the continuum wave functions that we have
derived to Macek's results on doubly excited states.

The picture of dynamic screening and of its
influence on the escape process makes clear that
the Wannier threshold law will be correct only so
long as no other interaction can give an appreciable
contribution to the energy or the energy exchange
between the electrons once they are in the far zone,
i. e. , once past R= 2)Zk 3. Thus if other long-
range forces are present in the system, their con-
tribution to the energy at this radius must be
negligible compared to k . For example, in the
ionization of an atom with more than one electron,
the polarizability of the core will play a major
role in determining the range of validity-the
stronger the polarizability, the shorter the energy
range over which the Wannier law should be ex-
pected to be valid.

Let us now compare our work to that on doubly
excited states of atoms. Apart from its conceptual
interest, this comparison is suggestive because
it hints at a way of deriving a complete basis set
for the two-electron Schrodinger equation in the
Coulomb zone. Recall that so far we have focused
on energies near threshold and hence on the Wan-
nier direction. The wave functions that we have
derived are the ones relevant for the threshold
law, but they constitute only the first members of
a full basis set which is valid for arbitrary ~ and

What is this set that would serve as a com-
plete basis for expansion of the small-R solutions P

The answer to this may come by relating our work
to Macek's, where the same two-electron equation
(4b) was considered but in the context of doubly
excited states of He*~. The restriction to the
Wannier region in e and 8,z was not made but some
other simplifying assumptions were made in order
to solve the equation. A simultaneous generaliza-
tion of this paper and Macek's may indicate how

the various assumptions in the two papers could
be relaxed.
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In Sec. II, we saw that the threshold law follows
from leading terms of the low-energy wave func-
tions when expanded in k, which is to say, from
the zero-energy wave functions alone. However,
it is of interest, particularly in order to see the
role of k R = 2)Z, to get more general solutions
in the region k~R «2t'Z as a series in k~R/2$Z.
To investigate solutions of (10) for small b, let
us fix'st write lt ln a form suitable for passage to
single-electron Coulomb functions:

%e solve this as an expansion for small k by taking
the Laplace transform

Y(p) = J e ~'E(s)ds

(p~+ 8/Z) —+ [(4E + 3)p —4ic (a + 16i5)]Y = —4}t
ltd , d'r
QP Jp

The zeroth-order solution (or alternatively the
zero-energy solution) is obtained by dropping the
right-hand part in (A4). The solution for Y(P)
then is straightforward and the inverse transform

gives

E(s) = e "'s"",E,(2l+ —,
' —2(a+ b), 4E+ 8, 2i(8$Z)'i' s).

r
d', —,

' —(f + —,')' ic d
yea g2 ~1/ 2

-„;{a——,'+)6{{)}x{)))—0 . {))))

Equation (10) is identical to (Al) with l = ——,. On

putting a = b = 0 and c = (8Z)'~ ~ in (Al), we have the
ordinary hvo-body Coulomb wave function.

With s=R' and y(R)=e "'s 'E(s), we have

a' , , 4) + ) a 4)a {a+ ){))))
)I

~

~ 4~~ ~ ~~
~ ~

I

~

~

2 +4kas + 8$Z — -- — = — — +

&& E(s)=0 . (A2)
I

For very large R, this leads to y(R) as a power of
R, as in Eq. (11). Also notice that for a=b=O
the ~E~ reduces to a Bessel function &2„,((8$ZR)'~ ),
which we know from Sec. II to be a factor in the
zero-energy wave function of the ordinary Coulomb
equati oQ.

Successive terms in the series for Y(p) or E(s)
can now be generated recursively from Eq. (A4).
The a and b make only for algebraic complexity and
since the featux'es we want to demonstrate can be
seen from the ordinary Coulomb case, we will
now set a=b=O and )=1 in (A4).

We have as solutions

(2/+-', )(2l+ 2) 16Z(2l+-', )(2&+ +) O,b4,

E(s) = aT2g g((8ZR) ) 2
(l + 1) eIai 3((8ZR) )+

& 2Z
tlgi 4((8ZR) )+ '

+2 J

(AV)

We remark that when a and b are retained in (A4)
we get a similar series with each Bessel function
replaced by the corresponding confluent hyper-
geometric equation as in (A5). Further note that
when a=b=O, (A4) is really a function of P~, not
of P. Therefore, when @40 and 5+0, we get
additional terms in the series for E(s) which in-
volve factors in lnR, which is a hallmark of the
three-body solutions. Instead of giving the com-
plicated series for E(s), we give below the more
compact form for Y(p) for this problem. Writing

Y(p)= Z Y„(p)

as a series for Y(p) in powers of ka, we get

Y„(p)=4&'Yo{p)j( (p'+NZ) 'Yo'(p)
dp

Y.- (p)dp

Y (P) (Pa+ 8t'Z) Il 8/I[P i(8)Z)1/ajs{e+0 )
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X [I+ i(8~Z) 1/ 2]-2(a+() ) exp[(2ZR)'t '(x —1/x)]

This gives a recursive series for the Laplace
transform of Ii(s) for the two-electron problem.
Since this series is a function of k, it maybe
useful also for application to doubly excited states
of atoms.

Returning to the single-electron case, one can
see that (A7) is the k2R«2Z limit of the Coulomb
continuum wave function as follows. Equation
(4. 7) of Ref. 26 with 2k) = f gives the integral form
of the Coulomb wave function:

ISIS
y(R) R-(t+1) e tRt-

(f2 k2) 1+1

(A8)

The contour has to enclose the branch points at
t=+k. If, as we will see below, there is a regime
in which the main contribution is from t very
large compared to k, then we can expand all terms
in powers of k/t. This gives

e ' 'exp[(- 2iZ/k)(k/i+k2/8f2+ . . . )]
f2l+2(1 k2/f2) l+1 dh.

~
~ ~ ~

Putting x = —i(R/2Z)1~2 f gives

2Z Z "' 1
x 1+ka

&
+- +' dx2Zx' 3 2Z x'

(A9)

The branch points are now at x=aik(R/2Z)'t .
Notice, however, that there are two saddle points
at x=+ i. Thus when the main contribution is from
the vicinity of the saddle point, i.e. , when k R «2Z,
the small argument expansion of (A8) to yield
(A9) is justified. Recognizing the integral form
of the Bessel function, we see that (A9) gives the
series (A7). However, as k increases, the branch
points move away from near the origin along the

imaginary axis in the x plane and finally around
k~R = 2Z they move past the saddle points. %e
then have to go back to the original form (A8) or
the usual Coulomb wave function

Rt"e (2,E,(i+1 —iZ/k, 2l+2, 2ikR) .
This analysis ~ of the ordinary Coulomb equa-

tion shows clearly the role of k R = 2Z. Because
of the close similarity of the two-electron wave

equation (A1) to the above Coulomb problem, it may

also perhaps be exploited to get some insight on

the general two-electron wave functions.
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~5Because the electrons are identical particles, it is

sufficient to look at the potential in one quadrant alone,
0& n & 47(, 0& 8~2& ~, as in Fig. 1.

~ Our procedure can also be interpreted as a partial
separability, to order ~, of Eq. (5) in terms of the
variables &, B P, and & 'Y.
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That the classical derivation gives the correct
threshold law even though, at first sight, one expects
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old is because of the long-range nature of the Coulomb
potential. In the Coulomb zone, the potential leads to
characteristic expr. i (8ZR)' ] oscillations, i.e. , rela-
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length of the oscillations becomes k ~. Thus when k-0
even though the latter wavelength becomes large, the
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stretching to R=~ at threshold. This statement is ex-
pressed mathematically by saying that

dX d 2 2(Z
dR dR R

is much larger than unity for all values of large R. The
argument that, paradoxically, a WKB treatment becomes
better near threshold should be expected to be valid for
any long-range force (at least for l =0 states. .For non-s
states, there will be a repulsive angular momentum po-
tential far out which may limit the argument to potentials
with r ", n& 2) and may be of interest particularly for
systems in which polarizability dominates the threshold
behavior.

J. W. McGowan, Science 167, 1083 (1970), and ref-
erences therein.
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Eifth International Conference on the Physics of Elec-
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grad Nauka, Leningrad, 1967), p. 648.

This imaginary potential adds to the angular momen-
tum giving an effective complex angular momentum,
somewhat like the Damburg-Gailitis effect for e+&
scattering below an excitation threshold. This suggests
that this potential may be a manifestation of the doubly
excited states with large dimensions.

Neglect of the R term relates to the earlier remark
(Ref. 11) that the restriction to L =0 is not crucial for
the threshold law. In our derivation, the threshold law
follows from the behavior in the Coulomb zone where
the 1/R and R ~ potentials dominate any R potential
due to non-S states.
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it throws on Coulomb functions normalized per unit
energy. This equation with a= b =0 gives in the Coulomb
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dent of energy in the Coulomb zone, connect to the

asymptotic form&" k expr. ikR + (iZ/k) ln2kR], which
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form because spherical waves normalized per unit
energy, i.e. , k' j&(kr), have exactly the same form
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5See Ref. 6, Eq. (15.3.14).
6H. A. Bethe and E. E. Salpeter, Quantum Mech-

anics of One- and Tzvo-Electron &toms (Springer,
Berlin, 1957).

The k expansion in (A7) has been derived in many
different ways. See, for instance, F. L. Yost, J. A.
Wheeler, and G. Breit, Phys. Rev. 49, 174 (1936);
J. G. Beckerley, ibid. 67, 11 (1945); and M. Abramo-
witz, J. Math. Phys. 33, 111 (1954). The two deriv-
ations we present are both simple and of interest in
their close connection to the two-electron wave func-
tions and for seeing the passage from the Coulomb to
the far zone.
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By restricting attention to a single open scattering channel at a time, it is found that an op-
tical potential, accurate to second order in the scattering potential, can be easily derived for
the example of rotational excitation of a rigid rotator by a structureless atom. The resulting
equations are contrasted with those derived from the close-coupling method. In cases where
many open channels are present, the optical-potential method seems to offer many advantages
over close coupling. Various practical methods for improving the accuracy of the optical po-
tential beyond second order are discussed.

I. INTRODUCTION

The close-coupling method of Massey and Mohr

has received widespread attention ever since digital
computers have made feasible the solution of many
simultaneous ordinary differential eq uations. The


