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The Mori memory-function formalism is used to derive systematically a hierarchy
of approximations relating the dynamic structure factor S(k, ~) of a dense classical fluid to its
self-partS~(k, cu). The formalism is applied to a column vector of dynamical variables whose
components include the self and distinct parts, p~ and p~, of the fluctuating density plus N time
derivatives of these variables. Increasing N is analogous to a continued-fraction expansion of
the memory functions, and builds in more short-time information about the correlation func-
tions. In this manner approximations generated earlier by Vineyard, by Kerr, and by Ortoleva
and Nelkin are concisely stated, and a new approximation which gives the first six frequency
moments of S(k, ~) correctly is obtained. Since the sixth frequency moment of S(k, cu) is not
known from molecular-dynamics calculations, it is used as a parameter to fit these calculations.
Agreement for S(k, v) to within a few percent is obtained for several k values and two thermo-
dynamic states. The deduced value of the sixth frequency moment has a reasonable dependence
on k, and may give useful information about the three-particle static correlation function.

I. INTRODUCTION

The dynamical structure factor S(k, &u) for a
simple classical liquid is a convenient focal point
for the study of collective motion in a strongly in-
teracting disordered system. Its self-motion
counterpart S,(k, &u) gives similarly detailed infor-
mation on the single-particle motion. The quali-
tative behavior of these functions is well under-
stood, but there is considerable interest in a quan-
titatively accurate description of their behavior.
For values of k greater than about 10' cm ', exper-
imental information is available from neutron in-

elastic scattering, and accurate theoretical infor-
mation comes from molecular-dynamics calculations
of the classical motion of several hundred atoms
interacting through a Lennard- Jones potential. '
In particular the self-function S,(k, &u) has been
very accurately calculated for several thermody-
namic states, ~ and this information has been ana-
lyzed in terms of a memory function with only a
few parameters. A quantitative description of this
function is thus now generally available, greatly
facilitating further attempts at its theoretical un-
derstanding.

There have been several recent theoretical de-
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scriptions of collective motion in liquids. Nossal
and Zwanzig constructed approximate collective
modes as variational eigenfunctions of the Liouville
operator. The frequencies of these modes are
closely related to the wave-number-dependent
elastic moduli for the fluid introduced by Schofield. '
The introduction of approximate collective modes
allows the possibility of a microscopic theoretical
analog to the viscoelastic models which so often
give a useful phenomenological description. One
such approach was carried out by Ortoleva and
Nelkin. They considered approximate equations
of motion for the single-particle distribution func-
tion f(k, p, p', f). The interaction term was ex-
panded, keeping only terms linear in the Nossal-
Zwanzig collective coordinates. The result is a
simple analytic expression for S(k, u) which ex-
presses the damping of these collective modes due
to free-particle motion. The first four frequency
moments of S(k, ur) are given correctly since the
approximate collective modes chosen allow an ac-
curate short-time description.

The Ortoleva-Nelkin result corresponds to a
solid-like description of the collective motion com-
bined with a gas-like description of the single par-
ticle motion. In a solid the short-time behavior
of a dynamical variable determines its subsequent
harmonic motion. The use of the short-time be-
havior in a liquid to define the collective mode fre-
quencies led to the picturesque title of liquid phonon
model. 6 The principal defect of the model is not in
its choice of collective modes, but in the fact that
the only damping considered is due to free-particle
motion.

Another pattern for approximate theories has
been to relate the collective motion as given by
S(k, &u) to the single-particle motion as given by
S,(k, &u). The first result of this kind was Vine-
yard' s convolution approximation. This was ex-
tended using explicit consideration of test particle
motion by Kerr, and using an effective field argu-
ment by Singwi, Skald, and Tosi. (The physical
arguments of these last two papers are very differ-
ent, but the result is the same. ) We will present
the Vineyard and Kerr results in yet another way
in the following as the lowest order in a hierarchy
of memory-function approximations.

The memory-function formalism ' has long
been recognized as a convenient tool for the analy-
sis of time-correlation functions. It was noticed'~
that this formalism gives a particularly concise
statement of the approximate theoretical results
mentioned above. This readily allowed the exten-
sion of these results to generate more accurate
approximations, though no new microscopic physi-
cal insight is thus obtained. For example, the
above-mentioned approximation by Ortoleva and
Nelkin corresponds to choosing the memory func-

tion for the current autocorrelation function to have
its correct value at t =0, but to evolve in time as
it would for a perfect gas. The correct value at
t = 0 gives the correct fourth frequency moment of
S(k, ~). It is natural to extend this approximation
so that the memory function evolves in time as
does the memory function for the actual self-motion
in the liquid. This "extended liquid phonon" (ELP)
model leads to an expression relating S(k, &u) and

S,(k, &u) only slightly more complicated than that
given by Kerr. Since the principal collective ef-
fects are now included through the zero time value
of the memory function, and the damping is more
realistically described in terms of the actual single-
particle motion, the description should be more
accurate than for the other models described above.
This is in fact true, as shown by Kurkijarvi, who

compared the ELP model predictions with his mo-
lecular -dynamics results.

By working with model memory functions, a
natural synthesis of the earlier collective variable
and self-motion theories is achieved. The result
is a rather accurate description of S(k, ru) with a
considerable degree of intuitive plausibility. There
are, however, several disadvantages. The micro-
scopic theoretical basis for the approximations
given is far from clear. A great deal of informa-
tion about the system is used as input: The struc-
ture factor S(k), the fourth frequency moment of
S(k, &u), and the detailed self-function S,(k, ~) are
all taken as known from molecular-dynamics cal-
culations. Finally, the modeling of memory func-
tions as carried out in Refs. 6 and 12 is not suf-
ficiently systematic. Thus the structure of the ap-
proximations made needs further clarification, and
a systematic procedure for extending to more ac-
curate calculations of the same kind is needed.

Only the last of these difficulties is surmounted
in the present paper. We examine certain struc-
tural aspects of self-motion approximations within
the Mori" formalism. A hierarchy of approxima-
tions is generated proceeding from Vineyard to
Kerr to the ELP model to a new and more accurate
approximation. Numerical comparisons are then
given.

In Sec. II we briefly review the Mori formalism.
We then consider various choices for the column
vector of dynamical variables and the associated
matrix of memory functions. In Sec. III we take
a one-component description with p„ the self-part
of the density, as the dynamical variable. In this
description there is only one memory function. It
is possible to generate equations of motion for
correlation functions other than S,(k, ~) from the
generalized Langevin equation for p, . The extra
degree of freedom is in the random force term in
the generalized Langevin equation. Neglecting
this random force term in a particular case gives
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the Vineyard approximation. Including it allows
for a new set of approximations which has not yet
been explored in detail.

A more natural use of the Mori formalism is to
choose a column vector of dynamical variables such
that matrix elements among them give all the cor-
relation functions of interest. The matrix of equa-
tions for the correlation functions then contains no

contribution from the random force terms in the
generalized Langevin equation. For our purpose
this requires a two-component description with

N

p ei f i'i
p Peit

2=2

as the two components. This is studied in Sec. IV.
With this choice of components there are only two

independent correlation functions and thus only two

independent memory functions. If the memory func-
tions for the self and coherent motion are set equal,
the Vineyard approximation results. If they are
normalized to their correct values at t =0 and then
set equal, the Kerr approximation results.

We want to include more information about the
short-time behavior of the correlation functions.
This can be done by making a continued fraction
expansion of the memory functions. ' We follow an
equivalent procedure of expanding the number of
components in the column vector of dynamical vari-
ables to include time derivatives of p, and p„. If
the first time derivatives are included, the four-
component description of Sec. V results. Equating
memory functions now gives the Kerr approxima-
tion. Normalizing at t = 0 and then equating gives
the ELP result. If first and second time derivatives
of p, and p„are included we get the six-component
description of Sec. VI. Still there are only two
independent correlation functions and two indepen-
dent memory functions. Equating memory functions
(for the self-part and coherent part of the autocor-
relation function of the longitudinal stress tensor) now

gives the ELP approximation. Normalizing at t = 0
and then equating gives a new approximation [Eq.
(6. 17)] which is still algebraically quite simple.
This expression contains an additional parameter
$ defined by Eq. (6. 14) which depends on the sixth
frequency moment of S(k, &u). This in turn depends
on the three-particle static correlation function,
which has not yet been explicitly determined from
molecular-dynamics calculations.

In Sec. VII we present numerical calculations of
S(k, &u) using the approximation developed in Sec.
VI. The parameter $ is fitted to S(k, &u =0) taken
from molecular-dynamics calculations. The re-
sulting agreement with the full S(k, u&) curve is
within a few percent in all cases. The resulting
$(k) can be considered as a prediction of the sixth
frequency moment of S(k, ~) to be checked by more
precise molecular dynamics calculations in the

short-time regime. The predictions given here of
](k) may give useful information about three-par-
ticle static correlations in the liquid.

II. MEMORY-FUNCTION FORMALISM

In order to allow a more concise presentation of
our results, we begin with a brief review of the mem-
ory-function formalism. ' '

Consider a function space whose elements are
column vectors, each component describing a
fluctuating classical dynamical variable (i.e. , a.

function of the coordinates and momenta of the N

particles in the system). The scalar product is
defined for any two components A, (t) and B,(t) by

(A, (t)i B (t) )= (A, (t)B*(t)), (2. 1)

where ( ~ ~ ) on the right-hand side denotes an
average over a classical canonical ensemble. All
elements are taken to have D components, and the
D~ D matrix of scalar products defined by Eq.
(2. 1) is abbreviated by (A(t) I B(t) ). The projection
operator Po which projects out the part of any ele-
ment G(t) along A is defined by

POG(t)=(G(t)iA)(AiA) A . (2. 2)

iA= (iLA~A)(A~A) ' (2. 4)

tIf (t) = (f (t)
~
f ) & A

~
A &

',
f (t) = exp[t(1 —Po)iL](1 —Po)iLA,

(2. 6)

(2. 6)

and L is the usual Liouville operator given by

aH a aH a
zL =~& (2. 7)

ap& al ar~ ap&

where H is the Hamiltonian for the system.
When postmultiplied by A*, and averaged over a

canonical ensemble, the generalized Langevin
equation, Eq. (2. 3), becomes an equation of motion
for the correlation matrix

(2. 6)

The random force f (t) has been explicitly construc-

ln Eq. (2. 2), A denotes A(t=0), and the second
factor on the right-hand side is the inverse of the
matrix whose elements are (A, IAJ ). The Liou-
ville equation for A(t) is then recast in a form more
convenient for approximate solution. The resulting
exact equation of motion for A(t) may be regarded
as a generalization of the Langevin equation familiar
from the stochastic theory of Brownian motion. This
equation is

t—A(t) —iQ A(t)+ d7M(t —v) A(~) =f (t),

(2 3)
where the frequency matrix iA, the memory ma-
trix M(t), and the random force f (t) are defined by
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ted so that

(f(t)iA&=o. (2. 8)

f, (k, t) = e" o" (1 —Po)iLp, (k),

m, (k, t)= (f, (k, t)~f, (k)) .
(s. 8)

(3.7)

The equation of motion for =(t) thus simplifies to
t

—:-(t)—iQ ~:"(t)+ dr M(t —r) ~ = (7) = 0 .
CV

(2. io)
We usually find it more convenient to work with
the Laplace transform

"=(z)= 1 dte"'=(t),

which is given by

III. ONEXOMPONENT DESCRIPTION

We consider first a single-component column
vector. The single component is taken as the self-
part p, of the density fluctuation

(3. 1)

where we specify particle number one as a test
particle. The projection operator P0 in this case
has the property

P,G(t)=«(t)Ip. & p. (3. 2)

for an arbitrary dynamical variable G(t). The gen-
eralized Langevin equation for p, (k, t) is

d—p, (k, t)+ dv m, (k, t —r)p, (k, r) =f,(k, t) .
(3 3)

(In a single-component description, when the single
component is either odd or even in momentum, the
frequency matrix iQ vanishes. ) When postmulti-
plied by p,*(k, 0) and averaged (all averages are with

respect to the equilibrium classical canonical en-
semble), Eq. (3.3) gives an equation of motion for
G, (k, t),

d t—G, (k, t)+ dr m, (k, t —~)G, (k, v) =0,
dt

0

(s. 4)

where the self-correlation function G, (k, t), the
random force f, (k, t), and the memory function
m, (k, t) are defined by

G, (k, t)=(p, (k, t)~ p, (k)), (s. 8)

z= (z) —="(t = 0) —iA:- ( )z+ M (z) . :- (z) = 0 .
(2. 11)

In order for this formally exact result to be useful,
it is necessary that relatively simple approximate
results for the memory matrix M(z) be combined
with exact results for the frequency matrix iO to
give reasonably accurate approximate results for
the correlation matrix =(z). There is accumulating
evidence that this is a fruitful procedure in classi-
cal liquids. In the following we analyze further the
structure of some existing memory-function approx
imations, and propose a new one.

(3. 12)
In Eq. (3.12) the memory function is the same as
for the self-motion, but the right-hand side does
not vanish since the random force acting on the
self-motion is not orthogonal to the correlated
motion of pairs of particles.

When Laplace transformed with respect to time,
Eqs. (3.4) and (3. 12) become

zG, (k, z) —1+m, (k, z)G, (k, z)=0,
zG~(k, z) —[S(k) —I) + m, (k, z)G~(k, z)

= (f.(k, z) I p. (k) & .

(s. is)

Within our one-component description, it is natural
to relate the collective motion to the single-particle
motion by approximating the right-hand side of Eq.
(3.14). To lowest order we neglect entirely the
overlap term (f, (k, z) I p, (k) ). Eliminating the
memory function m, (k, z) in favor of G, (k, z) through
Eq. (3. 13), this approximate form of Eq. (3. 14)
becomes

G~(k, z) = [S(k) —1) G, (k, z) or G(k, z) = S(k)G, (k, z),
(s. is)

which can be recognized as the Vineyard convolu-
tion approximation. This approximation has many
well-known deficiencies, the most striking being
that it does not correctly give the second frequency
moment of S(k, u&). This can be remedied by cor-

Equation (3. 3) can also be used to generate an exact
equation of motion for the time-dependent pair-
correlation function G„(k, t). We introduce the dis-
tinct part p, (k, t) of the density fluctuation defined
through

N

p(k, t) = p, (k, t)+ p, (k, t) =Z e' ~"' . (3.8)
j=1

The functions G, (k, t), G, (k, t), and the density-den-
sity correlation function C(k, t) are defined by Eq.
(3. 5) and

G, (k, t) = (p, (k, t) i p, (k) ), (s. 8)

where

G(k, t)=X'(p(k, t)ip(k)&=G, (k, t)+G, (k, t) .
(3.10)

At zero time these correlation functions become

G, (k, 0) = 1, G~(k, 0) = S(k) —1, (3.11)

where S(k) is the static structure factor of the
fluid.

If postmultiplied by p,*(k) and averaged, Eq.
(3.3) gives an exact equation of motion for G„(k, t)

d—G~(k, t) + dv m, (k, t —7')G&(k, 7') = (f,(k, t)
~ p~(k) ) .
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A more natural choice of column vector for relating
G, (k, t) to G, (k, t) has p, (k, t) and p, (k, t) as its two
components

A = coi[p„p~] . (4. 1)

Noting that

iQ=O

for this choice of A, and that

(p, (k, t)~ p, (k))=(p, (k, t)ip, (k)}

(4. 2)

N-i+ (ziLt eit ~ Pi
~

zik ~ Pi ) G (k t)
lAj

(4. 3)

(p~(k, t) i p~(k) ) =NG(k, t) —3G&(k, t) —G, (k, t)

we obtain

= [N+ O(1)]G(k, t) (4. 4}

zG, —1 zG~ —(S(k) —1)

z G~ —(S(k) —1) N(zG —S(k))

rectly including particle conservation. In the pres-
ent context, this corresponds to correctly including
the leading term (of order z z) in a large z expan-
sion of the right-hand side of Eq. (3.14). This
expansion is considered in Appendix A, and could
be used to generate improved approximations. We
turn instead to a multicomponent description where
we build particle conservation into approximate
relations between memory functions. It is inter-
esting to note, however, that a description with a
single memory function, where the approximations
are made on the random force term, is also possi-
ble. The physical meaning and quantitative ac-
curacy of such a description are deserving of fur-
ther study.

IV. TWO&OMPONENT DESCRIPTION

12 (Mzz ™11)
1

M2)= M22 —M(~ .
(4. 8)

The two independent equations of motion are most
conveniently written as

zGs 1+aV»Gs =

zG —S+M»G=O .
(4. 8)

(4. 9)

In both Eq. (4. 8) and Eq. (4. 9) we have neglected
a term containing N (Mzz —M»)G, since this term
is of order N compared to the terms retained.

We thus have two uncoupled equations of motion
for G, (k, z) and G(k, z). The equation for G, (k, z)
is the same as Eq. (3.13) so that M»(k, z) as intro-
duced here is the same as m, (k, z) introduced in
Sec. III. The two-component description introduced
here thus contains the same information as two
separate one-component descriptions with p, (k, t)
and p(k, t) as the two single-component vectors.
It is natural in this description to consider simple
approximate relations between M„(k, z) and

Mzz(k, z). This has been done in an earlier paper, 6

but we repeat the results briefly here to show the
structural pattern.

To lowest order we set the memory function M22
for the density autocorrelation equal to its counter-
part 3f» for the single-particle motion. With this
approximation, we can eliminate the memory func-
tions from Eqs. (4. 8) and (4. 9) and relate G(k, z)
to G, (k, z). The result is the Vineyard convolution
approximation Eq. (3.15).

The principal defect of this approximation is
easily remedied by examining the short-time (ls.rge-
z) behavior of the relevant functions:

G, (k, z)=z ' —k vrz ~+ ~ ~ ~,
G(k, z) =S(k)z —k vrz + ~ ~ ~,

M»(k, z)=k vz, z + ~ ~ ~,2 2 -1

Mzz(k, z) = k vrS (k)z + ~ ~ ~

where the thermal speed v~ is defined by
M~~ M~2 G, G~

+ (4. 5)
M2g M22 G~ NG

v', =k, T/m .

The natural approximation to next order is

(4. 10)

as the Laplace transformed equation of motion for
the correlation matrix. All components depend on
k and z, but this is not explicitly written.

The essential particular feature of this choice
of column vector is that the correlation matrix con-
tains only two independent correlation functions.
Thus Eq. (4. 5) can represent only two independent
equations of motion, and the memory matrix a1.so
contains only two independent components. This
is most conveniently expressed by relating the
off-diagonal components of the memory matrix to
its diagonal components

M»(k, z) =S(k)Mzz(k, z) . (4. 11)

Combining Eqs. (4. 8), (4. 9), and (4. 11)gives

S(k)G, (k, z)
1 + &(k)[zG, (k, z) —1] (4. 12)

The approximate result Eq. (4. 13) was previously
obtained by Kerr by a method whose physical rela-
tionship to the present derivation is not at all clear.
The Kerr approximation gives the correct second
frequency moment of S(k, &d}, and thus properly in-
cludes particle conservation. We consider its quan-
titative predictions in Sec. VII.
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V. FOUR-COMPONENT DESCRIPTION G(k, z) = S(k)z ' —k vrz Z(k, z) (s. is)

To build particle conservation automatically into
the formalism we take a four-component column
vector

A = c»[p„p„iLp„ iLp, ] = col[p„p„ikj „ikj, ),
(s. i)

where the self-part j, and distinct part j„of the
longitudinal current density j are defined by

j,= (k . p,/km)e'f ' '&, (s. 2)

pa~~1r
km

(5. 8)

A, = col[p, i kj] . (s. s}

The Laplace transformed equation of motion for
:-,(z), defined by Eqs. (5. 5) and (2. 10), is

z=-, (z) —=-,(t = O) —if', =-,(z)+ M, (z) ~ =-,(z) = O,

(s. 6)

where the correlation matrix =,(z), its zero time
value =,(t=o), the frequency matrix iQ„danthe
memory matrix M, (z) are given by

The introduction of two new components which are
time derivatives of the two already considered does
not introduce any new memory functions. Thus
we still have only two independent memory functions,
and can get the same results by considering the
algebraically simpler formulation in terms of two
separate two-component column vectors given by

A, = col[p„ ikj, ], (s. 4)

which is a direct consequence of the particle con-
servation law

iI.p= ikj .

zJ-1+k c,z ' J+McJ=0 . (5. 14)

In an entirely similar way we define the self-
part of the longitudinal current-current correlation
function by

~.(» t)= (j.(k t) Ij.(k)) (j (") I j~(k)) (5 15)

and make use of particle conservation expressed
through

G, (k, z) = z —k vrz J,(k, z) (s. 16)

to get a single equation of motion for Z, (k, z) which
is equivalent to the 2x 2 matrix equation for =,(z).'4

This equation is

Js 1+k viz s+~s s = (5. 17)

As the lowest-order approximation we equate
M, in Eq. (5. 14) with M, in Eq. (5. 17). The re-
sulting expression for J(k, z) in terms of Z, (k, z)
can be rewritten to give G(k, z) in terms of
G, (k, z) using Eqs. (5.13) and (5. 16). The result
is just the Kerr approximation of Eq. (4. 12). As
the next-order approximation we let

Makingfulluseof Eq. (5. 13), the 2x2 matrix equa-
tion Eq. (5. 6) contains only one independent equa-
tion of motion. This is most conveniently expressed
in terms of J(k, z), and is

G kvz J
G-S(k) k''Z (s. 7) M, (k, t) = yM, (k, t), (5. 18)

S(k) 0
=-,(t=o) =ti

kvz (s. 8)
where the constant y is chosen so that Eq. (5. 18) is
satisfied exactly at t =0. The appropriate value of
P is

0 1
c k8 8 0 y

cr
(s. 9) y = ((u,

' — kc,') (/~,
' —k'v', ), (s. »)

M, (z) = 0 0
C

(s. io)
where the frequencies cu, and ~, are defined by

(s. 20)

c (k)=v /S(k),

~(k, t) = &j(k, t)l j(k) & &j(k)l j(k) &
'.

(5. 11)

(s. is)

In writing Eq. (5. 7) we have used

The thermal speed v~, the isothermal sound speed
cI, and the longitudinal current-current correlation
function J(k, t) are defined by Eq. (4. 10) and

(s. 21)

and are studied in greater detail in Appendix B.
With y given by Eq. (5. 19), longitudinal momen-

tum conservation is properly included, and the
fourth frequency moment of S(k, ar) is correctly
given. Combining Eqs. (5. 18), (5. 19), (5. 14),
and (5. 17) we obtain the next-order approximation
relating J(k, z) to Z, (k, z);

[(&o,
' —k vr —a&, + k cz)z+ (&u,'k cz —ar, kzv )z '] J,(k, z)+ (&u, —k cr)

(s. 22)
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Equation (5. 22) was previously derived by Orto-
leva and Nelkin, ~ in essentially the same way. Be-
cause of the way it extended an approximation de-
rived from a set of phononlike collective coordinates,
they called it the ELP model. Kurkijkrvi has
compared the predictions of the ELP and Kerr mod-
els with molecular-dynamics calculations of S(k, &u)

for liquid and dense gaseous argon. In Sec. VI we
present an improvement on the ELP model, and in
Sec. VG we extend Kurkijarvi's comparison to this
improved model.

VI. SIX-COMPONENT DESCRIPTION

To build longitudinal momentum conservation
automatically into the formalism we take a six-
component column vector, namely,

A = col[p„p~, iLp, , iLpd, (iL)zp, , (iL) p~]

= col[p„p„ikj» ikj „—(k'/m)c, z, —(k'/m)c„, ]

(6. 1)
where the microscopic stress tensor density o»
is defined by

ik . . 1" &U . PZ — + ik ' 8
m mr& er m

(6. 2)

j being the n component of j and U the total poten-
tial energy of interaction. (In the following we
will consider only the components j3 and v33, and
will drop the subscripts to simplify notation. ) We
note that the six-component column vector of Eq.
(6. 1) has been obtained simply by adding two more
time derivatives to the four-component column
vector of Eq. (5. 1), and thus no new memory func-
tions are introduced. We can thus get the same
results by considering two three-component column
vectors A, and A, defined by

A, = col[p„ iLp„(iL)'p, ], (6. 8)

0 0 0
~(z)= o o o

k2v2g'K, 0 Si,
(6. 9)

0 0 0
kf, (z)= O O O (6. 10)

kcIK, 0 K,
After some straightforward algebra' which is en-
tirely parallel to Secs. III-V, thetwo 3~3 matrix
equations of motion corresponding to Eq. (2. 11)
reduce to two independent equations which are most
conveniently expressed in terms of J(k, z) and

J,(k, z):

z(zZ, —I)+co, J,+K,[(z+k vzz )J, —1]=0, (6. 11)

z(zJ- 1) + a&, /+K, [(z+ k crz )J—1]= 0 . (6.12)

K, (k, t) = )K,(k, t) (6. 18)

and choose $ so that Eq. (6. 18) is exactly satisfied
at t =0. This guarantees that the sixth moment of
S(k, m) is given correctly. After some algebra the
value of $ is found to be

(d~ —k vr &(d~ ) —(d~
2 kz ?

&
4) 4

where &~, & and & ~, ) are defined by

((u, ') = ( (iL)'j
I
(iL)'j & (j Ij &

'

(6. 14)

(6. 15)

&~.'& =
& (iL)'j. l ( i)'Lj. & &j.l j.&

' (6. 16)

and are studied in greater detail in Appendix B.
With $ given by Eq. (6.14) the expression rela-

ting J(k, z) to Z, (k, z) becomes

As the lowest-order approximation we equate
K, in Eq. (6. 12) to K, in Eq. (6. 11). The resulting
expression for J(k, z) in terms of J,(k, z) is just
Eq. (5. 22), the ELP approximation of Ortoleva and
Nelkin. As the next order approximation we let

A, =col[p, iLp, (tL)'p] . (6. 4)

We introduce the longitudinal stress tensor correla-
tion function Z(k, z) and its self-part Z, (k, z) defined
by where

[($ —1)z +$&s, —k vr]J, (k, z) —($ —1)z
[($ —1)z +Az+Bz ']J,(k, z) —($ —1)z +C

(6. 17)

Z(» t) =(o &o(» t)lc(k)&&c(k)lo(k)& ', (6 5)

Z, (k, t) =(u, (v, (k, t)l c,(k)) &o,(k) I o.(k)) ' . (6. 6)

Longitudinal momentum conservation implies that

A = t ((u, '+ k'c,') —((u, '+ k'vr ),
2' 2 2k2 2 (6. 18)

Z, (k, z)=z '-z-'Z, (k, z),
S(k, z) =z-' —z-'Z(k, z) .

(6. 7)

(6. 8)

Making full use of particle and momentum conserva-
tion, the 3&3 matrix of memory functions appro-
priate to the column vectors of Eqs. (6. 8) and
(6. 4) take the form

C- (dr —$k ci .2 2 2

As can be easily checked the new approximation
Eq. (6. 17) reduces to the ELP approximation Eq.
(5.22) when ( =1.

VII. NUMERICAL RESULTS

We turn now to the numerical predictions of the
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FIG. l. The dynamic structure factor S(k, ~) tscaled
by 2/S(k)] as a function of frequency c at the wave vector
k = 8.00 for the liquid (p = 0.85, T = 0.76): (a) the molecu-
lar-dynamics result of the Orsay group (Refs. 2, 3) (solid
line), the self-part S,(k, ~) (dashed line), the perfect gas
result (circles); (b) the ELP (solid line), Kerr (dashed
line), and Vineyard (circles) approximations.

FIG. 2. The same as Fig. 1 except that k=12. 80.

d, (k, z)=[z+k v z +tV, (k, z)]

lV, (k, t)= (2k vr+ Qo ) e ' [1 —k v„iv(kvrt)]

various approximate theories discussed in Secs.
III-VI. We consider a Lennard- Jones fluid with in-
teraction potential

u(r) = 4e[(o/r)" —((r/r) 6] .
For argon appropriate values of & and 0 are

e/kz = 119.8 'K, a = 3.405 A

Following the Orsay group, '3 we use reduced units
with densities in units of 0, wave numbers in units
of o ', temperatures in units of z/ke, and frequen-
cies in units of to where

+At4e- ',
where

flo = &o, —3k vr = (p/3m) fd rg(r)v u(r),

r = 0.76
p = 0.85
k = 6.80

(t. 3)

to=(mo /48&) =3.112&10 'z sec .
We consider two thermodynamic states, (p= 0. 85,
T = 0. 76) corresponding to a liquid near the triple
point, and (p=0. 65, T=1.827) corresponding to
a dense gas at temperature above the critical tem-
perature. Molecular -dynamics studies of both
the self-motion and S(k, ~) have been carried out
for these two states (For the. first state a slight
interpolation of the self-motion results was used. )
For actual calculation from Eqs. (5. 22) and (6. 17)
we use the parameterization of J,(k, z) given by
Levesque and Verlet, namely,

3

U)

0
0

FIG. 3. The dynamic structure factor S(k, o') (scaled)
as a function of cu for the liquid (p=0. 85, T=0.76) at k
=6.80: the molecular-dynamics result (solid lines); the
best fit (circles); the ELP approximation (dashed lines).
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1.65+10.43T+3k vr(3+2k vr/0, )
1+2k v /A

y(s) = 0. 7258 —0. 1876 s I.O w

T= 0.76

p =0.85
I% =12.80

A = Aoexp[- (kX,/2v)z],

where Ao = 0. 88 and 1,= 0. 46 for the state ( p = 0. 85,
T = 0. 76) [since S(k, ~) was found to be rather in-
sensitive to &, , the value of ),, for the state
( p = 0. 8442, T = 0. 722) was used for the state
(p=0. 85, T=0. 76)] and Ao= —0. 67 and &, =2. 0 for
the state (p=0. 65, T= 1.827),

=4. 12 —2. 61p .
The dynamic structure factor S(k, &u) is then given
in terms of Z, (k, z) through Eqs. (5. 22) and (6. 17),
and

3

M

0
0

FIG. 5. The same as Fig. 3 except that k=12. SO.

vS(k, &u) = k vr&o ReJ(k, z = —i&a) . (7. 4)

T = 0.76

(.0

Before showing the results of our more refined
models it is useful to indicate some typical simple
theoretical results, and some typical "experimental"
curves from molecular dynamics. We do this for
the liquid at two different k values in Figs. 1 and 2.
Figure 1(a) shows the molecular-dynamics results
for S(k, &u) and for the self-part S,(k, ru) taken from
Refs. 3 and 2, respectively. The perfect gas re-
sult is plotted for comparison. Figure 1(b) com-
pares the Vineyard, Kerr, and ELP approxima-
tions for the same k value and thermodynamic
state as Fig. 1(a). The Vineyard result is of
course the same as S,(k, ~), but is normalized to
give the correct S(k). The progression from Vine-
yard to Kerr to ELP improves the agreement with
the molecular dynamics S(k, u). The residual dis-
agreement of the ELP model with the exact results
is displayed in detail in later figures. Figure 2
repeats the results of Fig. 1 for a larger k value.
This is already twice the k value corresponding to
the main peak in S(k), but significant dynamic ef-

2 2

S(k, u& = 0) = $
' ' S (k)S,(k, &u = 0) . (7. 5)

Equation (7. 5) is a direct consequence of Eqs.

I.S

T = I.827
p =0.65
k =5.40

( p
g= I.I90

fects characteristic of the liquid are still present.
To calculate with our new approximation, Eq.

(6. 17), we need a value for the parameter $. This
depends on the sixth frequency moment of S(k, co),
which in turn depends on the three-particle cor-
relation function. Molecular-dynamics calcula-
tions to date have not been analyzed for this pa-
rameter, and are probably not sufficiently accurate
to justify such an analysis. We thus treat $ as a
parameter to be fitted to S(k, &u). This fit must be
carried out separately for each k value. No elabor-
ate best fit criterion seems justified for this pro-
cess, so we carry out the fit at (d =0, where we
have

3

V)

0.5

0
0

0
0

FIG. 4. The same as Fig. 3 except that k=9. 20.

FIG. 6. The dynamic structure factor S(k, ~) (scaled)
as a function of ~ at k =5.40 for the dense gas (p=0. 65,
T = 1.827): the molecular-dynamics result (solid line);
the best fit (circles); the ELP approximation (dashed line).
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2.0

l.5-

!.0

0.5-

0
0 !0

k

20

FlG. 7. The fitted value of $ as a function of k. The
solid line represents the g values for the liquid (p=o. 85,
T= 0.76), while the dashed line, those for the dense gas
Q = 0.65, T= 1.827).

me have a procedure for fitting the dynamic struc-
ture factor S(k, cu) which works very well numerical-
ly, and which strongly indicates certain properties
of the three-particle correlation function. We plan
to compare our numerical results with those of other
recent phenomenological theories. ' This compar-
ison should aid in pointing out the essential features
of amore microscopic theory, and in defining more
clearly the ranges of k and co and the needed ac-
curacy for future molecular-dynamics calculations
and for neutron inelastic scattering experiments.
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(6. 1V) and (V. 4).
ln Figs. 3-6 we illustrate the fit to S(k, ~}ob-

tained in this way. Figures 3, 4, and 5 are for the
liquid, and Fig. 6 is for the dense gas. In all
cases we plot the molecular-dynamics result, the
ELP result of Eq. (5. 22) and our new result from
Eq. (6. 1V} with the value of $ determined by Eq.
(V. 5). Recall that the ELF result corresponds to
our new approximation with $ =1.0. The charac-
teristic disagreement between the model calcula-
tions and the exact molecular dynamics is reduced
from about 15% for $ = 1 to a few percent for the
best fit value of (. This latter agreement is within
the precision of the molecular-dynamics results.

In Fig. 7 we plot the fitted value of $ as a function
of k. It has the oscillations characteristic of fre-
quency moments of S(k, ~), but there is no informa-
tion available to tell us if it is quantitatively cor-
rect. A clear test of the model given here would
require a very accurate calculation of d(k, f) at
short times from which the parameter $ could be
directly evaluated through Eq. (6.14). If the model
introduced here is applicable, this directly calcu-
lated value of $ would agree mith the value fitted to
S(k, &u).

We have given a rather elaborate phenomenologi-
cal analysis leading to Eq. (6. 1V). The only step
which is not exact is the approximate scaling of
memory functions in Eq. (6. 13). This step has
been taken with no theoretical justification. It was
based on the observation that the equivalent step
at a cruder level of approximationz' [expressed
by Eq. (5. 18)] gave good numerical results. Even
at the phenomenological level it is not clear how
sensitive our fit to S(k, &u) is to the time dependence
of the memory function given by Eq. (6. 13). This
point is now under investigation. For the present

APPENDIX A: COUPLING BETWEEN RANDOM FORCE AND
DENSITY FLUCTUATION

We make here a short-time expansion of the cou-
pling term (f,(k, i) I p(k) ) betweenthe randomforce
for the single-particle motion at time t and the den-
sity fluctuation at t = 0 [note that (f, (k, t) I p~(k) &

= (f, (k, t) I p(k) )] which was entirely neglected in
Sec. III to obtain the Vineyard convolution approxi-
mation Eq. (3.15). From its definition

f, (k, t) = exp[i(1 —Po)iL](1 —Po)iLp, ,

mith the projection operator Po defined for any
G(t) by

P G(f) = (G(i) I p. &p. . (A2)

On a short-time scale we therefore have

(f, (k, f)
~
p(k) ) = ((1+ t[1 —Po]iL + (f /2! )[(1 —P0}iL]z

+(t /3! )[(1—Po)iL] + ~ .](1 —Po)iLp, (k)
~
p(k))

=k vr[s(k) —l]f+k vr(ur, —S(k)~,z

w [S(k) —l]k v "tt /6+ ~ ~ ~ . (A3)

Or equally mell, a large-z expansion of
(f,(k, z) Ip(k)& is

(f, (k, z)
~
p(k) ) = k vr(s(k) —1)z

+ k'v', [~,' - S(k)~,' + (S(k) —i)k'~', ]z ' + ~ ~ ~

APPENDIX B: FREQUENCY PARAMETERS

The longitudinal frequency parameters ~, , cu, ,
(~, 4&, and (&u, 4&, or, more generally, &u

(&u,4), and (co 8,4) with n and P being the direc-
tions either parallel or perpendicular to k, may be
expressed in terms of the static correlation func-
tions and the pair potential u(~). (The total interac-
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tion potential is taken as a sum of pairwise poten-
tials. ) From its definition

~.'= & fL ja I fLi. ) (i.Ii. &
'

=(1+26 s)k vr+~ d rg(r)(1 —cosk ~ r)2 2 n 3 - a'u(r)

(»)
I

&~ s'&=&(fL)'i. I(sf)'is&&isIis&'

= a,~(3+126 s)k'vsr

where ns is the mean density N/V and g(r) is the
static pair-correlation function.

Similarly for the self-part ~, we have

(d .'=&i&-j Iif.j ~ &&j .Ij .&

'

as )= () 25„,)),' ', +~fd r(((') + . ())2)

The frequency parameter &&u s ) by its definition

+6 svsr~ dsr g(r) (6+8|) s)ks +ks +6ksink ~ r +2P(1 —cosk ~ r)s n~ s,asu(r) s asu(r) . - -asu(r) - - a u(r)
Ol 3 l 1 rl, re

2 3 2 2n 3 a u(r) a u(r )+6 s
+ d rd r'g(r, r')l1+cosk ~ (r —r ) —cosk ~ r —cosk ~ r j Z"m ~ Vg

(S3)

where g(r, r') is the static three-body correlation function.
The self-part (&u s,s& is similarly given by

&~.s .') = &( ff)'i., I
&fL)'is. & &is. Iis. &

'

=6 s(3+126 s)k vr +a~vr d rg(r) (6+86 s)k +k +2p (
4 s s f~L 3 s a'u(r), a'u(r) a'u(r) '

'm 8

+p 8 I d rd r' ger, r'jm
m ~J'~ 8 f' ef Brs

(B4)
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