
HE LIUM IONS AT 76 'K: 2033

The diffusion of the atomic metastable particles
at 76 'K was found to be described by D Po= 146
cm~ sec ' Torr. This is to be compared with the
value of (163+8) cm~ sec ' Torr of Ref. 15, which
was obtained by using a diffusion cross section of
46 X10 ' cm~ (+5%) and Eq. (1) of that work.

The molecular ion He~' was observed to have the
same time dependence as He'. This implies that
the conversion of He2' into He3' is much faster than
the conversion of He' into He~'. This finding is
consistent with the results of Ref. 2.

The complete behavior of the positive-ion wall
currents can be explained in a plausible fashion if
one assumes the presence of negative helium ions
in the afterglow. On the basis of Ref. 6, the atomic
structure of He, and the presence of atomic meta-
stable atoms in this work it is likely that the forma-
tion of the negative ions involves the atomic and/or
molecular metastable particles. No negative ions
were detected with the mass filter in the 76 'K after-
glow and consequently their presence must be con-
sidered as conjectural.
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In recent years the utilization of "optical mixing" spectroscopic techniques in laser light
scattering experiments has proved to be a successful method for the investigation of the dy-
namical properties of physical systems. By illuminating a photosensitive detector with the
scattered light and measuring the spectrum or autocorrelation function of the resulting photo-
current, one can, in general, obtain the ensemble-average time dependence of specific collec-
tive excitations within the scattering medium. We present here a detailed quantitative analysis
of the statistical errors inherent in such measurements due to the stochastic nature of both
the scattering and photoemission processes. We determine the statistical errors on the opti-
cal-intensity correlation function as measured by two photocounting digital correlator models
and on the intensity spectrum as measured by a "self-beat" optical mixing spectrometer.
From these errors and a generalized least-mean-squares fitting procedure we calculate the
uncertainty on the measured correlation time (linewidth) for the case of a Gaussian optical field
with an exponential intensity correlation function (a Lorentzian spectrum). Scaling relation-
ships are given which permit our numerical results to be applied to an arbitrary set of experi-
mental parameters.

I. INTRODUCTION

In recent years the utilization of "optical mixing"
spectroscopic techniques' in laser light scattering
experiments has proved to be a successful method
for the investigation of the dynamical properties of
physical systems. "Very generally, the existence

of scattering can be attributed to the presence of
thermally excited collective and single-particle mo-
tions within the scattering medium. ' Those normal
modes of motion which are coupled to the optical
dielectric susceptibility of the medium result in
index-of-refraction inhomogeneities that are the
source of the scattering. By considering the dy-
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namics of this scattering process one can show in a
straightforward manner that the time behavior of
the scattered electric field amplitude mirrors the
time evolution of the thermal fluctuation responsible
for the scattering. The details of this time evolution
can be studied, for example, by measuring the fre-
quency power spectral density of the scattered field
Sg (~)

In many cases S&(a&) extends over a sufficiently
large range of frequencies around the laser source
frequency ~0 to allow a determination of the spec-
trum with conventional grating or Fabry-Perot
spectrometers. These instruments have resolving
powers that are typically in the range 10 -10'. In
numerous situations, however, the desired spectral
information is contained in an exceedingly narrow
band of frequencies around &0, requiring the use of
spectroscopic techniques with resolving powers of
10' -10". Such is the case for the light scattered
from concentration fluctuations in binary mixtures '7

and macromolecular solutions, ' entropy fluctuations
in normal liquids, density fluctuations in fluids
near their critical point, ' '" surface waves at the
interface of single-" and two-component' fluid
systems, and orientation fluctuations in ordered liq-
uid crystals. " Optical mixing or light beating
spectroscopy provides the only available tool with
sufficient spectral resolution to study the dynamics
of these fluctuations.

In essence, optical mixing spectroscopy repre-
sents an extension of the heterodyne and envelope
detection techniques, long familiar at radio frequen-
cies, into the optical-frequency domain. Utilizing
the square-law detection characteristic of the photo-
electric effect, one can observe in the photocurrent
signal the beating between two closely spaced optical
frequencies or recover the slowly varying envelope
of a rapidly oscillating optical field. The net result
is a translation of the optical spectral information
centered around the frequency 0= 5&10' Hz to a
current spectrum at frequencies near & =0, where
a resolution of 1 Hz is easily achieved.

Since the current output of a photoelectric device
is proportional to the instantaneous optical intensity
I, the current provides a signal from which we may
determine the intensity power spectrum Sz(&o) or
equivalently the intensity autocorrelation function
R,(t). With respect to a light scattering experiment,
one can show that a measurement of Sz(w) or R,(f)
usually contains the desired information on the time
evolution of the fluctuation which gave rise to the
scattering. ' '5 Moreover, SI(&u) or Rz(f) are also
useful quantities for characterizing the time be-
havior of the fields emitted by light sources such as
a laser' ' or a quasithermal blackbody radia-
tor ie, &9

Many different electronic techniques have been
used to extract various features of the correlation

function or the spectrum of the photocurrent signal,
such as analog' ' and digital correlators, ' '

joint-photocount distributions, arrival-time -in-
terval photocount distributions, single-interval
photocount distributions, and optical mixing spec-
trometers. ' ' ' Since the photocurrent autocor-
relation function R, (t) and the photocurrent power
spectral density S, (&u) are simply Fourier-trans-
form pairs, all these methods, in principle, give
equivalent information. From a practical point
of view, however, one would like to achieve the
highest possible measurement accuracy in the mini-
mum amount of time. The ultimate limit to the
precision of these measurements is determined by
statistical errors due to the finite measurement
time. Therefore we shall try in this paper to an-
swer the following question: How large is the statisti-
cal error on a measurement of S, (u) or R,(t), given
the measurement time, the properties of the inci-
dent optical field, and the measuring device? In
particular, we will consider an incoming optical
field with Gaussian amplitude statistics and an ex-
ponential intensity correlation function (a Lorent-
zian spectrum), and we calculate the statistical er-
rors (a) on the photocurrent correlation function
R,(t) for an arbitrary delay f, (b) on the correlation
time r„(c) on the photocurrent spectrum S,(&u), and

(d) on the Lorentzian half-width of the spectrum 1.
In the process we also determine "optimum" values
for each of the free experimental parameters, opti-
mum in the sense that they minimize the statistical
errors in each case.

The literature on this subject is not very rich.
There has been some treatment of the errors in the
ensemble-average (time-independent) photocount
distribution, both for correlated and uncorrelated
samples '; signal-to-noise analyses of optical
mixing spectrometers '"'; and error treatments
of correlation function measurements on continuous
Gaussian variables. Haus was the first to out-
line a detailed treatment of the type we present
here; however, he did not study the problem of the
errors on the correlation time (or the linewidth of
the spectrum) which, we believe, is the most signif-
icant way of discussing the relevant statistical er-
rors.

The organization of our paper is as follows: In
Sec. II we recall some useful relations regarding
photocount distributions and correlation functions;
in Sec. III we calculate an expression for the sta-
tistical errors on the photocurrent autocorrelation
function and specialize our results to a particular
model of an "ideal" digital correlator; in Sec. IV
we apply the general method of Sec. III to the case
of a "clipped correlator"; in Sec. V we evaluate
the statistical error on the correlation time by
considering a generalized least-mean-square -error
fitting procedure; in Sec. VI we evaluate the statis-
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tical errors on the photocurrent spectrum and its
linewidth as measured by a "self-beating" optical
mixing spectrometer; in Sec. VII me determine the
effect of collecting light from an arbitrary number
of spatial coherence areas of the optical field; in
Sec. VIII we summarize the numerical results ob-
tained and make a critical evaluation of the various
techniques used to process the photocurrent signal.

II. REVIEW OF PROPERTIES OF PHOTOCOUNT
DISTRIBUTION FUNCTIONS

%'e want to recall here some useful definitions
and results regarding photocounting distributions
and correlation functions. The definition of the
general optical fieM intensity correlation function
8'"' of order n is

g'"'= (E' '(X,) ~ ~ ~ E' '(X„)E"(X„)~ E"(Xj)),
(1)

where E' ' and E" are, respectively, the electric
field operators corresponding to negative and posi-
tive frequencies and the X„.. . , X„=(r„, t„) indicate
n space-time positions. The angle brackets denote
an ensemble average which can be performed once
the density matrix for the field is known. In par-
ticular, 9"' is simply the average intensity of the
field and 8'@ is the usual two-point intensity cor-
relation function.

The corresponding two-point correlation function
measured in a photocounting experiment is

G' "(x„xgnx, nX,

dated as follows. In the limit t- ~, the photoevents
at t, and tz are uncorrelated and Eq. (2} becomes

limG' '(t)(&t} = Z Z nqnqWq(nq, &t)Wq(nq, &t),
0 nl =1 ff 2=1

(4)

where W&(n, &t) is the simple probability of having
n counts in the interval &t= &tl = +t2 We find then

(5)

independent of t, where (n) is the average number
of photocounts per nt. Clearly G'@(~) represents
the contribution of the average dc photocurrent to
the current correlation function.

In the opposite limit t - 0 we must be more care-
ful. Consider first the case t-=0 and &tl= &t2= &t
-0 where n =nl =n2 will take on only the values of
0 or 1. Then we find

lim G' '(0)(&t) —= G,' '(0)(ht) = (1)(1)W,(1, &t)
bt 0

=(n) =q&t, (6)

we find G,'"(t) = g5(t) with 5(t) being the Dirac delta
function. G,'@(t) is the photoelectron "shot-noise"
part of G' '(0). Taking the limit t- 0 with nt &0
gives from Eq. (2)

where G,' '(0) represents the self-correlation of in-
dividual photoevents and g is the average photoelec-
tron counting rate. Rewriting G,' '(0) in the form

= Z 2 n&n2W, (n„x„nx&,' n„x„nx,) lim 6' '(0) = Z n W, (n, ht) =(n ) .
t-0 n=l

(8)

-=(n, (x„&x,)n,(X„nXJ), (2)

where H', is the joint probability of observing n,
counts at Xl in the space-time interval 4X, and n&

counts at X2 in the interval ~X2. " Since the in-
stantaneous probability of a photoemission event at
X„ is proportional to the field intensity at X„, 5',
is related to g' ' as follows:

Wp(1, Xg, nxg,'1, Xg, nxg)

= (& c/8v) g' '(X „X)nx, &x . (3)

In Eq. (3), c is the velocity of light and e is the
quantum efficiency of the photodetector. Although
the higher-order photocount correlation functions
G'"'(X„... , X„) contain additional information on
the time evolution of the incoming field, we restrict
our attention in this paper to measurements of G' '.
Further we shall consider here only the time de-
pendence of G' '. For a stationary field, G'" will
be a function only of the time difference t =

I t2 tl ll,
and we write G '(X„X2)= G'"(t).

The qualitative features of G' '(t) may be eluci-

~,=Qn W, (n)=(n )
n=0

and the factorial moment F& as

Fr= Z n(n —1) ' '(n -K+1)W&(n}
@=0

= (n(n —1)~ ~ (n -If+1)) (10)

The generalization of Eqs. (9} and (10) to the case

From Eqs. (5), (6), and (8) we can construct the
general features of G' '(t) shown in Fig. 1: a shot-
noise 5 function at t = 0, a constant background term
related to the time-average photocurrent, and a
"signal" term which, via Eq. (3), reproduces the
time-delay dependence of the optical intensity cor-
relation function Q' '.

In order to calculate the error on a measurement
of G'@(t) we will need various moments of the count-
ing distribution functions. We now summarize
briefly the relevant definitions.

Given the probability distribution W, (n) one can
define the moment of Kth order, M~, as
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G'" (t) ~~'

- & n& —(n)

of the m-time joint probability distribution 5' is
straightforward; we define

Km

and

F», »2» =([n, (nq —1) (n, -K, +1)] ~ ~

x [n (n —1) (n —K + 1)]). (12)

It is easy to recognize from Eq. (2) that G '=M»
=F» and from Eqs. (5), (6), and (8) that excluding
the shot-noise term, G'"(0) =F2. The generalized
moments in Eqs. (11) and (12) can be more easily
evaluated from a generating function Q than from
the joint probability 8'~. ' ' The definition of Q is

Qm(sl, S»t ~ ~ ~, Sm)

= Z Q [(1 —s )"'~ ~ ~ (1 —s )™]W(n n )
ny=0 n 0

=((1 —s, )"'~ ~ ~ (1-s )" ) .
Using this definition it is easy to show that

(13)

Ky K
K+K + ~ "K a fft

Q./sf ~ Qs

~(Six ' ' ' ) Sm)l sg= am=0

Therefore knowing Q one can obtain all the cor-
responding factorial moments by differentiation;
the moments MK, ...K can then be evaluated using
the relationships between M and E derivable from
the definitions given in Eqs. (11) and (12).

III. STATISTICAL ERRORS IN MEASUREMENT OF
CORRELATION FUNCTION

We now proceed to calculate the unavoidable
statistical error in a measurement of the photocur-
rent correlation function due to a finite measuring
time, or equivalently, to a finite number of re-
corded photocounts. There can be many other

FIG. 1. General features of the photocount autocorrelation
func tion.

sources of "noise" in a measurement of G'@(t),
e. g. , amplitude instability of the light source in a
scattering experiment, the presence of stray light,
detector dark current, etc. The importance of
these effects will vary from one experiment to
another; therefore, it is difficult to take them into
account in a general treatment. Usually, however,
ore can vary the experimental parameters in such
a way that these extraneous noise contributions
play a negligible role.

We first discuss an "ideal" digital correlation
experiment: (i) A photomultiplier is illuminated
with a "single-mode" electromagnetic field. In a
light scattering experiment, single mode implies
that the detector collection area is smaller than a
single spatial coherence area" ' of the scattered
field; (ii) we assume that the light intensity is small
enough so that it is possible to time-resolve single
photoelectron pulses at the output of the photode-
tector; (iii) the output pulses are amplitude and
shape standarized in order to get rid of the statis-
tics of the single electron response of the photo-
multiplier. This operation introduces a dead time
in the measurement; hence, we use the assumption
that the photoelectron counting rate is small in or-
der to neglect dead-time losses'; (iv) we will dis-
cuss intensity correlation times w, which are much
longer than the natural rise time of the photodetec-
tor, w„. A measurement of the correlation function
is still possible for T, —7'„, but the interpretation
of the result and the measurement technique are
different from the situation we consider here; (v)
we arrange to record the sequence of photoelectron
pulses for a total time T. This record is then sub-
divided into M, equal intervals each of length &t.
For each t~ = j &t we determine the number of counts
n& recorded between t~ and tj + 5t where Ot ~ ~t. The
experimental value of the current autocorrelation
function for a delay t=l4t is then calculated as

Mp

— Z n,n... , (15)
0 j=1

where n; and n&„are, respectively, the number of
counts collected at times j 4t and (j+l)nt in an in-
terval 5t. If we define 8, as the "true" correlation
function, that is the limit of 8, as T becomes infi-
nite, the ensemble-average mean-square-error on
8, will be

Mp Mp

(5Rr )=((Ri Rt) )=~ s +~~ (nyns+tn»n»+t)

(16)
That is (5R, ') gives the variance of R, as evaluated
on an ensemble of identical experiments each last-
ing for a time T. ' Equivalently, one can say that
(5R, ) @ is an error band around R, which gives
the mean probable deviation between any single
measurement of 8, and its true ensemble-average
value.
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g, (n, 5t}= &n&"/(1+&n&)"' .
The ensemble-average correlation function R,
= G(')(I lit} is

Rl =Ml, (0, l) =(n) (1+e ' '/"),

(20)

(21)

where 7', is the correlation time of the field-inten-
sity correlation function. The required higher-
order moments M~2, M», M»» can now be com-
puted using the two-, three-, and four-dimensional
generating functions Q~, Q„Q~ which have been
calculated by Arecchi, Berne, and Sona and by
Bedard for the type of optica. l field we are con-
sidering. The results are

M 22(0, l ) = 4(n) (1 + 4 e ' ' ~c + e ' "')

+4(n) (1+2e ' '/")+(n) (1+e ' '/'c),

M)2((0 I 2l) = 2(n) (I y 4 e c+ 7e / c)

i ( )3(1 + 2 -l St /tc + 3 2 et/stet(}

(0, l, s, s +l) = (n) (1+ 2e ' ' ' + 6e" ' '
(22)

Let us now introduce the separation s between
the starting times of two samples:

(17)

In terms of the positive integer s and the general-
ized moments defined in Eqs. (11) and (12) we can
rewrite Eq. (16) in the form

&5R2& "(' ) ' )M (0 l 2l)
0 0

Np

+ ~ 2 (M() —s)M)«l(0, l, s, s+l}-M)l(0, l) .
Mp @=1,WJ

(18)
It is important to note two subtle features of Eqs.
(15) and (18). In the limit l =-0 our ideal correlator
model gives R() = (n ) rather than the sum of the
"signal" and "dc" parts of G( )(t}, namely, (n(n —1))
However (5R) ) as given in Eq. (18) represents the
error on the quantity (n(n —1}) if l = 0. Therefore
(6R', ) is strictly speaking the limit

(5R() )= lim (5R, &

l p, l&0

and does not include the error on the shot-noise
6 -function part of R& at l = 0.

Equation (18) is valid for an arbitrary incident
optical field. To proceed further we need explicit
assumptions concerning the statistics and intensity
correlation function of this field. We choose here
the situation most frequently encountered in prac-
tice, namely, a Gaussian field with a simple de-
caying exponential intensity correlation function.
For such a Gaussian field the ensemble-average
distribution W& for the number of photocounts col-
lected in an interval 5t « ~, is the Bose-Einstein
distribution

-sht/Tc+4 -2sht/Tc

8 -( stt) St/tc -(s-l) dt/'rc}

The expression given for M»» is appropriate for
s) l; for s &l the correct result is obtained by in-
terchanging s and l. Substituting the results in

Eqs. (21) and (22) into Eq. (18) and performing the

sum over s, we obtain

(n)' 8
&6R l ) 5 +

1 -t)t/t +
1 2st/t

0

+4 2l —3+—

+3 2l 1+ ~« t/ c
1 —e

6
(1 ~ 2 lSt/tc 2 t)S/tc)

Mo

=&5R 2)l/2/(n)2 (24)

where (n)'= (n ) —(n)' —(n) is the amplitude of the
exponential (signal) part of R(). The ratio 4)t
gives the root-mean-square uncertainty in Rp as a
fraction of this signal amplitude.

Figure 2 shows the behavior of 4„as a function
of (n) calculated with T= 10 sec, r, =10 ' sec, and
5t = &t = 0.057', . For a fixed counting rate per sec-
ond )}, the value of (n) depends only on the gate in-
terval width, 6t; the upper abscissa in Fig. 2 gives
the number of counts per correlation time, gv'„
corresponding to our choice for 6t. The asymptotic
behavior of b(/t in the two limits (n) - 0 and (n)- ~
can be evaluated simply from Eq. (23). For large
(n) we find (5Rl )t)c(n)t; therefore, t)s becomes in-
dependent of (n). We see from Fig. 2 that this
asymptotic limit is already well established when
(n):-1. More explicitly, for large (n) and small
dt/v, we find'

/, :6(r, /T)'", (n)-- (25)

where we note that (T/r, ) is an intuitive estimate
of the number of statistically independent samples
of R, which can be obtained in a time T. A confir-
mation of this interpretation can be obtained from
a calculation of 4~ for a set of M truly statistically
independent samples of Rp which we find, in the

(1 l /tt /tc) (23)
0

The approximation Mp)) l has been used in order
to simplify Eq. (23). This condition will be satis-
fied under all usual experimental conditions.

Equation (23) represents the result we will use
in Sec. IV to evaluate the statistical error on the
measured correlation time. However an important
preliminary estimate of the precision of the mea-
surement of R, is the ratio
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limit (n)- ~,

n ~~ = (20/M)'t, (n) —~ (26)

independent of (n). Comparing Eqs. (25) and (26)
indicates that our model correlator obtains an "in-
dependent sample" of Ro every I.87', .

For small (n) we have (5R&E) = (n)»/MD and

(27)

Again this result can be compared to the result for
M statistically independent samples, which is

1/»
&R= — —, n -0. (28)

We now repeat the computation made in Sec. III
for the case in which the photocount signal is
"clipped" during the measurement of G~@(t). In-
troducing a positive integer clipping level K for the
number of counts collected in the interval 5t, we

In this limit we see that all of our MD= T/nt sam-
ples can be considered independent. This is not
surprising when the counting rate becomes less than
one count per correlation time. It is perhaps use-
ful to point out that both limiting expressions for
the fractional error have the required form of "the
square root of one over the number of statistically
independent samples. " Equation (25) is clearly of
this form; Eq. (28) is also if we note that for (n) « I
only MD(n) samples out of a total of MD samples are
different from zero and therefore contain any infor-
mation.

Although the numerical results presented in Fig.
2 have been calculated for a specific set of experi-
mental parameters, i.e. , T=10.0 sec, 7', =10 '
sec, and &t/r, =0.05, they can be used to obtain
&& for arbitrary values of these parameters by re-
locating the asymptotic features via Eqs. (25) and
(27)

IV. CLIPPED DISTRIBUTIONS

define the clipped count as

(E) I,
0,

n&K
n —K. (29)

The correlation function we discuss here is R (t)
=(n '(0) n(t) ); that is, we consider a situation in
which clipping is performed only on the initial mem-
ber of a pair of samples of n. Our interest in this
particular clipped correlation function lies in the
fact that a device that measures R»(t) over a wide
range of delay times can readily be constructed
using commercial apparatus.

Correlation of clipped signals was first dis-
cussed by Van Vleck"; Jakeman and Pike" were the
first to consider clipping as applied to photocount
signals. The latter authors have performed an ex-
plicit computation for the photocount correlation
function 8& assuming a Gaussian optical field with
exponential intensity correlation function; their
result is

R (D=(n)() )
1 ~( ) )

"" . (30)

Comparing this result to Eq. (21), we see that
R»(t) has the same basic features as the unclipped
correlation function R(l 4t), namely, a dc back-
ground term and a signal term.

We will now compute the ensemble-average sta-
tistical error on R~ for the following model of a
clipped correlator. Features (i), (ii), (iii), and
(iv) used in describing the ideal correlator in Sec.
III will also be assumed here. At time t=0 the
correlator starts sampling the output from the
photomultiplier with gates of duration 5t —&t where
4t is the time spacing between gates. The first
gate in which the number of collected photocounts
is larger than K triggers an N-channel multichannel
sealer which records sequentially the number of
counts obtained during the N gates immediately
following the trigger. After the train of N gates,
the multichannel sealer is reset to the first channel
and is ready to be activated by the next trigger.
This will occur when n again exceeds K. In each
one of the N channels the new number of counts is
added to the previous total. After %0 triggers the
/th channel contains the sum of all counts registered
in all the 3RD gates occurring lat after a trigger.
The measured correlation function is then

(sc)R, = —Z n' '(t )n(t +tnt), (31)
0 m=1

with R», given by Eq. (30) with t =tnt. The mean-
square statistical error on Az, has the form
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We assume that the number of channels is large
enough such that N&t & 2w„ in this case it is a good
approximation to say that counts related to two dif-
ferent triggers j&k are uncorrelated, that is,

{n&' 'n&„n' ' n, )={n~' 'nl„){n„'n +l) (33)

for jism. In Eq. (33) we have introduced the ab-
breviated notation

t:(&Ra)]"
(„)„K+i 1+ K

I + (n)
)k

n&
'=-n' '(j&) and n&„=n(t&+I&t) .

Using Eq. (34) we have for (5R«'}
(E)2 2

—
2

2&
{nl n~. r ) R»l-

&l
0

(34)

(35)
0.5 j

Q2(S1& S2) {{1 Sl) (1 —s2) ') ~ (36)

Utilizing the properties of Q2 given in Sec. II, one
finds

{ (»)2 2)

( 1)tll slh s2={n'}+2
( S ~ S, Q2(s, —1, s2) . .., ~

m 0 t8 S2 S sg =s2n1

The problem is now to evaluate the average appear-
ing on the right-hand side of Eq. (35). This can
be done quite easily by using the two-dimensional
generating function Q2

0.2—
(

0
( I

11
0.0S - II'/I I II I I I I I I ~, I//'/ / / / / / / / / / / I II
002- I ////////////

/'/ / I / / / / I / / / / II '„II//////I//!I/
0 2 4 6 8 10 12 14

(n)

From Eqs. (30), (35), and (37) we obtain

(37) FIG. 3. rms fractional error Az for the clipped correla-
tor model versus counting rate and clipping level.

{6R»l )= ' ' 2+42 —2B+C —x
0

—4A —2B+2C+2 ' x~' e-'"'"
1+(n)

with

x=(n) /(1+(n))
and

1+K 2»+2 ual t~, -

(36)

(39)

A = 2 —(K+ 2)(K+3)x ' +2(K+1)(K+3)x '

—(K + 1)(K+2)x"

B= 2 —(K+1)(K+2)x +2K(K+2)x '

-K (K+ I)»"',

C = 2 -K(K+ 1)x + 2(K —1)(K+1)x

-K(K —1)x '

(40)

Once again a preliminary indication of the accuracy
of the measured correlation function is the ratio of
the root-mean-square error {6R», )'@ to the ampli-
tude of the exponential signal part of R~, in the limit
L-O,

{5R»2 )
(n)x '(1+K)/(1+(n) )

(41)

3g2= T/(N+ W)tlt (42)

It can be shown that W is simply the reciprocal of
the probability of finding n &K in one interval 5t;
that is,

~ (&
~ &n&)" (43)

Figure 3 shows the dependence of &» on (n) and K
calculated with T=10 sec, v, =10 ' sec, 5t=4t

The relative statistical error 4~ for our clipped
correlator model can be most meaningfully con-
trasted with 4„for the ideal correlator model of
Sec. III if we compare results obtained for an equal
total measurement time T rather than for an equal
number of samples %0=M0. For the ideal correla-
tor we had simply M2= T/at. For the clipped cor-
relator we are dealing with there is no possibility
of a new trigger for a time N&t following any given
trigger. Furthermore after the series of N gates
is completed there will also be a waiting time before
the next trigger. If W is the average waiting time
in units of &t then the total number of triggers in
the time T is
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=0. 03 7„and N= 100. We note first that for mod-
erate values of (n) there is a minimum in the error
as a function of the clipping level K. This minimum
is a consequence of two competing factors, ' as K
increases, the error on a single sample of R„f
decreases; however, increasing K also decreases
the number of samples Ã, as seen via Eqs. (42)
and (43). We see that for (n) —1 the value of K
which minimizes the error is K= 0. In the limit
of large (n) the optimum K is K:-0.76 (n).

In Fig. 2 we give 4& explicitly as a function of
(n) choosing for each (n) the optimum value of K.
The asymptotic behavior of 4z in the two limits
(n)-0 and (n)- ~ can be evaluated easily from Eq.
(38). For large (n) we have (5R«) ~ (n); &» be-
comes independent of (n) and equal to

n, =4. 34[(N+2. 14)«/T]'", (n)- (44)

where K = 0. 76 (n) and W = 2. 14' t is the average
waiting time for optimum K. The ratio T/(N+ 2. 14)
& &t is just the number of independent samples of
R&, . If we recall that our basic assumptions de-
mand that (N+ 2. 14)nt & 2r, in order to maintain
statistical independence of all samples, we have

tween the mean-square error in w and the mean-
square errors in the R, and R«corresponding to
our two correlator models. In each case we carry
out a generalized procedure in which the measured
correlation function is fitted to the function

R, =8+Ac '", (48)

where H= 4t/v—. We'consider first the ideal digital
correlator model of Sec. III. Our fit in this case
is found by seeking the minimum value of the func-
tion f defined as

f(A, B, H)= E (8+Re '"-R, )
i=0

(49)

where N4t is the maximum delay for which we com-
pute R, so that N represents the number of "chan-
nels" of simultaneous measurement of the correla-
tion function. From the usual conditions for a mini-
mum in f, Sf/SA = 0, Sf/SB = 0, and Sf/SH = 0, we
obtain a set of three equations in the three unknown

quantities A, B, and H. The equations are linear
in A and B; therefore, by substitution we can elim-
inate A and B to obtain a single equation in H. That
equation is

&» &6.14(r,/T)'+, (n)- ~ . (45) N N N

Cq Q Rq+Cgq Z R(e '"+Z IR, e '"=0, (50)
This result can be compared with the corresponding
asymptotic expression for the ideal correlator as
given in Eq. (25).

In the limit (n)-0, Eq. (38) gives

(5R ) = (n)/5)I = &t/T, (n) 0 (46)

and Eq. (30) gives for the amplitude of the signal
part of R„, R», (signal) = (n)', from which we find

&g= ~ 2 n -0.
This behavior of &» versus (n) is quite different
from that obtained for the ideal correlator, cf. Eq.
(27) and Fig. 2; in particular (5Ro ) is in the pres-
ent case independent of (n) rather than decreasing
linearly with (n). Equation (46) can be understood
intuitively by noting that each measurement of R«
is a, product n'"'n=(1)x(n); therefore, the variance
on an individual sample is just (n). However the
number of samples is not constant as it was for the
ideal correlator model, but decreases linearly with
(n) a.s (n)-0.

V. STATISTICAL ERRORS ON THE MEASURED
CORRELATION TIME

The most important information contained in a
measurement of the decaying exponential type cor-
relation function that we have been considering is
the correlation time v'. Once R, is measured, with
l =0, 1, 2, . . . , N, ~ can be determined by a least-
mean-squares fitting procedure to the appropriate
functional form. We now derive the relation be-

E=O

where

1=0 E=O

- (N+1)H

D=1
-2(N+1) H

D2-
1 -2H (52)

Without computing an explicit solution for H from
Eq. (50) for a given measured set of R, we can de-
termine the effect of a change in the R, on H by dif-
ferentiating Eq. (50) viewed a.s a function of H and
the R&. The result is

N

—Z (5R, )(C, +C„e '"+le '")
t=O

=(eH)ZR ' " ' /C e'" —l'e'").eC aC
&H BH

(53)

Assuming that the 5R, (l =0, 1, . . . , N) are now the
differences between the measured and the true en-
semble-average correlation function and are all
statistically independent, we square and ensemble-
average Eq. (53) to obtain

N

(5H') =~ Q C,'(5R, '), (54)
1=0

where

D2 ~D2
sH (N+1)D, -D,' sH 2I(N+1)D, D,'] '-

(51)
N+ 1 ~D2 1 8D1 D1

2 sH (N+ 1)D —D sH (N+ 1)D —D

and
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and

C, =C, +C„e +lefH iH (55) 10

c= 1

2 ~C, —~Cr — 8Cii — eD
F=(n) (X+1) — +Dz —+D2 — +C22eI7

p
10

&Dp ~Dg 18D
BH BF 4 BH2

The overbarred quantities, C&, C», etc. , are the
result of replacing H by H = 4f/r, in Eqs. (51) and
(52). In calculating F we also made the substitution
Rq =R~ =(n) (1+e ' '/") in the right-hand side of
Eq. (53). Replacing R, and H by their ensemble
average values has the effect of neglecting errors
in H which are of second order in 5R, .

Finally then the root-mean-square fractional er-
ror in the measured correlation time 7' is simply

(5r')'" (alt')'" 1 r",(M, )'"
7'c H EH r o

1„10—
Al

0~10
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10

10
10 10
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Fr=(n)x ' (n+1) —'+Dg BH"
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FIG. 4. rms fractional correlation-time error in the
limit of infinite counting rate versus the "channel posi-
tion" parameters ~/r~ and D~/I'.

(5V)
where the (BR,2) are the ensemble-average statisti-
cal errors already computed in Sec. III.

A treatment identical to that given above can be
used to obtain the error in 7 for the clipped cor-
relator model of Sec. IV. For this case the frac-
tional error has the form

(5T2)1/2 I 2 1/2
x&, =— = — Z C, (BR, ), (58)E ~ y H j El

with C, given by Eq. (55) and

FIG. 5. rms fractional correlation-time error versus
the "channel position" parameters ~/v, and hu'/I' in the
case qT~=1.

BC) —BC ),— 1
BH BH ' BH 4 BH

We now present a series of numerical computa-
tions of &, and ~&, which were carried out in order
to answer the following questions:

(a) What is the optimum time-delay placement for
a given number of channels of computation of R, or
Rr„ i.e. , what is the value of at/v, that minimizes
the correlation time error for fixed N?

(b) Does this optimum value of /2f/~, depend on
the counting rate g?

(c) How do &, and rn, vary with (n) —and K for the
clipped correlator-for the best choice of bt/v, ?

(d) What is the variation of the correlation time
errors with a changing number of channels, N?

(e) How do the two correlator models compare in
terms of their respective errors on 7, when each
is operated for the same period of time?

(f) How do these two correlation techniques com-
pare with the more common spectrum-measure-
ment approach to be described in Sec. VII?

Figures 4 and 5 show the variation of &, and ~~,
as a function of /2t/&, for two counting rates, r/r,
=~ and gw, = 1, respectively. The results were
calculated assuming the following parameter values;
T = 10 sec, v, = 10 ' sec, 6t = 4t except when 4t
&0. 17', in which case we set 5t = 0.17„'' and N
= 100 for both correlators. For the clipped cor-
relator, K was adjusted to its optimum value for
each nt/r„ that is, the value that gave the lowest
error on v, .

One can see that in every case there is a mini-
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FIG. 6. rms correlation-time error for the clipped
correlator model as a function of the counting rate per
correlation time, g7~, and the clipping level K.

mum in error versus nf/r, . Furthermore, the
position of this minimum is only weakly dependent
on counting rate. The existence of such a minimum
is in essence the result of an interplay between
three factors. As M increases from zero for fixed
N, the N channels span a wider portion of the expo-
nential signal part of the correlation function thus
initially driving the error down. However the frac-
tional error on R, and R&, relative to the signal
Pa~t becomes large at large delays, l ~t » ~,.
Therefore as ~t increases beyond some critical
value the channels at large delays, N&t»7'„con-
tain no useful information on v, and the error in-
creases. Third, small values of 4t are also de-
trimental because of the reduction in the number
of counts per 4t which results in an increase of the
fractional errors on the correlation function at low
counting rates, qw, & 1. This last effect is particu-
larly significant for the clipped correlator as can
be seen from Fig. 2.

In answer to question (c) posed above, we next
consider the effect of the clipping level K on &4,
for various values of (n). By choosing the same
values of T and ~, used in Figs. 4 and 5 and the
value of nt/r, which minimized the error for each
(n), we computed the results shown in Fig. 6. Be-

S (rI&.) tI (q&.)
(T/r )I /2 s «W (T/q)11«. (60)

where y(gr, ) and g(nr, ) are the functions which are
presented graphically in Fig. 7. The usefulness of
these scaling relationships is best illustrated by a
simple example. Suppose we consider an experi-
ment in which we will measure the intensity corre-
lation time with a 100-channel ideal correlator.
Further, suppose that we have w, =10 sec and a
counting rate qw, =- 1. Figure 7 predicts an error
of 10% in r, for qr, = 1 and T/r, = 10 . If we wish
to measure r, to 1% accuracy, then we demand that
T/r, = 10'. This corresponds to a 1-sec total mea-
suring time. By the same scaling procedure the
clipped correlator requires about 4 min to obtain
7', to the same accuracy.

10
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FIG. 7. rms fractional errors +, &+, and 4r versus
the counting rate per correlation time with all free param-
eters optimized.

cause the optimum nt/v', is essentially constant for
the entire range of K and (n), «6, is controlled pri-
marily by the variation of the correlation function
fractional error, 4~. Thus Fig. 6 is qualitatively
very similar to Fig. 3. In particular, we again
find that for each (n) there is in fact an optimum
choice for K. For large values of (n) this optimum
value is K:-0.76 (n).

To answer the rest of question (c) we plot in Fig.
7 both &, and «4, versus (s) for the following choice
of parameters: T = 10 sec, r, = 10 ' sec; r t/r, is the
optimum value for each (s); K is also taken to be its
optimum value in every case. Again because nf/&,
is essentially constant the qualitative behavior of
4, and «&, with (n) mirrors the behavior of &s and

4& shown in Fig. 2.
It is useful to point out that the specific numeri-

cal results given in Fig. 7 may be scaled to arbi-
trary values of 4f, 7'„and T. Our general expres-
sions for 4, and «4, are functions of T, 7„4f, (n)
and for the clipped correlator K. However, the
values of At and K which minimize the error are
implicitly determined by 7, and (s), respectively.
As a result one can show that functional forms of
b, and ~b, can be written as
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FIG. 8. Correlation-time error for the ideal correla-
tor model versus the number of data channels and for
various values of the couating rate.

We now deal with the statistical errors present
in a determination of the intensity time evolution of
an optical field as obtained by an optical mixing
"self -beat" or "homodyne " spectrometer. ' This

FinaQy in Flg. 8 we give calculated values of +
for thy ideal correlator model as a function of the
number of measurement channels N. Each channel
represents a measurement of R, for a delay l4t in
the range O~l4t~N4t. For each value of N we

computed + as a function of d,t/v, to determine the
optimum delay positions of the N channels. The
result is that the error on 7 is a minimum when the
N th channel corresponds to a delay N&t = 5&,. This
result is not surprising if we note that there is little
useful information on the exponential part of R, for
delays greater than 5v, . The optimum value of
nt/r, for any N is then approximately

(61)

For very large counting rates the error is a
mcmotonic decreasing function of N. Over the range
we investigated, 10-N~ 1000, 4, behaves approxi-
mately as 1/v N However. , for counting rates in
the range gv', =1, 4, levels off at a minimum as N
increases. This saturation can be explained by
noting that as we put an increasing number of chan-
nels into the range of delay times between zero and

5w, there is a corresponding decrease in the number
of available counts per channel, (s). As (n) de-
creases the error on 8, increases, finally offsetting
the effect of the increasing number of measurement
points.

VI. STATISTICAL ERRORS IN MEASUREMENT OF
PHOTOCURRENT SPECTRUM

technique involves measuring the power spectral
density rather than the correlation function of the

photocurrent. Using the fact that this power spec-
tral density S(&u) is the Fourier transform of G'2'(t),

we obtain the general features of S(&o) shown in Fig.
9. Comparing Figs. 1 and 9 we find that S(m) con-

sists of three contributions: a signal term i~(&o),

which mirrors the intensity power spectral density;
a. uniform background t2 (~), which is the shot-noise

term associated with the average photocurrent; and

a 5 function at (d = 0 whose area is simply the square
of the time-average photocurrent.

Our model apparatus to measure S(~) is shown in

block diagram form in Fig. 10. The important fea-
tures of this device can be summarized as follows.
The time-varying current output of a photodetector
is passed through a narrow-band electronic filter
having a center frequency (do and a bandwidth 4».
The transfer function for this filter is shown inset
in Fig. 10. The filtered current signal, consisting
now of frequencies in the range &0 ——,

'
4~& —& —~,

+ —,
' 4~&, is then rectified by a square-law detector.

The output of this detector consists of two parts, a
dc signal proportional to the total time-average
pow~ passing through the filter and a fluctuating
noise signal arising from nonlinear mixing between

the various frequency components which are present
at the square-law detector input. This interfering
noise has a triangularly shaped spectrum which is
peaked at & = 0 and goes to zero at & = 2~&. Finally
the dc part of the detector output is isolated by a
low pass filter (integrator) whose bandwidth satisfies
the inequality && «2~&. Clearly in the usual
case in which &co& is small compared to the spectral
width of the features of the photocurrent signal the

resultant filtered output is proportional to current
power spectral density at the frequency ~0, S(&uo).

2

t)
[&n & -& n& —& n&] = i. (p)S

e (n)
(at)

FIG. 9. General features of the photocurrent power
spectral density.
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S(~) =&I&(~))+Qy(~)) =
I 2/F2 +Z2 (64)

where I'—= I/r, and Z, and Z2 are constants involving
the correlation time, the photocount rate, and the
electronic charge e. The signal part of the spec-
trum is a Lorentzian centered at zero frequency
with a half-width at half-height, 1. The ratio
Zt /Z2= (i~ (0) )/(i„(0}), sometimes called the pre-
detection signal-to-noise ratio, is given by

I

4Jp OUTPUT
SIGNAL

(S/iV) ~E = Z, /Z, = re, , (65)

FIG. 10. Simplified block diagram of one data channel
of a "self-beat" photocurrent spectrometer.

where g is the photocounting rate per cobe~ence
area. From Eqs. (63)-(65) we find the fractional
uncertainty in S(&u) at &u = 0 as'

To make our error analysis considerations anal-
ogous to those used for the ideal and clipped cor-
relator models we make the following assumptions
for the measurement of S(&u). The power spectral
density is measured simultaneously at N+1 fre-
quencies given by co, =l4~, where l is integral and
runs from zero to N and» ~ 4&&. This requires
N+1 data channels identical to that shown in Fig. 9.
We now determine the ensemble-average mean-
square errors (5S (~})on the measured S(&u} for this
proposed model.

Under the assumption that the photocurrent may
be regarded as a quasicontinuous random function
the operation of the self-beat spectrometer can be
analyzed using classical electrical-engineering
concepts. Since these calculations are well docu-
mented, ' ' ' ' we merely quote those results that
are necessary in our analysis. Following the nota-
tion used in Fig. 9, we find

(66)

The ratio &s is analogous to the ratios 4~ and &~
computed for the two correlator models. Figure
2 shows the behavior of &, as a function of gT, for
the following choice of experimental parameters:
T=10 sec, T, =10 ' sec, and 4&&=0. 1I'.

In the limit of high counting rate, gT, - ~, 4, be-
comes independent of gT, and has the value

&, = (v/&(u, T)'", (67)

Since we have assumed the condition 4~& « I', the
response time of the analyzing filter, Tz, satisfies
the inequality rz» r„ therefore, (v/hco&T) ' is the
number of statistically independent samples of S(0)
obtained in the time T. Note that the filter response
time rather than the correlation time limits the in-
dependent sampling rate.

In the limit rlr, -0 we find from Eq. (66)
1/2

&s= RTc- 0 ~

+Q)I T pic
(68)

where S(~) is the ensemble-average power spectral
density and T is the response time of the postdetec-
tion filter, which we assumed to be a simple RC
filter with a time constant T=RC. Thus T gives
the total measurement time used to obtain the set
of N+ I values of S(&u, ).

An important preliminary indication of the accu-
racy of the measured S(&u, ) is the ratio of rms un-
certainty on S(&o&) to the value of the signal term
(i~(&u) ). From Eq. (62) we have immediately

(5S'((u))' ' v ' '(f~(&u) &+ (I„'(&u))
68)(i', (~) ) n(u~T (i~ ((u) )

We now evaluate this ratio explicitly assuming a
Gaussian optical field with an exponentially decaying
intensity correlation function, e ' 'c. In this case
the ensemble-average photocurrent spectrum has
the form

This can again be cast into the form of one over the
square root of the number of independent samples
by noting that only a fraction (reer, ) of the total num-
ber of samples contains any information on S(&u) in
the limit gT, -O.

As was the case for the correlator-model results,
the asymptotic error expressions, Eqs. (67) and
(68), allow the numerical data of Fig. 2 to be scaled
to arbitrary choices for the experimental param-
eters T, T„and &(dz.

We now proceed to determine the statistical er-
rors on the measured linewidth of S(&o). Once S(&u)

has been obtained at the N + 1 frequencies l b &, 0
—I —N, I can be determined by a least-mean-
squares fitting procedure to the proper functional
form. Using the same generalized fitting procedure
employed in Sec. V, we can calculate the mean
square error in I' from the known statistical errors
on the S(&u,). We assume for the fitting function the
form suggested by Eq. (64),



IN TE NSITY -CORRE LATION S PE C TROSCOP Y 2045

S(f ~) = S, = A'/(1+l'G') +a', (69)

where G -=&&u/y and y is the best-fit half-width.
Abbreviating the notation on the set of measured
spectrum points to S, =—S(v = I n4d), we look for the
minimum value of the function defined by

I 2
f'(A', 8', G)=Z 8'+

2 2 -S,
l =0 1+) G

(70)

K +
(1 I2G2)x (73)

Without computing an explicit solution for G from
Eq. (71) for a given set of measured S„we can de-
termine the effect of a change in S, on G by differ-
entiating that equation considered as a function of G

and S, . The result is

(1 4. 12G )2 (1 4. 12G )

1 +I G sG 11 (1 +I 2G2)2

l G
~4), 4,) . )74)

Now allowing the ~S, to be the statisticaldifferences
between the measured and the true ensemble-
average spectrum and assuming that the 5S, are all
statistically independent, we obtain by squaring and
then ensemble-averaging Eq. (74)

N

(6G') = „Z (C,')'(6S,'),
1-"0

with

and

CiI
~'1+~2G2 1+~2G2 (76)

eC i N+1 ~C iz — Yi 2CF = — Yg+ — + — Y2+8G g7 8G g7' G

From the usual conditions Sf'/SA'= Sf'/SG = Sf '/Sa'
=0 one obtains a set of three equations in the three
unknowns A', 8', and G. By substitution one can
eliminate the linear parameters A.

' and B' and obtain
a single equation in G; this equation is

N

C1 ~ S, +C11 +
1 I2G2 ~ 71 I2G2)2

1 -"0 )0 + rp S +

where

Y2 —Y1Y3 / Y3(N+ 1)—Y1Y2()
Y2(N+1) —Y1

' ' Y2(N+1) —Y1

and

result of replacing G by G= «d/I' = («d)r, in Eqs.
(71), (72), and (73). In calculating F' we also made

the substitution S, =S, in the right-hand side of Eq.
(74). Replacing S, and G by their ensemble-average
values has the effect of neglecting errors in G which

are of second order in 5S, . Finally then the frac-
tional error in I' is.-"")"*-"""*-'- i)C)*&44*))I G F'G

(76)

We now present a series of numerical computa-
tions of &r which were carried out in order to an-
swer the following questions:

(i) What is the optimum frequency placement of a
given number of equally spaced channels of measure-
ment of S„ i.e. , what is the optimum value of n~/r
for given N?

(ii) Does this optimum value of &&u/I' depend on
the predetection signal-to-noise ratio (S/N)»s

C?

(iii) How does the linewidth error nr vary with

qr, for this optimum «d/I'.
(iv) How does &r for the light mixing spectrom-

eter compare to the correlation time errors 4,
and ~&, calculated in Sec. III.

Figures 4 and 5 show the variation of ~& as a
function of «d/r for gr, = ~ and 1)3', = 1, respective-
ly. These results were obtained with parameter
values of T=10 sec, 1/I'=~, =10 ' sec, and &&uz

= 4' except when 4' &0. 1I', in which case we set
&~&= (0. 1)I'. The number of channels was taken
as N= 100.

One can see that in each case there is a minimum
in the error versus n~/r. The position of this
minimum is insensitive to the value of g7, and oc-
curs at &&a/r = 0.1. The existence of an optimum
«u/r can be explained qua, litatively as follows.
Consider the case 1)r, &1 first. As 4&v/r increases
from zero for fixed N, the N data channels span a
wider portion of the Lorentzian part of the spectrum
thus initially driving the error down. However, the
fractional error on S, relative to the signal part be-
comes large at high frequencies, loco» I' if q7, &1.
Therefore as» increases beyond some critical
value the channels at high frequencies contain no
useful information on I and the error increases.
Small values of neo/r are also unfavorable since
the fractional error on S, is proportiona. l to (n)d&T) '
= [(«4))T] . For 3)r, »1 the first and third argu-
ments given above are still valid. Now, however,
the fractional error on S, relative to the signal term
is a constant independent of frequency [cf. Eq. (63)].
But in the limit q7', —~ the ensemble-average spec-
trum becomes

(77) S, =Z,/[I+(in~/r)2] . (70)

The overbarred quantities, C'„C», etc. , are the Therefore measurements at frequencies l &co» I'
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determine only the product Z&I"'. So here again the
error on I' must increase as 4&v/I' becomes large;
now, however, because there are fewer data chan-
nels near n&u/I'-1 to provide information on Z& and
I separately. That this is a very weak effect can
be seen in the shallowness of the minimum in ~1-

fOr ETC = oo.

Finally in Fig. 7 we plot 4~ versus g&c for the
usual choice of parameters: T = 10 sec, r, = 1/I
= 10 ' sec, N = 100 channels. The ratio M/I' was
taken as its optimum value for each g7', . Since this
optimum value isnearly constant, the qualitative be-
havior of && with qw, is determined by the variation
of 4, with gv'c and can be explained by reference to
Eqs. (67) and (68).

We again note that the specific numerical results
of Fig. 7 may be scaled to arbitrary values of I',
~co, and T. Our general result for 4,& is a function
of T, I", 4', and g7', . However, the value of Geo

which minimizes the linewidth error is implicitly
determined by I' and g7', . As a result 4& may be
written in the functional form

o(q~, )
r (T/& )1/2 (80)

C

i(t) = Zi. (t), (81)

where c is the number of coherence areas and i (t)
is the photocurrent from the oth coherence area.
We choose the size of our coherence area such that
the photocurrents generated in two different areas
may be taken as uncorrelated. With this assumption
we write

(t (t1)tB(t2)) (t ) (iy)

for awP. Letting the average current (i }be the

where o(qr, ) is the function given graphically in
Fig. 7. This curve may then be used to determine
the linewidth error for arbitrary counting rate,
correlation time, and measurement time.

VII. EFFECT OF OPTICAL FIELD SPATIAL INCOHERENCE

In all the calculations presented so far in this
paper we have assumed that the photodetector is
illuminated by a spatially coherent (single electro-
magnetic mode) optical field. A simple analysis
shows that gathering light from many spatial coher-
ence areas of the field has a markedly different ef-
fect on a photocurrent correlation function mea-
surement as compared to an optical mixing spec-
trum determination.

In a situation where the photodetector views more
than a single region of spatial coherence let us di-
vide up the photosurface into smaller areas inside
of which the optical field may be taken as spatially
coherent. Then the total photocurrent can be writ-
ten as

same for all n, we have the correlation function
for the total photocurrent as

C C

(t(t )t(tt)) = + + (i.(4)t&(t&))
o~1 8~1

=c(i (t,)i,(t,)) +c(c —1)(i,)'. (83)

Subtracting off the average dc current term from
(i, (t,)i (t2}) and defining R (t~, tm) as the current
correlation function for the shot-noise and signal
parts of (i (t&)i (t2}) yields

(i(t1)i(t2}) = cR- (4, t 8 + c '(i ) (84)

Np

R = Znn. . .
0 j=1

(85)

where n& is the total number of counts recorded in
the interval 5t at t =j &t. The statistics of the pro-
cess n& are, in general, quite complicated for c&1
and must be determined from a knowledge of the
mutual coherence function of the optical field. Such
a calculation has recently been carried out by Jake-
man and Pike for a specific light scattering and
light collection geometry. In order to simplify the
problem, while retaining all the essential features
of the general calculation, we will assume that the
output of the photodetector represents the superpo-
sition of c statistically independent contributions
from c different coherence areas in the optical
field. We take the individual c contributions to have
the sgme statistical properties, namely, a Bose-

Equation (84) indicates that the shot-noise and signal
contributions to the total correlation function both
grow linearly with c while the dc current term in-
creases as c'.

Now Eq. (63} shows that the fractional rms error
on the current spectrum measured at frequency co

is determined completely by the ratio of the shot-
noise to signal powers i„(&u)/is(&u). Since i„(&u) and

iz(&u) are, respectively, the shot-noise and signal
components of the Fourier time transform of cR, (t„ tz),
both increase linearly with c. Therefore the
statistical errors associated with a current
spectrum measurement are independent of c and
determined only by the counting rate per correlation
time per coherence area, g7'c. ' ' '

On the other hand, in a measurement of the cur-
rent correlation function the statistical error is
related to the ratio of the error in the dc plus signal
parts to the signal-term amplitude. Since the dc
term increases as c' while the signal term is linear
in c, we expect that the error on the correlation
function will increase with c. Returning to the ideal
correlator model of Sec. III, we can explicitly de-
termine the dependence of (6R, ) on c as follows.

The measured correlation function [cf. Eq. (15)]
is now
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e+g p

equi

(86)

Einstein single-time ensemble distribution, an

average number of counts (n) in the interval 5t, and

a correlation function R(t) = (n) (1 +e '/"). With

these assumptions we write n& as

where n& is the number of counts produced in the

nth coherence area. To calculate the errors on R,
we need the distribution functions W, ((2; c), W2(n„n2,.c),
etc. , for the process n& in terms of the known

distributions for n& that were given in Sec. II.
For example, given the assumed statistical in-
dependence of ~& and ~n; for a +P we have4'

00 00 C C C

W, (n; c)=Z''' ZW& n — Z n W( n — Z n ~ ~ ~ W( n — Z n
n1=0 n =0 e=1, e41 e=i, e42 e=1, e&c

"Q W, (&,)" W, (&,)6„„„„... „.
ni=o nc o

(8'I)

Thus W((n; c) is the c-fold convolution of the single
coherence area distribution W((n). It is easy to
show that all the probability distributions W, (n; c),
W2gi, n2, t."), etc. , canin fact be represented as con-
volutions of the c identical distributions correspond-
ing to a single coherence area. In this case the

generating functions of the over-all distributions
take on a particularly simple form

(((~(s» s2, . . . , s~; c) = Q~(s(, s2, . . . , s~) . (88)

Thus it is possible to easily compute any of the
generalized moments for the counting process g&

using the known generating functions for c = 1; for
example, the ensemble-average correlation function
becomes

R(l&t; c) =M„(0, l; c) =c(n) (c +e ' ' ") . (89)

The mean-square error on R, is a straightforward
generalization of Eq. (18),

M22= F22+ 2F12+Mii,

F,&, =c(t()'[c +2ce ' '/" (c++2)e " '/'c]

F„,=c(c+1)(n)'[c'+4ce '"'"+(c+6)e""'"],
M121 F121™111
M(», (s &I) =c(n) [c +2c e ' '/" +2c(c+2)e ' '/'~

+ce ' ' '&+ 2(c+1)e

(91)

2
hf0

+ 2 Q (M2 s)M(((((02, l s +l[ c)
MQ

-M (0, l; c) . (90)

A straightforward evaluation of the various general
moments yields

M„=F„=c(n)'(c+e ' '/'&)

F22=F2(=c(c+1)(n) (c+ 2e ~)

F22=c(c+1)(n) [c(c+1)+4(c+1)e ' '/" +2e ' '/'~],

0 0

( 2)2 -(s~l) 2(/v~+ 2 -(s-()2(/v~ ]

from which we fend

(6R (I; c))
3 21 4 , 2 8c 2c -2l &~ ~c 2 8c(2c + 1) 4(«/y

(n) —4c —c + 2, /, , + 2««+e ' 8c l —4c(c+2)+ «/, +e
0

1+e- c 1 —e c C

2c c+2 l —g(c+2 + -2~t(~ + n 2e 2g+1 +4g %+1 e-i~tt'~c+2c c+2 e- &~&)"c2c(c + 2)

+(2() (c +cs ~) (92)

and in the limit 1-0
(I'(0, c))

(n) —4c' —6c —2c —8+,/, + 2, /, +(n) (4c +12c +8c)+&) (c +c) (98)

In all of these results (n) is the average number of
counts in the interval 5g per single coherence area.

For c = 1 these expressions reduce to those derived
in Sec. III.
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1 ~c ~ 100Q and with N= 100 showed that increasing
the number of coherence areas had no effect on the
optimum time-delay placement of the N data chan-
nels. In every case the lowest value of &,(c) cor-
responded to the choice N&t = 5~,. Figure 12 shows
the calculated variation of n, (c) versus the average
counting rate per coherence area per b,t for the
same choice of parameters used to obtain Fig. 7.
The adverse effect of collecting light from a large
number of coherence areas is clearly evident.
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FIG. ll. Correlation-function fractional error for
the ideal correlator model versus counting rate and the
number of coherence areas c.

We may again take as a significant indication of
the accuracy of the measurement of 8, the ratio of
the rms error as l - 0 to the signal-term amplitude,
namely,

4 (c) = (5R (0; c) ) / /c(n) (94)

Figure 11 shows the calculated variation of na(c)
versus counting rate for various values of c and the
following parameter values: T = 10 sec, 7, = 10 '
sec, nt/r, =0.05. At high counting rates, (n) &1,
4a(c) is strongly c dependent; e. g. , the situation
c = 1000 results in a 16-fold increase in rms error
compared to the result for c = 1. In the limits (n)- ~ and c- ~ we have approximately

4e(c):—(8cr, /7)'/', (n) -~, c- ~ . (95)

This asymptotic expression may be compared to
Eq. (25) which is correct for Q)-~ and c = 1.

A calculation of the statistical error on the mea-
sured correlation time 7' for c 1 is straightforward.
Using Eqs. (89) and (92) for R(tnt; c) and(5R (I; c))
in the generalized least-mean-squares fitting pro-
cedure given in Sec. V, we find [cf. Eq. (57)]

(5c )1/2 (5H2)1/2
&(c) -=

We have carried out an analysis of the statistical
errors on the optical-intensity correlation function
as measured by two photocounting digital-correlator
models and on the intensity spectrum as measured
by a "self-beating" optical-mixing spectrometer.
From these errors and a generalized least-mean-
squares fitting procedure we have determined the
uncertainty on the measured correlation time (line-
width) for the case of a Gaussian optical field with
an exponential intensity correlation function (a
Lorentzian spectrum). Scaling relationships have
been given which permit our numerical results to
be applied to an arbitrary set of experimental pa-
rameters.

In order to make a comparison between the vari-
ous experimental methods we have dealt with, it is
useful to refer to the results given in Figs. 7, 8,
and 12. We see that in the case of a single coher-
ence area field the fractional errors on 7 for the
100-channel ideal correlator are quite comparable
to the errors on I' for the 100-channel spectrum
analyzer at all counting rates. From a practical
point of view, however, 100 simultaneous channels
of spectrum analysis capable of operating in real
time and flexible enough to tolerate a large range in
measured half -widths represents an unrealistically
complicated solution to the problem in the present
state of the art. On the other hand, it might appear
that a 100-channel ideal correlator operating in

I

10
N 1/2
Z C& (5R (I; c)) F(c)H,
E=O

(95)

where the coefficients C& are identical to those
defined in Eq. (55) and where

2DF(c)=(n)' c2 (N+I) —'-+D, —"+C„
8H 8H 8H 882

0
10

C4

10

c = 1000

c =100

c=10

c=1

8Cz — 8Czz — 8D2 1 8 D
8H 8H 8H 4 8H 10 2 10

IO
I Ilail I

IO 10 10 10
COUNTS PER CORRELAT I ON TIME

in the same notation used in Sec. V.
Numerical calculations of n.,(c) for c in the range

FIG. 12. rms correlation-time error for the ideal
correlator model versus counting rate and the number
of coherence areas c with all other parameters optimized.
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real time would be limited to long-correlation-time
measurements because of the necessity of perform-
ing the multiplications n &n~, , from which the corre-
lation function is computed. However, Fig. 7 indi-
cates that with only a small sacrifice in accuracy
on T, we may operate such a device at a counting
rate such that g~, = 1. In the latter case we would
find n& = 0, 1 with small probability of n& = 2; the
required multiplications can be done by simple
coincidence. It would thus appear quite feasible to
construct such a device, using state-of-the-art
digital techniques, which would be useful for all 7,
greater than about 10 sec. Being an all digital
instrument, there is no device-limited upper bound
on the correlation times which such a correlator
could measure.

The clipped correlator avoids the n,n~„multipli-
cation problem via its "0"or "1"quantization of z&.
From Fig. 7 we see that the 100-channel clipped
correlator can be quite competitive with the ideal
correlator at very large counting rates but that the
rapidly increasing error with decreasing (n) soon
makes this device even less attractive than the usual
single channel of spectrum analysis. However it
should be noted that our clipped correlator model
represents a very practical, easily built device and
is not necessarily the most efficient model that can
be devised using the concept of clipping.

In particular our model does not compute all pos-
sible photocount products n~(K) n&„on a real-time
basis. If it did, then for counting rates such that
n&=0 or 1 with only a small probability for n&=2
the clipped correlator with K = 0 would be essentially
equivalent to our ideal correlator model.

Another practical consideration in our comparison

is the effect of gathering light from an increasing
number of spatial coherence areas of the optical
field. In Sec. VIII we showed that the error on v,
for the ideal correlator model increases for large
c as c while the error on I' as derived from a
spectrum measurement is independent of c. There-
fore, in circumstances where it is desirable to col-
lect light from a large number of coherence areas,
for example, to overcome photodetector dark cur-
rent, the N-channel spectrum analyzer is preferable
to our model ideal correlator. This is not meant
to imply that under such circumstances a measure-
ment of the correlation function provides intrinsi-
cally less information than a comparable spectrum
analysis experiment. It does imply that even our
model "ideal" correlator does not make the most
efficient possible use of the information present at
the photodetector output. One can show, in fact,
that by processing the photocurrent signal in a
slightly different way one can obtain the signal part
of the current autocorrelation function with an error
which is essentially independent of the number of
coherence areas. 4~
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The Brandow boson linked-cluster expansion has been used to redo the Foldy calculation of
the Bogoliubov theory for a charged boson gas. The particle-number conservation is treated
exactly. The ring diagrams have been summed using the same techniques as used by Gell-
Mann and Brueckner for the electron gas. The next-most-divergent diagrams (twisted rings)
have also been summed. These diagrams contain a renormalized hole line and thus show ex-
plicitly the dynamics of the condensate which is treated only in an average way in the
Bogoliubov theory. The results for the ground-state energy and the condensation fraction
agree exactly with Foldy in the high-density limit.

While the Brueckner -Goldstone linked-cluster
expansion' for the interacting fermion systems has
found many successful applications in the past,

there has been an obstacle to a direct application
of this diagramatic perturbation theory to the in-
teractinz boson systems. The difficulty is due,


