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Multiple-Scattering Expansions for Nonrelativistic Three-Body Collision Problems.
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Explicit relations between the on-shell and off-shell three-body scattering and rearrange-
ment-collision amplitudes are given. It is shown that the off-shell approach to the determi-
nationof the on-shell amplitudes is equivalent to the conventional method of taking on-shell
matrix elements. As an example, the bare-potential term of the Faddeev-Watson multiple-
scattering expansion for rearrangement collisions is evaluated using the two alternative ap-
proaches.

I. INTRODUCTION

In a series of papers, ' we have recently re-
viewed and investigated the application of the
Faddeev-Watson multiple -scattering expansions to
high-energy three-body atomic scattering and re-
arrangement collisions. In these papers, the three-
body collision amplitudes are determined by
evaluating the appropriate on-shell matrix ele-
ments. In another series of papers' concerning
the application of the Faddeev equations to low-
energy three-body scattering and rearrangement
collisions, the collision amplitudes are determined
by taking the limit of the off-shell three-body am-

plitude on the energy shell. These two alternative
methods of determining the collision amplitudes
are, of course, equivalent. However, a recent
paper by Shastry and Rajagopal has questioned
this equivalence. The purpose of this paper is to
make this equivalence more explicit. Since the
difficulty in seeing the equivalence of the off-shell
method with the conventional method of taking ma-
trix elements appears to have come from the bare-
potential term in the expansion for rearrangement
collisions, we demonstrate the equivalence of the
two methods by obtaining the result of this bare-
potential term from the corresponding term in the
Faddeev-Watson expansion for the off-shell three-
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where Kf and z& are the mass-scaled asymptotic
momenta of the incident and outgoing particles
with respect to their corresponding two-body sub-
systems in the energy states E'f" and ef'", respec-
tively. This can be accomplished by approaching
the energy shell in the following manner:

FIG. 1. Diagrams for the successive terms in the
I'addeev-Watson multiple-scattering expansion for the
off-shell scatterings amplitude. The bubbles are the
two-body scattering matrices.

body rearrangement-collision amplitude. It per-
haps is worthwhile to note that the claim of
Shastry and Bajagopal that the two-body Coulomb
T matrix in the plane-wave representation is zero
on the energy shell has been shown ' to be erro-
neous.

II. MULTIPLE-SCATTERING EXPANSION FOR OFF-SHELL
THREE-BODY AMPLITUDES

The off-shell three-body collision amplitudes
may be denoted by & (p, q, , p, q, ; E), where E is an
energy argument and the momentum pairs (p„q,)
have the significance that p; represents the relative
momentum between particles j and k and q; rep-
resents the relative momentum between particle i
and the two-body subsystem (j,k). We found it is
convenient to take for p, and q; the mass-scaled
momentum variables defined in a cyclic order as

rnkkj -nvjkk
[2m;m (m, +m )]'~

(2 1)
m;(k +k ) —(m, +m„)k,

I2m, (m, +m, )(m, +m, +m„)]"'

where m„m2, and m3 and k~, k2, and k, are the
masses and asymptotic momenta of the three par-
ticles. These mass -scaled momentum variables
are linearly dependent on each other with the rela-
tions (in a cyclic order)

+fj Pj Pfj qj +ki Pk+ ~k' qk

(2. 2)
qi +ij qj + Pij Pj +kj qk Pkf Pk

Here E is the total energy of the three-body sys-
tem.

To obtain the Faddeev-Watson multiple-scatter-
ing expansion for the off-shell three-body collision
amplitudes, we construct all possible connected
diagrams in terms of bubbles. Each of these bub-
bles represents a two-body interaction to all or-
ders. We then group these connected bubble dia-
grams according to their initial- and final-state
interactions.

Consider, for example, the scattering process

1+(2,3)-1+(2,3), (2. 6)

Ts= Ty Gp T2Gp T] + Ty Gp T3 Gp Ty + T~ Gp T2Gp T3 Gp Ty

+ T& Go To Go ToGo T~+ ~ ~ ~, (2. 7)

with

T;= V(+V;Gp T;, (2. 8)

where V; is the two-body Coulomb potential Vj»
Gp is the Green's functions for the three-body sys-
tem in the absence of interaction, and T; is the
two-body T matrix in the presence of a spectator
particle "i." The multiple-scattering expansion
for the off-shell three-body scattering amplitude
then takes the form

where for convenience we have taken pair 1 (i.e. ,

particles 2 and 3) to be the two-body bound sub-
system before and after the interaction. To obtain
the multiple-scattering expansion for the scattering
process given by Eq. (2. 6), we collect all the pos-
sible connected bubble diagrams which begin with
a bubble involving the interaction of particles 2
and 3 and ending with a bubble involving also the
interaction of particles 2 and 3. Such diagrams
which are shown in Fig. 1 can be summed up to
give the series

where the mass coefficients are defined as
(pl al, pi qi; E) = (pl ql I T.I p1 q1 ) (2. 9)

1/2
m(my

p (1 o )1/2'j

(2. 3)
The on-shell three-body collision amplitude & can
be obtained from the off-shell amplitude V'(p& q&,

p; q; „'E) by requiring its arguments to satisfy the
energy-conservation relation

Similarly, for rearrangement collisions we have

1+(2, 3)-(1,2)+3 . (2. 10)

We collect all the possible connected bubble dia-
grams which begin with a bubble involving the in-
teraction of particles 2 and 3 and end with a bubble
involving the interaction of particles 1 and 2. These
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X.

x x x

X. in applications to three-body atomic and molecular
scattering problems. ' '"' In aQ these app]ica-
tions, the on-shell version of the multiple-scatter-
ing expansion was used. In the on-shell approach,
the transition amplitudes for scatterings and rear-
rangement collisions are given in terms of matrix
elements.

Following the notations of Paper I, we have for
the scattering amplitude the matrix element

2 3 I 2 3 I 2 3 I 2 3 I 2 3

FIG. 2. Diagrams for the successive terms in the
Faddeev-Watson multiple-scattering expansion for the
off-shell rearrangement-collision amplitude. The bubbles
are the two-body scattering matrices.

diagrams which are shown in Fig. 2 can be summed

up to give the series

Ty = T3 Gp Tg + T3 Gp TpGp Tg + T3 Gp Tg Gp T2Gp Ty

+ T3 Gp Tg Gp T3 Gp Tg

(3.1)

and for the rearrangement-collision amplitude the
matrix element

(3.2)

where g,' ' are the asymptotic scattering states
with n denoting the channels and a denoting the
additional information to complete the description
of a given channel. The Faddeev-Watson multiple-
scattering expansion for the scattering transition
operator T, is

+ T3Gp TzGp T3Go Tl+ ~ ~ ~ . (2. 11) Ts= T~+ T3+ TzGp T3+ T3 Gp T2+ ' ~ ~ (3.3)

(P3 qs Pl ql
' E) =

& ps qs I T.I P«1 &

with T„given by Eq. (2. 11).

(2. 12)

IIIz RELATIONS BETWEEN ON-SHELL AND OFF-SHELL
MULTIPLE-SCATTERING EXPANSIONS

The Faddeev-Watson multiple -scattering expan-
sions for nonrelativistic three-body processes
have recently attracted considerable enthusiasm

The multiple-scattering expansion for the off-shell
three -body rearrangement-collision amplitude
takes the form

and for the rearrangement-collision transition op-
erator T„

T~= Vy + Tp+ Tg Gp T~+ Tg Gp T3+ TgGp T3 + ' ~ ~ ~

(3.4)

In this section, we exhibit the explicit relations
between the on-shell expansions given by Eqs.
(3.1)-(3.4) and the off-shell expansions given by
Eqs. (2.7)-(2.12).

From Eqs. (3. 1) and (3.3), we obtain the multi-
ple-scattering expansion for the on-shell scatter-
ing amplitude

~a=(la"
I Talma '&+ &43"

I Tsllt'a '& +&03"
I

Ta Go Talma '&+ &&3 'I T3GoTalka ')+ ' ' ' ~ (3. 5)

The counterpart multiple-scattering expansion for the off-shell scattering amplitude can be obtained from
Eqs. (2. 7) and (2.9),

&.(Plql Pl ql +)(P1ql I T1GOT2GOTllplq, )+(Plqll»G0 T GoTllplql&

+ (Pl 'ql I Tl Go T2 Go T Go Tl I Pl ql & + & pl ql I
Tl Go T Go TaG0 Tl I pl ql ) + ' ' ' (3 6)

Similarly, from Eqs. (3. 2) and (3.4) we obtain the multiple-scattering expansion for the on-shell rearrange-
ment-collision amplitude,

+ ~=0'3 'll llta '&+4's 'IT lt a'&+a&43 'IT1Go Tails '&+&'s 'I T1GoTsll)'a ')+&43 'ITaGoTsllI'a ')+'''
~ (3 7)

The expansion for the off-shell rearrangement-collision amplitude is obtained from Eqs. (2. 11) and (2. ],2),

(Ps q3 Pl qt +) (P3 q3I T Go Tl Ipl ql&+ (Psqs I
T G TaG0 Tll Pl ql&+ &ps qsl T G Tl G T2Gp Tll p, ql &

+(psqslT GoT1G T GoTllpl ql&+(psqslT GoT2G0T3GoT, lplql&+ ~ ~ . (3.3)

As remarked in Sec. II, the on-shell amplitudes V', and K„ for scattering and rearrangement collisions
can be obtained from the corresponding off-shell amplitudes 7', (p', q'„p, q„E) and V'„(psqs, p,q„E) for
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scattering and rearrangement collisions by requiring their arguments to satisfy the appropriate energy-
conservation relations. In addition to the energy conservation, we must also specify the initial and final
quantum states.

The angular momentum states of the initial and final two-body bound subsystems lfmf and l&m& can be
easily specified by projection. We have from Eq. (3. 8)

2

7'n{p(f)»i q), p) f(»(q); E) =
& 1'(, (p)) I,(pi q(, pi qi; E)

I 1™(,'(pl) )

&p1l 1 »1 q) I Tl G0 T2GO Tl lp1l1»1 q1 ) + &p1l 1»1 q11 T1 GO T3 GD T1 I p1 l1 »1 ql) +

and similarly from Eq. (3.8)

7,(p3l3»3q3, pili»)q);E) = &1')3'(p3)lf', (p3q3, piq);E)I 1'),'(pl))

= &p313»3q3I T, G, T, Ip, l, », q))+&p313»3q3I T, G, T,G, T, I pil, », q, )+ ~ ~ ~, (3.10)

where we have made use of the notation

(3.11)

with 6 denoting the appropriate operators.
For the specification of the principal states of the initial and final two-body bound subsystems, two al-

ternative representations'3 for the off-shell two-body partial-wave Coulomb amplitude t,"'(P„P';;E') have
been found to be suitable. ' We have t,"'(p;, p';;E') in the Sturmian-function representation

t'"(p p' E') =~.li-y2~"(E')l '0'u'(p(, E') y1('(p,', E'), (3. i2)

with

2 " g(g -) —1'( l 2
(t)(i)(p E)) ) ) '

( El)(2+23) 4(l p( G)+) pi+ E
() +1)! (p2 E))(+1 ll 1-1 2 El

and in the Coulomb-function representation

(
2 e(i) I2 EI)

n
—&n

(3. 13)

(3. 14)

with bound states

n24" ( l 2
l+& f+ n

&()3+i) I n (p2 e(())(+2 n l-l O2
n

(3. iS)

where the C's are the Gegenbauer polynomials
and the prime on the sum over n for the Coulomb
functions indicates a sum over the discrete states
and an integration over the continuum states.

The Sturmian functions which satisfy the ortho-
normality proper ty

-1 ~ 2 pal(p&E ) p3( (p&E )

0 p

The Coulomb functions which satisfy the ortho-
normality property

1 x.';"(p) xe" (p)p'dp = s.y (3.18)

(3. 19)

are solutions of the Schrodinger equations with
eigenvalues &„' '

(;), „)((-2E'/p, „)'l',
Zf

(3.17)

are solutions of the homogeneous Lippmann-
Schwinger equations with eigenvalues [y1)"] ' In terms of the Sturmian functions, the on-shell

scattering amplitude can then be obtained from the
off-shell scattering amplitude given by Eq. (3.9)
by following the limiting procedure given in Ref.
6. We have
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(1)]1/ 2 (1) (
& &2 [ (1)]1/2 (1) ( 2) +n(/if f ffjf 'ql p(f 1 m 1 'ql E) 3 ~ 0)

1 n]

q'2-E e")"
nf

Similarly from Eq. (3.10), we have for the rearrangement-collision amplitude

where

(3)x

(3) 1/2 (3) 2 (1) 1( 2 (1) 2 KP3Ef mf Q3 &t 1 f$ q1
2-&j n(» [—& ] An/ jf (f/3~ E —jf3)[ tnj ] 4&» (f&(~ E (f()

q2 „g 6(3)
3 tip

Ns= 2&4 (s. 22)

is the normalization constant for the three-body amplitudes.
The on-shell amplitudes can also be obtained from the off-shell scattering amplitude in terms of Cou-

lomb functions. We have from Eqs. (3.9) and (3.10)

I2 (1) 2 (1)(E —(il —&nf )(E —&t(
—enj )u&, &. (& & ia & &«z; n)&

q E 6(i) (P2 n J Xn l '(Pi j~P1 n&
& Xn l

g
~P1 I

1 ng

q'2 g 6(1)
n~

(3.23)

(E —(13 —enf )(E —9( Enj )2 (3) 2 (1)„„„.. . ,(,,i, „„&,i,.„„n)), (s. 24)

q2 ~ 6(3)
n

where the normalization constant is

N, = 8m (s. 26)

The normalization constants N, and N, were not
explicitly given in Ref. 6 since there the initial-
state representation was not specified. [We take
this occasion to point out an error in Ref. 6, that
a faCtOr Of [-4&'] ' '[- enI'] ' 'WaS miSSing in
putting the amplitude in the Sturmian-function rep-
resentation on the energy shell, see, for example,
Eq. (3. 6) of Ref. 6.)

From Eqs. (3. 20) to (3. 25) the on-shell ampli-
tudes may be calculated from the off-shell ampli-
tude to all orders in the Faddeev-Watson multiple-
scattering expansions. We illustrate these by cal-
culating the bare-potential term for rearrange-
ment collisions since it is this term which gives
rise to the difficulties in seeing the equivalence
of the two approaches.

IV. DETERMINATION OF AMPLITUDE BY OFF-SHELL
METHOD

In this section we demonstrate the equivalence

3

3 I dpi Xf
' (- K3) )(4 '(pl ) V, (K4,pl), (4. 1)

P31 g

with

Vl(K4, pl) = (Z, e /2&/3) (1/I K4 - p& I
') (4. 2)

K4= (Q3( Kj + K/ )/P3&~ K3= (Kj + (231 K/)/f)31 ~ (4 3)

For simplicity, we consider the case where the
initial two-body bound subsystem is in the ground
state. We then have

of the off-shell method with the conventional meth-
od of taking matrix elements by evaluating the
bare-potential term in the expansion for rearrange-
ment collisions using both methods.

The bare-potential term in the multiple-scatter-
ing for the on-shell rearrangement-collision am-
plitude given by Eq. (3.7) canbe written as'

r 2
(q( &l3V

l

q(1& )
&) &e [ g( j&]3/4 Pifl&

l
P(+ 4 (3)n( )f 1 ln P2 P3 1 (p f2 e(1))2 pi )(f K3

p
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(4. 4)

This is the bare-potential approximation for the three-body rearrengement-collision amplitude between the
ground state and (nflfmf) state.

From Eqs. (3. 21) and (3. 24) together with the on-shell expansion [Eq. (3. 7)] and the off-shell expansion
[Eqs. (3. 8) and (3. 10)], it is seen that the on-shell bare-potential term is related to the off-shell bare-
potential by the limiting relations:

N» . (E q3 —e~»f)(E ql —e»; ) ((/)3l f m f q3 I T3 Gp T( I'll; m; ql)&'4
I V(I 4i ) (2~ )1/2 [ e(3)]1/2y(3) (p Z 2)[- e(1)]1/2y(1) (p E 2)

f ff )f 3~ 6'3

E 6(3)
3 flf

», . (z —q, —q , ')(E -q, —q ) (q, l , q, l T, G, T lq (; ;q, )
)6 I 1 I ki

(2I4 )1/2 2 (1) (f)2 e(3)) )t~(~3) (t) }(p2 2(1) ))((I) Q )

2 „E (3)
3 tff

(4. 6)

with

&P f/mf q3I T3G() Tilt) f mi ql& = &1 i (p3) I &p3q3 I T3Go Tl I Pl'ql)l y) . (pl) ) (4.7)

The (2/123)
1/ mass factor in Eqs. (4. 5) and (4. 6) accounts for the appropriate normalization of the Coulomb

potential which is given by Eq. (4. 2) in terms of the mass-scaled momentum variables.
The operator T, GD T1 in the momentum representation can be written as

2q(- &tq.3 —q3&&&q.1 -q1& - -. a . a(p, q, IT, G, T, Ip, q, )=- dp,'dq, ' „„'T,(p„p,';E q, )T) ( -)p, p'lE —ql)
P'1 +01

T3(P3, —
K3q E —q3) 1( 4, Pl, E —q) )

P31(24+ ql
(4 8)

Making use of the partial-wave expansion for the off-shell two-body Coulomb amplitude

Ti(P(, Pi, E —qi)= 2 Q (2l+ 1}&(()/)(' f)I) fi (ff(qPi~q E qi)
7T

(4. 9)

and Eq. (4. 8) for (p, q, I T, GpTllp, q, ), we obtain from Eq. (4. 7)

lf (3) (1)
&p, f, ,q, IT, G, T, If, f. . .) = —,, F,,' (,) y, '

( )
g4+ Q1

—F (4. 10)

Now we are in position to evaluate Eq. (4. 5) and Eq. (4. 6) for &()f' 'I V(I (I)', ') by making use of either the
Sturmian-function or the Coulomb-function representations for the off-shell partial-wave Coulomb amplitude
given by Eqs. (3. 12) and (3.14), respectively.

We first consider the case with the Sturmian-function representation for f) . Substitution of Eq. (4. 10)
into Eq. (4. 5} yields, with the help of Eqs. (3.12), (3.17), and (3. 22), the bare-potential result

(g"IV, Iy"))= ' ' ' ' ' "'' F f(K)F ((x)y"' (~ e"')y"' (~ 2"))
31 I(4

(4. 11)

For the case where the initial two-body bound subsystem is in the ground state, Eq. (4. 11) reduces to

(qi, ~q (f(, &

v' ', q'(-)' (-,"'1' '
g ( )

( q"'P '
r»

( r ))31 ~4 1

P314&4 —~1
(4. 12)
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where, in the second writing, we have made use of the relation

(2) ~ (1) (42) ~ (3) (4. 13)

and Efls. (3. 13) and (3.15). Similarly in terms of the Coulomb functions, we obtain from Efl. (4.6), with
the help of E4is. (4. 10), (3. 14), and (3. 25), the result

(tl'l&114f ) ~ j2 .1/2 (~5 ~n )1'5 (~5)1'f (~4)Xn~f', (~5) Xnlf(~44fly f i
(4. 14)

which for the i =1s case reduces again to Efls. (4.4) and (4. 12).
This then concludes the demonstration of the equivalence of the two alternative methods for the determi-

nation of on-shell amplitudes. It is of interest to note that for this bare-potential case, the off-shell ap-
proach is actually more simple and has no integrals to be evaluated.
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