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A study has been made of the polarized-orbital method (POX) for electron-atom scatter-
ing. Within this framework, an exact calculation has been carried out for the electron-
helium-atom case. Our study confirms the importance of the second-order distortion-ex-
change terms, which provide a nonadiabatic effect. A study is made of the much-criticized
step function, and its inclusion within the POM framework is found to be not crucial. An
attempt is made to clear up some of the present confusion in the literature by distinguishing
between the POM and related methods.

I. INTRODUCTION

In the theoretical study of electron-atom scatter-
ing at low energies, one is faced with the essential
complexityof a many-body system. Even with pres-
ent-day high speed computers, first-principles
methods such as the variational approach or the
eigenfunction-expansion approach can become im-
practicable, and one must rely on the art of approx-
imation-the search for a general approximate
method that is able to yield, with moderate compu-
tational effort, reasonably good results for a large
class of atoms.

In a study of low-energy electron-oxygen-atom
scattering, Temkin' in 1957 introduced the method
of polarized orbitals, a method which is similar in
concept to the method of perturbed stationary
states for atom-atom scattering. The ansatz for
the polarized-orbital method (POM) was more
clearly defined in the work of Temkin and Lamkin, 3

where it was applied to electron-hydrogen scatter-
ing. The resulting s-wave phase shifts and the P-
wave phase shifts as corrected by Sloan agree
strikingly well with the standard reference, the
variational calculations of Schwartz' and Armstead,
and the d-wave phase shifts are in reasonable
agreement with the variational calculation of Gaili-
tis as well. Because of its relative computational
simplicity, the POM results are all the more re-
markable when compared with the results of much
more complicated calculations such as the close-
coupling approximation. A large number of calcu-
lations for electron-atom scattering have subse-
quently appeared in the literature under the broad
heading of polarized-orbital-method calculation.
Recently, certain questions and criticisms have
been raised on the validity of the POM, for example,
by Mittleman and Peacher. ' Part of the criticism

is formal, that Temkin's ansatz cannot be derived
in the framework of the variational principle. Part
of the criticism is more on the practical side, that
the step function c(r„r,) used in Temkin's ansatz
gives trouble and renders the method "nonpredic-
tive. "" While it is difficult at present to "derive"
the POM prescription in an aesthetically pleasing
way, it must be recognized the the POM ansatz is
fundamentally based on physical reasonableness
rather than a first-principles derivation. As such,
the merit of the method must so be judged by the
results it produces. Perhaps part of the current
confusion with the method could be due to the fact
that the large number of existing calculations under
the heading of POM actually contain siginficant
variations from Temkin's original ansatz and from
each other. In fact, in spite of the large number
of calculations, the PQM in its original prescription
has been tested only in two cases: in the electron-
hydrogen calculation of Temkin and Lamkin and
Sloan, which is exact within the PQM framework,
and in the electron-oxygen scattering calculation
of Henry, "where the dominant terms within the
POM framework are included. Thus, to truly as-
sess the POM with regard to its usefulness and
range of validity, it is necessary to consider "faith-
ful" applications of the POM to cases other than the
two just mentioned.

This work is the first part of a systematic study
in this direction. Its purpose is twofold. First,
we report the results of our application of the POM
to the case of electron-helium scattering, rigorous-
ly adhering to the original ansatz of Temkin. In
particular, we examine two essential points of the
method: (i) the importance of the second-order ex-
change term (the distortion exchange), and (ii) the
real effect of the much criticized step function
e(r„r,) introduced by Temkin in his original ansatz
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[ff E] e(Z,—. . .ZN; Z„„)-O, (2. 1)

Second, we attempt to clear up some of the present
confusion in the literature by distinguishing between
the POM and related methods.

The contents of the following sections are as fol-
lows: In Sec. II, the polarized-orbital method with
Temkin's original ansatz is reviewed. In addition,
the essential features of methods related to, but
differing from, the POM are elicited. In Sec. III,
the POM is applied to electron-helium scattering
at low energies. Results for phase shifts and cross
sections are presented. In Sec. IV we discuss the
results.

II. THEORY

A. Review of Polarized~bita) Method (POM)

For an electron scattering from an atom, the
Schrodinger equation for the wave function 4' of the
entire system can be written as

1
@0(zl' ' ZN) IN f

farl(zl) "~ rtr N(zl)

$1(Z1) ~ rtr»(ZN)

(2. 6)

where the assumption that the atomic distortion is
caused mainly by the presence of the perturbing
electron in the region outside the atomic electrons
is ensured by the introduction of the step function

for an K-electron atom, is assumed to be adiabati-
cally Perturbed by the incoming electron. The
perturbation, being the electrostatic repulsion be-
tween the scattering and atomic electrons, is dipole
agan oximated and assumed to be zero ~hen the par-
ticle is "inside" the atom:

g
o(rl ~ ~ ~ rN, rN 1) Z 2 Pl(cos& N 1)s(ri, rN 1)

~=i rN+1

(2.7)

where z, denotes the space and spin coordinates
(r, o) of the N-electron atom and incident electron.

The total Hamiltonian

&(r„r»„)= 1, r, & r„.,
(2. 8)

H-H~+&ar+i + VN.&, ~ (2. 2)
With these restrictions on the expression for the
perturbation, the distorted atomic wave function

is composed of H&, the Hamiltonian of the atom
K„.» the kinetic-energy operator for the incident
electron, and V„,», the potential energy due to
the Coulomb interaction of the incident electron with
the atomic electrons and the atomic nucleus. The
total energy

b (Zl ~ ~ ZN r Z»~1)—

41(z N r N+1)

4»(Z1 N 1)

( NN ZrN+1)

(2 &)

E = E~+kg, g
2 (2. 2)

consists of the initial atomic energy E& and the in-
cident electron's energy k &.&.

' The prescription
that constitutes the POM is given below. "

1. Eorm of Trial Wave Eunction

The trial wave function

1(Z1. . .2„;Z„,1) =A[ [O(Z1. .. Z„)

+ 4' (zl ~ z» ' z».1)]rb(z». , ) ) (2. 4)

for the solution of Efl. (2. 1) is the antisymmetrized
product of rtr(z». ,), the electron wave function de-
scribing the scattering process, and

4 (Zl ~ ~ ~ ZN r ZN+1) $0(zl ~ ~ ~ ZN)+ 4(Z1' ~ ~ ZNr Z»~1)

(2. 5)

the distorted (polarized) atomic wave function con-
sisting of the ground-state atomic wave function C 0
and a correction function 4'~"' due to the polariza-
tion of the atomic orbitals caused by the presence
of the incident electron.

2. Perturbation (Polarization)of Atomic Orbitals

The unperturbed ground atomic state, charac-
terized by a Hartree-Fock-Slater determinant

is determined using Hartree-Fock perturbation
theory ' '

The spatial part of the jth atomic orbital P&, con-
tained in the ground atomic state 40, is perturbed
(polarized) into'

@i(r, r». 1) = Ci(r )+ xi(r, r„l)

to first order, so that

4 (Zl' ~ 'ZNr Zl}»(gaol )

1(zl)rtr2(zl) ~ ' ' Xi(zlr z»,1) ~ ~ ~ rtr»(zl)

4'1(z») b2(z») ' ' ' xi(z»r z»+1) ' ' ' rtr N(z»)

where the jth term in the sum is a determinant
similar to 40 but differing in that the jth column has
the ith element replaced by X&(z„z»,1). The first-
order correction to the jth atomic orbital can be
written in the form'

ft.,f, 1,'(r)
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c„',~-,,
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Y;.;(@)Y, , ;(&„,), (2. 12)
N+1

I

where the constants C'„~,' are given by

1/2
j ) ( 1)m1 -m1'. 1 16& 2l1 + I

3 2l, +1

x(11&00~ I &0)(I I& m& —m&m&
~
l&m&) (2.13)

and the radial functions U„, , (r) satisfy Stern-
heimer's equations

(
d , ~ „,.. . (r))U. . .;(r)=rU„, (r), (2. 14)

with the potential V„.. . (r) given by

I 1(l] + I} l-1(l1+ 1)
U!' (~)

n111 (g r
U ( )+

fff lg

Under the influence of the dipole perturbation the
ground-state orbital characterized by the radial
function U„, (r) can be thought of as undergoing
virtual transitions to the two states characterized
by l~=l~ +1.

In the equation that y( r, r„,,) satisfies, the pres-
ence of the step function z(r, r„.,) gives rise to the
& function containing terms' discovered by Sloan:

(
'(7 2

—v„+ y&(r, r„,1)= -e(r, r„,1) z p1(cos8, „„,1)(j)&(r)r N+1

U„, „, () d

tj
~f

- pc(
) d F11

5(r —r~, )+ 2 "' —U„, , (r Z
— Y, m (Q„)Y1 m m'(0„,1} . (2.16)dr 9 ) ) g rN1 & &

" ' f

3. Ansatz: the Scattering Equation

The equation of motion of the scattering-electron's
wave function (j) ( r„,,) is obtained by projecting on
the left-hand side of Eq. (2. 1) by the unperturbed
atomic wave function 4 ~~ and integrating out the
atomic coordinates:

f dz, . ~ dzn 4'o (Z1 ~ ~ z„)[& -&] +,(z1 ~ z» z Nr1) = 0 .

(2. 17)

In the resulting equation for (j)(r„.,), one has four
terms in the effective potential. They are the stat-
ic, static-exchange, polarization, and polarization-
exchange potentials. In a proper polarized-orbital
calculation, all terms must be included.

To summarize, the essential features of the POM
are expression (2.4) for the trial function

+t(Z1 ZN t ZNr1)

=A {[4)o(Z1 ~ ' Zy)+ 4) (Z1 ~ ~ ZN r ZNr1)](j)(zan+1) J

the dipole approximation (2. 7)

1)(r1' ' 'rNi rn 1}

2rjZ z Pj(cose, „1)&(1„1, N 1)r N+1

and the scattering ansatz (2.17)

f «1"'«zc'o(Z1 "zn)[&-&]@«Z1 ZN zz,1)=0.
B. Variations on POM

A large number of calculations that have been
referred to as POM calculations in the literature

l

actually contain important deviations from the above
prescription. These deviations may be one or more
of the following:

a. Omission of distortion exchange terms. The
distortion-exchange terms in general add more dif-
ficulty in calculation and have, for this reason, been
omitted by a large number of authors, a few of
whom we cite here. ' ' This approximation should
properly be called the adiabatic-exchange (AE) ap-
proximation. With this omission the resulting ef-
fective potential, except for the static-exchange
term, is local in character and includes a Coulomb
interaction term and a polarization potential. As
we shall see, the deletion of polarization-exchange
terms gives rise to phase-shift and cross-section
curves which are significantly shifted with respect
to those resulting from application of the exact
POM.

b. Inclusion of additional multipole terms in
X(r, r„,,). Instead of treating only the dipole com-
ponent of the adiabatic distortion such as was done
in the dipole approximation [Eq. (2.7)], one may
include the monopole or quadrupole distortion
terms as well. This has been done by Garret in
the study of the scattering of slow electrons by
lithium and sodium. The Dalgarno-Lynn polariza-
tion potential is used by Callaway et al. , ' who al-
low for the effects of higher multipoles in the elec-
tron-hydrogen and electron-helium cases. How-
ever, it has been pointed out that the inclusion of
other multipole terms may not be desirable because
of the nonadiabatic condition in the atomic scatter-
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ing processes.
c. Variationally determined polarization poten-

tial. Instead of using an adiabatic distortion func-
tion X(r, r„,~) to produce a polarization potential,
a suitably parametrized function can be introduced
to allow variation of a simple form of the atomic
wave function so that the energy of the atom is a
minimum. For the case where positrons are
scattered by hydrogen, Stone ' allowed the 1s func-
tion 4 „(r) to distort into 4„(r)+P(r„„)4'z(, (r ), with

p(r„,,) varied to minimize the atomic energy. He
utilized the same procedure to study not only the
scattering of positrons by hydrogen, but the scat-
tering of electrons by lithium as well.

d. Modification of step function. A step function
was introduced in Eq. (2. 7) by Temkin' to express
the idea that during the scattering process atomic
distortion is appreciable only when the incoming
electron does not actually penetrate the atom. In
Eq. (2. 16), we solve only for the ease when r & r„,„
since the step function occurring in Eq. (2.12)
causes X(r, r„„)to be zero for r &r„, Some au-
thors18, 22, m prefer to omit the step function and
solve Eq. (2. 16) for both regions-r &r„,, as well as
r &r„„. In this case Sloan terms do not occur. We
call this the modified-polarized-orbital method
(MPOM) and will examine it explicitly in this paper
in two special cases.

Still others have replaced the step function by a
functional form to be varied for optimum results,
as in the work of Oberoi and Callaway or Mittle-
man and Peacher.

e. Variationally based scattering equation. In
the work of Mittleman and Peacher, ' they set the
polarized-orbital method on a variational basis by
projecting on the left-hand side of Eq. (2. 17) by
40(z f z)(( ) + C' "(z, . z„;z„„)instead of

Cgz, . z„). That is, they have

f dz, dz„[40(z, . . . z„)+4 (z, ' ' z)(() zs+i)]

x(ff —El go(z, z„;z„,,) = 0 .
It may be pointed out that their resulting equation
is actually identical to that of the extended-polariza-
tion method20 proposed by us earlier. It can be
shown'0 that the essential difference of this varia-
tionally based equation is the addition of a new

term in the effective potential of the form
JI v, i(r, r, ) I 'd'r.

Mittleman and Peacher introduced a functional
form to replace the step function. By varying the
functional form, they obtained widely varying re-
sults in their phase shifts; and from this they con-
cluded that the POM is nonpredictive. Actually,
the trouble comes from this additional term only.
This can be seen in a simple way as follows. Be-
cause of the gradient operator, this term will yield
a large value whenever there exists a "kink" in the
distortion wave function g. In fact, this additional
effective potential will become infinite if the g has
a discontinuity in r, as in the case of the step func-
tion. Thus we see the source of Mittleman and
Peacher's complaint lies only in this term, which
simply does not exist in the proper PQM prescrip-
tion.

III ~ ELECTRON-HELIUM SCATTERING

A. POM Calculation

The exact PQM prescription as outlined in Sec.
II is applied to electron-helium scattering in a
straightforward manner. The details are given in
Appendix A and we give here the resulting equation
for the radial wave function R, (r) for the fth partial
wave of the scattered electrons:

(
d l(E+ 1) 2f)f—

d z + 2
——+N V,(r~)+N ~ V(, (r~) —k R, (rs) = U„(r,) —(- z„+k ) 5,0 U„(r)R, (r) dr

3 3 3
0

U (r)R(r)dr -6 — U ( )
" ' 2 "-' ' " ' +-U (r)l+1 1s l 11 3 1s-p 3 d 2+

0 r& r3 r3 J
2 +3 1s p 3

U„(r~) d 2 r :2 2R((rs) —
2

5(~U~, (rq) Q U~, (r)R, (r)dr —U~, q(rs) —
2

(-e~, +k )5, qr3 dr 3 3
3

U,.(r)R, (r) „2' drrl, , I
- U„(r)R, (r) l+1 „& "U„(r)R,(r)

2l+ 1 2l —1 r'+ 2l+ 1 2l+ 3 r'+
1'3 F3

U„(~,&(~,. " ((.b)&', (r&)(,(r&zr- —
(&

' ~ I
"("')"(") + r) ( &~ - (")z„) () (&

r2'F 1
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TABLE I. Electron-helium parti" 1-wave phase shifts (in rad).

Energy
(eV) $0

Static
exchange

~i

Adiabatic
exchange

Q f

Polarized
orbitals

qf

0R

0. 10
0. 197
0. 25
0. 30
0. 40
0. 50
0. 60
0. 70
0. 75
0. 80
1.00
1.10
1.25
l. 50
1.75
2. 00

0
0. 14
0. 50
0. 85
1.22
2. 18
3.40
4. 90
6. 66
7. 65
8. 70

13~ 60
16.46
21.25
30. 60
41.65
54. 40

1.482
2. 9937
2. 8595
2. 7757
2. 7049
2. 5673
2. 4358
2. 3113
2. 1943
2. 1388
2. 0852
1.8901
1.8037
1.6868
1.5220
1.3883
1.2789

0. 00042
0. 002 89
0. 006 27
0. 0106
0. 0236
0. 0425
0. 066 7
0. 0947
0. 1095
0. 1246
0. 183 1
0.2093
0.243 0
0. 2843
0.3105
0 ~ 326 7

0.-000 00
0. 000 01
0. 000 04
0. 00009
0. 00034
0. 00092
0. 002 01
0. 003 76
0. 004 92
0. 006 27
0. 013 6
0. 0184
0. 0266
0.0419
0. 0579
0. 0735

1.121
3.0192
2. 8978
2. 8193
2. 7520
2. 6196
2. 4918
2. 3701
2. 2556
2. 2011
2. 1485
l. 9571
1.8722
l. 7572
1.5943
1.4610
1.3507

0. 003 35
0. 013 1
0. 0229
0. 033 8
0. 0617
0. 0971
0. 1375
0. 1803
0.2015
0. 2223
0.295 9
0.3254
0.3600
0.3967
0.4152
0.4232

0. 00044
0. 00164
0. 002 81
0. 004 07
0. 00732
0. 0116
0. 0170
0. 0234
0.0270
0. 0307
0.0477
0. 0570
0. 0712
0.0943
0. 1152
0. 1333

1.110
3.0203
2. 8997
2. 8216
2. 7546
2 ~ 6223
2. 4942
2. 3719
2. 2564
2.2012
2. 1479
1.9530
1.8662
1.7483
1.5811
1.4445
1.3321

0. 003 32
0. 012 8
0. 022 4
0. 032 7
0.0594
0. 0926
0. 1302
0. 1696
0. 189 1
0.208 1
0.274 9
0.3016
0.333 2
0.367 1
0.385 2
0.3941

0. 00044
0. 001 64
0.002 80
0.004 05
0. 007 27
0. 0115
0. 016 7
0. 022 8
0.0262
0. 029 8
0. 045 8
0. 0544
0. 067 6
0.0890
0. 1086
0. 125 6

~A = 0 entries are scattering lengths.

The terms on the left-hand side of the equation are,
respectively, thekinetic-energyoperator term, the
centrifugal-barrier term, the nuclear coulomb
term, the static-potential term, the direct polariza-
tion potential and the incident-electron energy term.
On the right-hand side of the equation, terms asso-
ciated with the first large parentheses are the first-
order static exchange terms while those associated
with the first curly brackets are the Sloan terms.
The other terms are the second-order distortion-
exchange contributions which constitute the unique
feature of the POM. The 1s radial wave function
U~ used in this calculation is the Hartree-Fock
helium wave function of Roothaan, Sachs, and
Weiss. ' The dipole distortion U„~ satisfies the

I I
f

I I I ~ $ I I I ~
/ I I I ~

Sternheimer equation

(3.2)

The calculation is exact and no deletions are
made in Eqs. (3.1) and (3.2).

B. Comparison of POM with MPOM

In a study of the effect of the step function c, we
have compared, in both the e -H and e -He cases,
the PQM results with those of the MPQM in which
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FIG. 1. s-wave phase shifts for the elastic scattering
of electrons by helium.
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EezwcV («)
FIG. 2. P-wave phase shifts for the elastic scattering

of electrons by helium.
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FIG. 4. Total elastic scattering cross section for the
scattering of electrons by helium.
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FIG. 3. d-wave phase shifts for the elastic scattering
of electrons by helium.

We first present our results for the case of
e -He scattering. The polarized-orbital-method
prescription, as discussed in Sec. III, has been
rigorously followed. The phase shifts for s, P,
and d waves are tabulated in Table I and displayed
in Figs. 1-3. For comparison we give the static-
exchange (SE) results and the adiabatic-exchange
(AE) results Also inc. luded is a theoretical fit of
experimental data, by Bransden and McDowell
(BM). The total-cross-section curves are given
in Fig. 4, where the experimental curve of Golden
and Bandel is also presented.

The dominant characteristics of the POM calcu-
lations are readily apparent. The PQM curves in
general lie between the SE curves and the AE
curves. A variational lower bound is provided in
the SE case, but polarization effects are not taken
into account, while the adiabatic long-range poten-
tial of the AE ease tends to provide too much attrac-

the step function is not employed.
For the e -H case, the atomic distortion function

U„.~ can be obtained analytically~9 and the calcula, -
tions are exact. For the e -He ease, we have
employed a slight approximation such that the func-
tion U„~ becomes analytic. This small approxi-
mation is further justified by the fact that the POM
result with this approximation is nearly identical
to the exact POM calculation and that we are inter-
ested in the difference between the PQM and the
MPOM results. Details of the approximation,
known as the SCF-hydrogenic approximation, are
given in Appendix B. In Appendix C we give com-
ments pertinent to the numerical methods employed.

IV. RESULTS AND DISCUSS10N

tion. Since the main difference between the POM
and AE calculations comes from the second-order
distortion-exchange term, we conclude, as in the
case of e -H scattering, that the second-order ex-
change term is important and provides a nonadiaba-
tic effect, shifting from the AE results toward the
SE results.

On the whole, the PQM result for the e -He case
agrees quite well with presently available experi-
mental data. It also compares well with other theo-
retical methods. Thus our study supports the use-
fulness of the PQM as a general approximate meth-
od for obtaining relatively accurate phase shifts
with a minimum effort. Since in the e -He case
the s-wave phase shift is rather insensitive to the
various theoretical methods, the higher partial waves
a,re more important in distinguishing between the
different methods. More accurate experiments of
the differential-cross-section type are needed in
this regard.

We now turn to the question of the "predictiveness"
of the POM calculation. As explained in Sec. II B,

') zs

&z,o
) I

I

y to(eV)

FlG. 5. Comparison of POM and MPOMs-wave phase
shifts for the elastic scattering of electrons by hydrogen.
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the widely varying results obtained by Mittleman
and Peacher come from an additional term in the
effective potential which simply does not arise in
the proper POM ansatz. However, it is still of in-
terest to examine the effect of the step function
soithin the POM prescription. In this direction we
have made two MPOM calculations, which differ
from the POM only in that the step function is not
used in the distortion function y. For the e -He
case the MPOM phase-shift values differ so little
from those of the POM that they are not discernible
in the figures. The MPOM calculation for the e -H
case is illustrated in Fig. 5. Here the POM and
MPOM are slightly different and the POM results
seem to be preferred. These results suggest that
the effect of the step function in the POM is not
really severe.

In Sec. IIB we discussed the distinguishing fea-
tures of the wide range of approximate methods
which contain significant deviations from the POM
but are nevertheless often referred to under the
same heading in the literature. For illustration we
show the "POM" calculation of Williamson and
McDowell' in Figs. 2 and 3. Thus, careful differ-
entiation must be exercised in surveying the litera-
ture, especially when assessing the validity of the
POM itself.

Regarding the theoretical justification of Temkin s
method, it must be made clear that no one has yet
provided for the POM a derivation resting upon first
principles. Rather, the method remains a "pre-

scription" as we have referred to it throughout this
paper. Further investigation is needed along two
fronts. Attempts, such as the one by Mittleman
and Peacher, to justify it on a formal basis should
be continued. However, to provide the impetus for
such attempts, one must explore the range of valid-
ity of the POM in a number of applications.

Our work, along with the e -H result, indicates
that the second-order distortion-exchange term con-
tributes significantly. Thus a more stringent test
on the POM would be the application to highly polar-
izable atoms. A POM calculation on e -Li is pres-
ently being carried out which should further help in
assessing the usefulness of the POM as a general
tool for electron-atom scattering calculations.

APPENDIX A: ELECTRON-HELIUM SCATTERING
(EXACT POM PRESCRIPTION)

For helium the unperturbed ground state is taken
to be the self-consistent restricted Hartree-Fock-
Slater determinant

41 ( 1) (a1) 41 (r2)o(a2)

~2! 4„(r,)p(a, ) p„(r,)p(a, )

(Al)
where Q» is the 1s helium ground-state orbital and
n and P are spin functions. Under the influence of
the incoming (polarizing) electron, the atomic or-
bitals are polarized so that the new atomic state
to first order is

1 g(r„rs)a(a, ) P„(rm)o. (a&) 1 (f)!,(r, )a.(a~)
» ~ @o !) ~ )( 2! X(r» rs)p(az) Q»(r), )p(a!,) v 2! (t)„(r!)p(a!)

X(r» r~)&(a~)
}f(r» rg)p(a )

The orbital distortion !!(r»rz) satisfies

[-V, —4/r~+ V, (r, ) —6„]X( r» r~) = —(.'(r» rz) (2rgrz) P, (cos8~) (t) u( r3)

rr„.,(r,) d
(

.

)
()(rr)d , -(,

)
)*,(cos()„))

( )
3 dr 3 2 + r dr is~P 3 1/2 2

3 3 3 g r2

and has a form identical with that for the case of
electron-hydrogen scatter ing2~

E(r3, r~) „U,(r3) Pf( 8c»o)s
g&r3, r2) =—

$ /2 y (A4
r2 3 7r

w here U„~(r) satisfies Sternheimer's equation

—
d (. +U +p U„!,(r)=rU„(r) . (A5)
d U" (r) 2

dr U» r)
with U„(r) taken to be the 1s radial wave function
for helium provided by Roothaan, Sachs, and
Weiss. ~' Their ls energy is denoted by e„. V,(r,)
is defined in Eq. (A10). It should be noted that
Eqs. (A3) and (2. 16) are equivalent~' since, for the

case of helium, Ster&'heimer's approximation is
exact. In fact, Eq. (A3) is the complete Hartree-
Fock 1st-order' perturbation equation within the
constraint of our dipole approximation except for
the deletion of a single intrashell 1s-1s correlation
term.

To obtain the desired scattering equation, one
substitutes the expressions for the total Hamilto-
nian

4 4 4 2 2 20= —Vg- V2- V ——————+3
i I

pr1 r2 r3 r12
+

r13
+

r23

(Ae)
the total energy
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E=E~+4

221 (41 (rf }41 (r2)(2/312)4 1 (rf ) 4 «(r2)) 1,2+ ~

and the trial wave function

4, (z„z„z,) = [4f'(z„zf; z, ) y(z3)]

into the ansatz (2. 1V). One finds that the scattering
(AV) equation satisfied by $(r3) is

[- &3 —4/r 3+ 2(p f (r f)(2/r 13)@„(r1)) 1+2( 4f„(r 1)( 2/r 13) x(r„r 3)) 1—0 ] g(r3) = (zf ff )(Qf (r2) p(r2))2&„(r3)

+(Q„(rz)(2/r») 4 (r2)) 2 djd«(r3) + (e« —k ) (P„(r2)
~
y(r„r2) P(r2)) 2+(Q„(r2)

~

—&(r„r 2)( 2r 3/r, 2)

x P, (cos832) p(r2)}2 Q«(r3) (+jdf(r f }Q„(r2) (2/3 13 y(r„r2) Q(rz)) f 2 4f„(r3)

+(ft)r2) Af (rf )(2/3 12)X(rf r2) 4(r2))1,2 4'ld(r3) (Afd(r2) I

U1, ( ) d
C( c ) S C(c, —c, ) d

Cd („) ac(ccsccs))
~

d(c )) (A9)

2V, (r2) =(4fs(rf)(2/rfz) Qf (I f)),

and the static-exchange terms

(zf, —&')(Af, (rz)
~

4(r2)& Af, (r3)

(Alo)

+(4 f,(r2)(2/323) y(r2)) 4 „(r3),

By retaining in the effective potential only the
direct-Coulomb static term3~

I

framework of this approximation that we will com-
pare the POM and MPOM in the electron-helium
scattering case.

1. POM PrescriPtion

With the aim of obtaining an atomic distortion
function jf(r, R) in the SCF hydrogenic approxima-
tion, we transform Eq. (A5) by introducing a func-
tion f such that

21',(32) =2(4«(1)(2/212)y(r„r2)) (A11)

one has the static-exchange approximation. Static-
exchange phase shifts were calculated in 1953 by
Morse and Allis. " Inclusion of the polarization-
potential term'2

U„,(r) =f.(r) U,.(~),
whereby Sternheimer's equation becomes

d Uf, (r) d 2—„~ —2 "( )
—„+~ f(r) =3 .

(B1)

(B2)

results in the adiabatic-exchange approximation.
Further inclusion of the Sloan terms and the re-
maining distortion-exchange terms leaves one with
what is properly called the polarized-orbital meth-
od (POM).

By expressing P(r) as

y(r)= Z 2 ' r, (n),
&=O fft -&

(A12)

a partial-wave analysis of Eq. (AQ) results in the
radial equation (3. 1).

Note that the Temkin-Sloan ' electron-hydrogen
equation for the triplet case can be recovered by
setting X= 1 and deleting the last two terms in
large parentheses on the right. For the singlet
case the entire right-hand side must change sign
also and for the electron-helium case N = 2.

APPENDIX 8: SCF HYDROGENIC APPROXIMATION

This approximation ' constitutes a slight mod-
ification which yields very similar results with
greater simplicity by providing an analytic solution
for U„2(r), and thus making numerical solution of
Sternheimer's equation unnecessary. It is in the

whereupon

U„.2(r) = [U„(r)/2z2 ] (-,' zr2+ r) . (B4)

Z is chosen to give the polarizability of 1.395 in
accordance with the experimental value provided
by Johnston, Oudemans, and Cole. That this val-
ue differs from the Sternheimer value3' of 1.487
is of no consequence in the particular comparative
study we are concerned with. It is interesting to
note that in Figs. 1-3 the POM curves with and
without the SCF hydrogenic approximation coincide

The approximation of this section is to let U„(3)/
U„(r) =- z+ 1/r, our justificationof the introduction
of the screening parameter z having been demon-
strated previously by one of us (LaBahn}. 33 Since
this approximation is exact for the electron-hydro-
gen scattering problem (with z = 1) and since in
Eq. (A14) as well as elsewhere the proper SCF
orbital is still retained, it is called the SCF hydro-
genic approximation.

We then have as an analytic solution2 for f in the
POM prescription

f(r) =(1/2z') (-.'zr'+~), ~&f1
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to the accuracy of the graphs (consequently only
the POM results are shown).

The equation now satisfied by y is the same as
Eq. (A3) with the addition to the right-hand side
of a so-called logarithmic-derivative-correction
(LDC) term

e(rm, rs) 2T', , 1- 2 z U»(r~)
y -phr3 J

(zr, + 1) .
( ) U», (r, ) P,(cose„)

( )+ zr la 3 r (4v) 1/2

This causes the addition to the right-hand side of
the radial equation (3. I) of the expression

2 1 zr3+ 1
z z U„(r3)+ z U„(rs3 zr3 z r3

x U„rr3R r dr 86X~

to account for the fact that the SCF hydrogenic ap-
proximation is used. Note that both of the above
expressions reduce to zero if U„(r) is the radial
function for the hydrogen atom.

2. Modified Polarized O-rbital Method (MPOM)

In this case we consider both of the regions r & R
and r &R instead of setting y(r, R) =0 for r &R by
use of the step function e(r, R}. The POM is now

modified in the following manner.
In Eq. (A3), the Sloan term is omitted since that

is due solely to the operation of V on the step func-
tion. The form of v is the same as in Eq. (A4) ex-
cept that e is replaced by unity. Equation (B3} is
now replaced with expressions found by Reeh and
also by Bethe. Reeh found solutions for r &R and
r &R and then matched them by mixing in appropri-
ate multiples of the two independent homogeneous
solutions. We have

1 3(zR+ 1) z z e""-1 2
2

(zr)
z(zR)' 4 ' (zr)'

f(r) = — [1—(zR)' —e (zR+1) ] z+ —+2 + z+ —,r&R
2 zR 1 2

z 4(zR)' zr zr 2 zr zr

(B7)

U, ~(r) for each region, inside and out, is specified by
Eq. (Bl). For the electron-hydrogen case, where
z = 1, Eq. (B7)is exact and yields for V~(r) the so-
called Bethe potential. ' Callaway ' compares this
form of V~(r) with that obtained by use of Eq. (B3).

In Eq. (A9), e(r„rz) is rePlaced by unity and the
Sloan term is dropped. A radial equation is ob-
tained after carrying out the integration in Eq.
(A9) just as Eq. (3. 1) follows from Eq. (A9). It
contains an LDC term different from that of (B6).

APPENDIX C: NUMERICAL PROCEDURE

Sternheimer's equation [(A5)] for the electron-
helium case was solved numerically by the use of
the procedure outlined by Sternheimer. 4 An out-
ward integration routine was fed starting values
which were varied appropriately until a well-be-
haved solution was obtained. Equation (3.1) was
solved by use of the noniterative method described
by Temkin and modified by Sloan. Mesh sizes used
were 0.01 for r& 0.2, 0. 02 for 0. 2&r & 2, and
0.03 for r & 2. Integrations were carried out to
r = 20. All calculations were performed on an IBM
360 computer. Two exceptions to Temkin's pro-

I

cedure are listed below. The orthogonality term
f"U„(r)RO(r) dr is set equal to zero in the static-
exchange and polarized-orbital cases. That this
is a rigorous result and not an approximation can
be seen by multiplying the radial equation on the
left by U„(r,} and integrating over rz. Retention
of the orthogonality term allows Ro to contain mul-
tiples of spurious solutions which increase numer-
ical errors in the asymptotic form of Ro and hence
in resulting phase shifts. 4~ For example, in the
static-exchange case, if P(r) is a solution, then
Q(r) + cP„(r) is also a solution for any constant c.
"Forcing" orthogonality by deleting the orthogo-
nality term gives the best results by ensuring that
c = 0 instead of some arbitrary value generated by
random errors occurring in the numerical analysis
used to solve the scattering equation.

To account for the fact that the long-range polar-
ization potential is still appreciable at the limits
of integration, the Levy-Keller method is used
as explained previously by LaBahn and Callaway
to correct phase shifts and scattering lengths for
a truncation necessitated by computational consid-
erations.
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