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A distorted-wave (DW) formulation with exchange is given for the electron impact excitation
of the rare gases from {nop) to (np) nl configurations. A practical form employing the pure
I.S-coupling scheme is used inconjunctionwith the phenomenologically determined independent-
particle model (IPM) and the DW potentials of real central forms to compute cross sections
averaged over fine structures. Numerical work is carried out for Ne 2p 3s and Ar 3p 4s
electron impact excitations. The distorted generalized oscillator strengths (DGOS), which
converge to the generalized oscillator strengths (GOS) in the limit of the Born approximation,
as well as integrated cross sections, are obtained over a wide range of energies, so that the
systematic variation of the cross sections in relation to the results of the Born approximation
can be studied. The results of the angular distributions at lower energies are in reasonable agree-
ment with the data by Nicoll and Mohr.

I. INTRODUCTION

The electron impact excitation of the rare gases
has been studied in the Born approximation by
Ganas and Green, based upon the analytic atomic
IPM of Green, Sellin, a.nd Zachor. '~ In order to
extend their work to lower-energy regions, it is
necessary to investigate the effects of distortion
as well as exchange contributions. Vfe study these
effects using the DW approximation based upon the
same IPM and the same DVf potential that has been
applied to the elastic scattering analysis. '

Very few D% calculations have been reported for
atoms heavier than hydrogen and helium, with the

exception of the work by Massey and Mohr on the
low-energy data of Ne and Ar obtained by Nicoll
and Mohr. " If the excitation cross sections of
individual levels in a, fine structure were required,
one would have to first obtain Hartree-Pock (HF)
atomic wave functions and HF potentials of the
initial and final states. A detailed D%' formulation
appropriate for such a computation has been pro-
posed recently by Shelton and Leherisseye with
particular emphasis on a transition from the I8-
coupled ground state to a Z&l-coupled excited state.

In this work, however, we are interested pri-
marily in obtaining cross sections averaged over
an energy interval whose width is of the order of
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the level splitting of the fine structure. Such cross
sections would be obtained experimentally either
by taking the corresponding average of fine resolu-
tion measurements or by using an incident electron
beam of "poor" energy resolution. The concept
of cross sections averaged over many fine res-
onances is familiar in the nuclear optical model
and constitutes the basis of that model. 7 Although
the states involved here are not resonances but
states below the ionization threshold, we employ
a similar averaging process. Accordingly, we
compute averaged cross sections directly based
upon the IPM and the optical model using model
potentials determined phenomenologieally. ' Such
an approach is not only a useful one but is, ' in fact,
the only practical course if one wants to obtain
reliable estimates of hundreds of cross sections
for use in electron-energy deposition studies.

In Sec. II, the DW formulation appropriate to our
approach is briefly discussed, and the choice of the
distorting potentials for the direct and exchange
amplitudes is made. DGOS is defined such that it
approaches the GOS in the limit of the Born approxi-
mation. In Sec. III, the detailed formulas of reac-
tion amplitudes and cross sections of the excitation
from (noP) to (noP}'nl„configurations for both
singlet and triplet final states are presented assum-
ing the pure LS-coupling scheme of the atomic wave
functions. The results of numerical calculations
for the Ne 2p-3s and Ar 3p-4s excitations are
provided in Sec. IV in terms of the DGOS and in-
tegrated cross sections. Comparisons are made
with the results of the Born approximation with ap-
propriate discussions. We chose these reactions
partly because of the choice of the LS-coupling
scheme made for the atomic wave functions. The
formula. tion, however, should be applicable for
other excitations as well as for heavier rare-gas
atoms, whenever we intend to calculate average
cross sections. The main reson for choosing these
reactions is that there are experimental data avail-
able for comparison with the theory. Further-
more, the comparison is more meaningful since
these reactions produce simple but pronounced dif-
fraction patterns which are necessary to test the
DW angular distributions, unlike the results for
helium or higher excitations in Ne and Ar.

2 Z —1
H(e" —1)+ 1

(2. 1)

In the study of generalized oscillator strengths of
the rare gases, Ganas and Green found sets of

II. METHOD OF ANALYSIS

The ground- and excited-state atomic wave func-
tions $0 and g„are constructed from single-electron
wave functions bound in the IPM potential of the
for m' (in a. u. )

4»U) = e'~'~ o '(j), (2. 2)

where k0 is the initial momentum and o ' is the spin
eigenfunction. We also denote the ground-state
atomic wave function by go(j), indicating that the
jth electron is the projectile and hence is not pres-
ent in $0, and the total wave function by 4',"(j), in
which only the jth electron has an incoming plane
wave in the incident channel but all electrons have
outgoing spherical waves in all open channels, and
similarly for P„, g„, and 4'„' for the final state,
where 4'„' now has the incoming boundary condition.
Then the exact amplitude for the direct process in
which electron 0 comes in and is scattered out in-
elastically by exciting the atom from the (nop)' to
the (noP)'nl„configuration is proportional to M,
where

~' = &4.(0)4.(0)
~
& o, + U(o)

~

@o"(o)&
$00

(2. 3a)

= &+'„-'(0)[ P „+U(0)
~ y, (O)y, (0))

jSO
(2. 3b}

in the post- and prior-interaction forms, respec-
tively. In (2. 3), U(j) is the nuclear Coulomb in-
teraction acting upon the jth electron, and u, &

is
the Coulomb interaction between the ith and the
jth electrons, and we have ignored magnetic inter-
actions that might exist. The sum g vo; is over all
the (noP)8 electrons in the ground-state atom, which
will be denoted by 1, 2, . . . , 6.

The amplitude for the exchange process in which
the incident electron 0 drops into the nl„orbit while
electron 1 is knocked out from the n0p orbit is pro-
portional to M, where

m'=(q„(i)y„(1)~ Z ~„+U(I)~+,"(0)) (2. 4a.)

= (+„'-'(I)
~
Z v„+ U(O)

~
q, (O)y, (O))

j/0
(2. 4b)

in the post- and prior-interaction forms, respec-
tively.

We define a distorting potential Vo(j) and its

values of parameters H and d in (2. 1) that reproduce
quite well the positions of levels of (n, p)'nl„con-
figurations averaged over fine splittings. In this
work we use the parameter values obtained by
them. The ground-state wave function (0 is the
Slater determinant of the (nap)6 electron wave func-
tions, and the excited-state wave function f„ is
constructed as a properly antisymmetrized com-
bination of the (nap)'nl„product wave functions LS
coupled to produce a state with the total angular
momentum J and its z component M. The actual
forms of P~ and P„, and the values of H and d used,
are given in Sec. III.

We denote the plane-wave function for the jth
electron by $0(j),
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eigenfunction y~o" (j}for an electron in the incident
channel,

[(~-~,) -ff, —V, (&)1 X'."(j)= o, (2. 6)

where K& is the kinetic energy operator, E is the
total energy, and Eo is the eigenenergy of $0 W. e
define V„(j) and y„'"(j) similarly for the outgoing
channel. Using the Gell-Mann-Goldberger relation
for problems with two potentials, ' we obtain from
(2. 3) and (2. 4)

and

M'=&&.(0)x! '(0}l ~ " U(0)- v. (0)l~l'(0))
jap

(2. 6a)

= &+„'-'(0)
l
& v„+ U(o) —v, (o)l y, (o)y", (0))
j4p

(2. 6b)

M =
& $„(1)y' ' (1)

l
Q v„+ U(1) —V„(1)

l
4'0' (0))

(2. 7a)

'(1)
l
~ vo, + U(o) —vo(o)

1 & (0)xo'(0)) ~

jap
(2. 7b}

M""(post) = &y„(i)x'. '(1)
l
& ~;+ U(1)

—V.(»l &0(0)xo(0)), (2.»)

M ' "(prior) = &&„(1)X„' '(1)l g v;+ U(0)
j/0

—v, (o}l |t,(0)x,(0)) . (2. 9b)

The DW approximation corresponds to approxi-
mating the exact total wave functions 4'~' and 4'„'
by their elastic channel components gogo" and

g„g„' ', respectively, observing that usually elastic
scattering is the dominant process and hence other
components in 4p' and 4„' ' can be ignored. In
other words, the coupling between pairs of states
is assumed to be small. Thus the method will fail
if there are pairs of states that are coupled strong-
ly, such as vibrational states in collisions with
molecules.

Under this approximation, the direct amplitude
becomes

M' "=6&y„(o)@'(o)l ~„l q, (o)x,"(0)), (2. 6)

where the orthogonality of go and g„has been used
to eliminate the contributions of U(0) —V„(0) and
U(0) —Vo(0) in (2. 6), thereby eliminating the post-
prior asymmetry. The factor 6 comes from the
fact that, owing to the antisymmetry of $0 and („,
each noP' electron contributes the same. For the
exchange amplitude, the post-prior asymmetry still
remains and we have

The choice of the distorting potentials Vp and V„
is discussed next. For the direct amplitude, the
form of the potential used is

2 Z
x H(e" ~ —1)+ 1

(2. io)

M'= (M' M')+ M', (2. iS)

where M is the Born amplitude. For the last
term, i. e. , M, we use the well-known expression
due to Bethe,

8

2 e '' oo
)=1

(2. i2)

where K is the momentum transfer,

=ko- k. . (2. 13)

For the first term of (2. 11), i. e. , MD —Ma, the
partial-wave expansion is used with detailed ex-
pressions given in Sec. III. The advantage of com-
puting in this manner is that, since the effect of
distortion vanishes rapidly from a certain partial
wave E and higher owing to the exponential. damping
of V(r), the difference M~ —Ms as a function of /

vanishes rapidly beyond that value of l. This is
unlike M itself, where we must include an ex-
tremely large number of partial waves in order to
attain a sufficient numerical accuracy owing to the
long-range nature of the Coulomb interaction.

For the exchange amplitude, if we use the same

with the same parameter values used for V~(r) of
(2. 1). This potential has been used by Berg,
Purcell, and Green in their study of elastic scat-
tering from the rare gases, and found to reproduce
experimental angular distributions quite well. The
effect of a polarization potential was found to be
restricted to extremely forward angles, and hence
we neglect the polarization potential in this work.
They also reported that the effect of an imaginary
surface absorptive potential added to V(r) was very
small, and hence we also ignore the imaginary po-
tential. The effects of the polarization potential
and the imaginary potential should, however, be
investigated further. Since we intend to produce
average cross sections, any spin-orbit interactions
present in the electron-atom interactions are
omitted in Vs(r) and V(r).

Although, strictly speaking, the initial and the
final states should have different distorting poten-
tials, we simply use the same potential V(r) of
(2. 10) assuming that the influence of a single elec-
tron excited in the final state upon the outgoing
electron is small compared with the rest of the in-

teractionss.

Since V(x) vanishes exponentially at large dis-
tance, the direct amplitude can be computed as



SA%'ADA, PUBCE LL, AND GREEN

M'" =mD D"-6JI/J~ D"
y

and the differential cross section is
Z

me g IMDwIR
dA ko 2m% 2

(2. 15)

(2. 16)

where the sum is over initial and final magnetic
substates. In presenting the results of angular
distributions, we define the DGOS f, (x, E) by

distorting potential V(r) as used for the direct am-
plitude, then, for example, the term U(0)- Vo(0)
ot' (2. Qb) gives a, nonzero contribution, since then
the bound states and the scattering states are not
orthogonal to each other. In fact, the contribution
happens to be quite large even at high energies
where one expects exchange effects to be negligible.
Aj.so, there occur small but non-negligible contri, -
butions from the terms vo) with ] 0 1 of (2. Qb) which
correspond to "knockout" processes if the scattered
electron 1 comes out at forward angles, and "pick-
up"' processes if it is backward. In view of the
mass difference bebveen an electron and, an atom,
the contriblltions frown these processes should be
extremely small. In order to avoid these diffi-
culties, we use the potential V„(r) given by (2. 1)
that is employed to obtain bound-state wave func-
tions for the distorting potential, of the exchange
amplitude, thus making the bound states and scat-
tering states orthogonal to each other. Then the
poet-prior asymmetry of M~'D" also disappears,
and we find from (2. Q)

M""= «.(1)xl'(I)
I I S (0)xl'(0)); (2 14)

the same expression has been obtained by others'"
with HF potentials rather than phenomenons, ogical
ones.

Thus, the distorted waves g appearing in the di-
rect amplitude (2. 8) are different from the distorted
waves y in the exchange amplitude (2. 14). One
may be tempted to use Va(r) also for the direct
amplitude. However, this is not desirable, since
then the relation to the analyses of elastic scatter-
ing and GOS is lost, and even the Born amplitude
has to contain the Coulomb distortion, which is
unreasonable for the inelastic scattering of elec-
trons against a neutral atom. The use of different
distorting potentials for dixect and exchange pro-
cesses may seem odd at first sight, but the deriva-
tion of (2. 6) and (2. 7) from (2. 3) and (2. 4) is valid.
The question is whether or not the choice made
here provides a better basis for the DW approxi-
mation.

The total scattering amplitude for the transition
(noP)'- (n, P)'nl„ is, apart from the factor
—m, /2'',

where x=E'ao~, ao being the Bohr radius Bnd x& the
excitation energy (in rydbergs). The main reason
for introducing f„(x,E) is, of course, that this goes
over to the GOS in the limit of the Born approxima-
tion, where f, becomes a function of x only. Anoth-
er reason is that f„(x,E) provides a better test of
the theory, since, owing to the strong weighting
factor x in f, (x, E), even a slight structure in do'/d Q
becomes pronounced in f, (x, E).

In terms of f„(x,E), the integrated cross section
o= f (do/d&) d& becomes

4n"'" g(x, E) d (2. 18)

where xi and xq are (ko 0„) so and (0(i+ kq) soi re
spectively, corresponding to the 0 and 3.80 scat"
te rings.

III. MATHEMATKAL AND COMPUTATIONAL
DF.SC8.IPTIONS

The initial-state atomic wave function g, (0) is
given by

((0(0) = Q (g', - m„!,m, I, 0, 0) (1, - rn „1,m, I, 0, 0)

$„(0)= Z (SM& I'Mi,
I,
&M) ~ (-'M' -'m.

l
&M.)

MS ML m'8m lMSML

B

x(1M'l„l t LM, ) —1 —r P„)I 6

x 4'(no P'; 2 M,
'

IMI,; 23456) 4(nin i ms mi i 1) i

(3. 2)

where PU is the permutation operator for electron
1 and electron j. A similar expression applies for
$„(1)with 1 in (3. 2) replaced by 0. The bound-state
single-electron wave function g is obtained by solv-
ing the Schrodinger equation with the potential
Va(r) of (2. 1), using the Herman-Skillman code.
The potential parameters used throughout this work
are taken from the work of Ganas and Green,

H= 2, 22 d= 0 71500 for Ne &

(3 3)

2(nop l g ) mg 1 m/)((nop m m/)

(3 ~ 1)

where the usual notation (j„m„j~,ma I j,a, m, a) is
used for the Clebsch-Gordan coefficients, 9 0'(n, P')
is the properly antisymmetrized wave function of
(noP)' electrons, and g(nl) is the bound (nl) electron
wave function. The final-state wave function $„(0)
of the (n, P)'(nl„) configuration is given by

0 x
f~(x) E)=

4k y x' d&n 0
(2. 17)

H=3. 47, d=0. 997ao for Ar .
We introduce the multipole expansion of vo„
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x(-,', —~„-,', m,
~
o, o)(-,', —~„-,', m, Is, M')

x."(0)=(4.)'"Z '(2t 1)'"F„(..)f (k„ .) (0) ,

(S. 6R)

X'. '(o) = (4 )'"Z t'y',*.;(k.)F, .;(~.)f;(k., ~.)o'(0),

(s. 6b)

and similarly for y.„' '(1), where (x is the spin eigen-
function and rvhere the z axis has been chosen along

Tile rad1al parts of tile distorted WRves fl Rl'8

obtained by solving the radial Schrodinger equation
with the potential V(r) of (2. 10) for the direct am-
plitude and with the potential VS(r) of (2. 1) for the
exchange amplitude, using the potential parameters
given by (3.3). The asymptotic forms of these
functions are

f(,(k, &) = 6 '
co&s, (6', (kr) ta&n, -g, (k ))o, (3.6)

where ~, is the phase shift due to the potentials 'V

or V~, and vrhere 5, and g, are the spherical Bes-
sel functions of the first and the second kind" for
the direct process, and E,{kr)/kx and —G, (kr)/kr
for the exchange process, vrhere E, and 6, are the
regular and irregular Coulomb functions. "

Substituting (3.1), (3.2), (3.4), and (3. 5) into
(2. 6), we find

M' '"=4m+ t'-'y, , „(k„)(t',-M, r„M~ t, o)

& p~~~) 58 05 (3.V)

Px,'(„= ~x„g(2t +1) (t or 0~to)gg'1„, (3 3)

4lxe' 6(2f, +1) '"
(

~
)~'"= 2L, + j. 4~

(3.4)

wllel'6 Zoo(t) Rx'6 'tile spllex'icRl llarxnolllcs Rlld t('
and x~ are the smaller and the larger of x~ and ra.
The partial-%ave expansions of the distox'ted waves
are Rlso introduced:

x(S, M', I., M-M'~Z, ~W) Z Q,",„., (3. 10)

C.",'„.= (-)-'~' ~[(2 .1)(2t..1)(2f 1)l'"

xg„ao(0((0I, ,
~

a„",', (((.»)

4' 6(2n+ o)2~+1 4m

=4~+&' ' y', (k„)(t,—M, I., M~t, o)

~S', 1„=I"I.'1„-3 ~ @X,'(„. (s. 14)

As explained in Sec. 0, ere compute MD" according
to (2. 11); For the term MD" —Mo, the partial-
wRve expRnsion of M is given the SRme Way Rs fox'

M 'n" of (3.V) except that f, (k, ~) is now replaced
by the spherical Bessel function j, (kr). Denoting
the radial matrix element g of (3.9) thus redefined
for the Born approximation by g~;", @re write,
similar to (3.6),

7,",' = 6, , (2t '+1)'"(tow, o~ to)

(f,"(k.. .)ft.,„(.)I;/;"If'.„(,)f,(k„,)& .
(s. 12)

Ir.- the following subsections, we treat the excita-
tion of singlet states and triplet states separately.

A, Excitation of Singlet States

Substituting M ' " of (3.V) and M ' of (3.10)
with S=o into (2. 15), we find

&& &f&*(k., 1"o)&.X„(&1)I
1'(/1'&"

I
&.,1(&»

x f1(ko, &o)), (3.9)
and, similar to (3.14),

X O'XI„-ZX,t„ (s. is)

where B„,„(o» and It„,~(rx) are the radial parts of
(t((«„)»d (t {~op). Similarly, we find from (2. 14)

+'~ 1„=PX,'1 —3 7 QX,'1„~

Thus the difference term MD" —m' becomes

{s.i6)

M'"-M'=4 Z t'-'y„„(k,)(t', -M, f„M(t, o)

,it'x. 'r„(3 iv)



On the other hand, from (2. 12) we obtain

, x„,~ (2~ I)i&2 &'Yz~&kc, {EE:} '(3 16)

(101.ol E.o)

x(R„, {r)I g~g&)I 'R.~(r)) . (s. 19)

The cross section for the excitation of singlet
states is composed of three terms,

(s. ao)

The first term is the usual Born cross section, the
second term is of purely distortion origin and is
due to I M "-M I, and the last term is the inter-
ference between M and MD" -M . Choosing the
Z axis along K for the first term, and, along kp for
the second and third terms, we find

(s. 21)

do =y P Q C~(EE'; EE')W', ", W,",'P„(cos8),
}t rI, 'ri'

(3.22)

I fl'
g g ~El' I 8

dfl 2I, + I
(3.23)

computation of the C» coefficients. The function
')E(8) is a real function of &only, since K lies on the
scattering plane.

The form factor (R„,„(x,) Ir &~/r&~" I R„~(x&)) ap-
pearing in the radial matrix element of g given by
(S.9) has an extremely long-range contribution,
far beyond the point where the radial functions f,
attain their asymptotic forms (3,6). In order to
economize the numerical work while maintaining
sufficient accuracy, the contribution to the matrix
element from the asymptotic region is calculated
accurately using (3.6). Thus, we convert the in-
tegral to an almost analytic expression of a quickly
converging series of integrals, each integral rang-
ing over a period of sine or cosine functions from
peak to peak. This method is especially suited for
use with (S. 15), since then the outer contributions
to g and g cancel each other for large partial
waves.

8. Excitation of Triplet States

No direct process contributes to the excitation
of triplet states within our formalism, and hence
from (2. 16) the amplitude is proportional to
MD" = —6M~ 0" with 8=1. As is evident from
(3.12), the partial-wave expansion of Ms'o" in-
volves the overlap integral h",„which vanishes
quickly as a function of l and l' beyond certain
values of l and l . Thus the amplitude M ' "con-
verges quickly as a function of l and l, unlike
M ' ". After summing over magnetic substates,
we find

—=» Z + C~i(EE''EE') & @s'r a
dA 2L+1 )t )) g g

where

C (EE'E E')

&& Q QI, ,
' P),{cos8), -(3.26)

= E'-' -"' (- }'[(2E+I)(2E'+1)(2E+ 1)(ai'+1)l'"

x(EoioI ~o)(E'0E'0I~0),-, ,- . (s. 24)

with the same definitions of C», Q, and y given
px eviously. Without spin-orbit interactions, all
three states J= L+ 1, L, and L —1 are degenerate,
and hence summing over three corresponding cross
sections, we find

'S~ (8}= Q (E, —M, I,MI E, 0)Y,. ~(k~) Y~ ~g ), =2Vy P Z C)g(EE;EE )
tt'7 7'

y = 4@{k„/ko)(m, /aug~)~,

(s. as)

(3.26)
x Q Q~', Q Q~,'„sP),(cos8) . (3. 29)

and P, (cos8) is the I egendre polynomial, 8 being
the scattering angle. The coefficient C» has the
following symmetry property:

C ~(E)E; I I ) = C), ~ (I 'I; I 'l) = C„~(I l '; ll ')

= C„,(E'i; E'E) . (s. 27)

This relation is used to greatly economize the mul-
tiple summation in (S.22), and also to check the

Here again the symmetry property of the coefficient
C~~, Eq. (3.2V), serves to greatly simplify the
multiple summation.

IV. RESULTS AND DISCUSSIONS

The theoretical predictions of DGQS as a func-
tion of t' = x/x, are shown in Figs. 1 and 2 for Ne

(2P) - (2P)'Ss and Ar (SP) - (Sp)'4s excitations at
various incident energies. The solid curves rep-
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There appears a resonance peak in a near thresh-
old for Ne as shown in Fig. 5, occasioned by the
presence of a sharp rise of the p-wave phase shift
through 90' in the inelastic channel just above the
threshold in the direct amplitude. A similar but
nonresonant peak appears in 0 for Ar at threshold
as shown in Fig. 6. There is no sharp resonance
in phase shifts for Ar, although the d-wave phase
shifts rise through 90' at around 2. 8 By in the in-
cident channel and at the corresponding energy in
the outgoing channel, which may be responsible for
bringing o closer to the Born approximation. The
peak at threshold is due, however, to the finite con-
tribution of the exchange amplitude at threshold
caused by the use of the distorting potential with an
attractive Coulomb tail. ' A similar but smaller
effect is present in Ne also but it is overwhelmed
by the resonance effect. The energy dependence

of the exchange contributions can be seen from the
plot of the triplet cross sections shown in Figs. 5
and 6. These peaks may or may not be realistic.
If there is such a peak in the data, the theory is
capable of reproducing it. If no peak exists in the
data, the choice of the distorting potential may
have to be altered if one desires a good representa-
tion down to very low energies. Recent measure-
ment by Sharpton et al. ' of the optical excitation
functions of Ne show no resonance in 3s2( J'= 1) and
3s4(J= 1) levels. However, their 3s~(J= 0) and

3s, (J= 2) excitation functions show narrow peaking
at threshold similar to the triplet cross section
shown in Fig. 5.

For the sake of completeness, we present in Fig.
7 the separate contributions to f~(x, E) from the
direct and exchange processes at two representative
energies for Ar. The figures show entirely differ-
ent dependences of f„(x,E) on the momentum trans-
fer leading to the excitation of 'P and P states.

To summarize, the D% method presented here
gives a reasonably reliable estimate of averaged
DGOS and integrated cross sections over a wide
range of energies except perhaps at very low ener-
gies. It is hoped that the results are useful in the
application to atmospheric physics. Electrons
arising as secondary particles (e.g. , photoelec-
trons, secondary electrons from electron or proton
primaries) with energies below 5 Hy play a major
rol, e in such studies ss, te Thus it is imperative to
allow for departures from the Born-Bethe approxi-
mation in dealing microscopically with energy de-
position. Semiempirical efforts to incorporate
distortion and exchange effects have already been
made in this connection. '7 The present study, while
still involving phenomenological consideration, is
a more fundamental approach towards incorporating
such effects. As can be seen from the figures, the
effects which we consider play a major role even for
energies as high as E-5 By. Unfortunately the
lack of experimental data in the domain where dis-
tortion and exchange effects play an important role
is a serious problem and it is hoped that this study
might stimulate such measurements. Meanwhile,
our theoretical calculations should serve as a
firmer basis for incorporating DW modification into
realistic calculations of electron-energy deposition.
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Cross Sections for Collisions of the Second Kind in a Helium-Neon Discharge
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The collisional transfer of energy between two excited states in a gas discharge may be de-
scribedby a two-bodyinelastic cross section. The energy dependence of the two-body cross sec-
tion for collisions of the second kind. between the He 2 S metastable and Ne 3s2 states has
been investigated. This process is primarily responsible for populating the upper level of
the 6328-A laser transition. Pulsed afterglow measurements were performed as a function
of gas temperature and pressure. The experiments were conducted at 1ow gas temperatures
so that the effect of energy transfer from the helium metastable level to other nearby neon
levels could be minimized. The measured decay rates departed substantially from that pre-
dicted by using an energy-independent cross section. A unit-step cross section for the He
2 S-Ne 3s2 resonant transfer process with a value of (1.0+0. 15) &&10 cm and with a thresh-
old energy corresponding to the energy difference between the two levels was determined.

I. INTRODUCTION

The discrete character of energy levels in a gas
discharge requires that an inelastic collision be-
tween an excited atom and a normal atom, resulting
in a transition to a higher excited state, be accom-
panied by the exchange of a certain minimum thresh-
old energy. For collisions of the second kind, in-
volving energy transfer from excited states of one
species to those of another species by collisions
with ground-state atoms, this minimum threshold
energy corresponds to the energy difference between
the two excited levels. The energy for the process
is supplied by a change in the kinetic energy of the
atoms. When collisions are the primary mechanism

for kinetic-energy exchange among the atoms, their
motion may be described by a Maxwellian energy
distribution at a specific gas temperature.

The usual way of characterizing two-body gas
collisions is to define a velocity-averaged cross
section at a particular temperature, which is ener-
gy independent. This cross section is normally
used to describe energy transfer between energy
levels which are within a few kT of each other.
Since the actual cross section must have a minimum
threshold energy, any attempt to use such a cross
section over a wide range of gas temperatures can
result in serious errors. The interaction is often
further complicated at higher temperatures by the
presence of inelastic transfer to other nearby ener-


