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function, &g(Q~)- xb(Q~). In this limit all levels are
strongly coupled and the near-adiabatic behavior
inherent in the two-level approximation completely
breaks down (see Schneiderman and Russek). "
Thus, any results for p & 0. 2 would be completely
spurious. Fortunately, such small impact pa-
rameters make a negligible contribution to the total
cross section for rotational excitation.

Finally, Fig. 7 shows the total cross section for
rotational excitation as a function of incident veloc-
ity for the straight-line trajectories used in this
paper. Five physical parameters appear in Eqs.
(23)-(25): V, b, R„, v, and p. Since the impact
parameter is integrated over in obtaining a total
cross section o; this would normally be expected
to depend on four variables. Three of these are
properties of the projectile plus target molecular
system: V, b, and R,. The fourth is the incident
velocity v. However, because of the form of Eqs.
(23) and the straight-line approximation for t, Eq.
(25), the results in Fig. 7 can be expressed in
terms of only two variables, with the help of scaling
parameters. If the dimensionless quantities

x= p/R„, y = Iv/bR, (27)

are defined, then 2mpdp = 2mB~dr, and the cross
section can be written in the form

o„~=vR, j 6 (x, y, V) 2xdx. (28)

The quantity vR, is the geometric cross section for
getting inside the crossing radius. It will be re-
membered that in the two-independent-crossing
picture 6 is always ——,

'

in the two-independent-crossing picture. A glance
at Fig. 7 shows that this is far from the case for
rotational excitation.
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The channel operators v~ describing scattering from configuration n to configuration y are
utilized in considering a model for three-body rearrangement scattering. The r„o are those
defined by Vo+ V„(E—H+ie) ' V . Two well-known forms of integral equations for the v~ ob-
tained from this expression are explicitly solved for the model potential surface. Using these
explicit solutions, results are examined in the limit that no dissociative continuum is present.
It is found that the integral equations in which the v„o are not explicitly coupled do not yield
the correct results for this limiting case. Integral equations explicitly coupling the v„~ give
limiting results in agreement with those obtained by more-common boundary-matching tech-
niques. These results indicate that the major effects of the dissociative continuum may be
accounted for by considering the coupled equations for the v„o (at least so long as one is well
below threshold for the production of three free particles).

I. INTRODUCTION

The formal theory of rearrangement collisions

has been the subject of many investigations which
have resulted in a large number of alternative ap-
proaches to reactions. ' These various approaches
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are all correct insofar as they can be shown to
yield formally identical results if no approximations
are made in their solution. The primary differ-
ences among them are associated with the fact that
a given description of a rearrangement collision
may emphasize one or more particular aspects of
the collision. One expects that approximate calcu-
lations based on different formal approaches will in
general yield different results. In addition, the
various difficulties associated with reactive scat-
tering may be present to differing degrees depend-
ing on the particular formulation under considera-
tion.

Because of recent advances in numerical and
analytical techniques~ and the availability of more
powerful computational facilities, it is now feasible
to undertake comparisons of these formalisms.
Thus, this paper is the first in a series of studies
wherein the various formal treatments of rearrange-
ments are applied to some simple models of three-
body reactive scattering. These model systems
will enable analytical solutions to the various equa-
tions to be obtained, thereby allowing interesting
comparisons to be made. In addition, various
limiting cases of the models are of interest. For
example, a model in which the reactant and product
species can dissociate is of considerable interest
since the role of the continuum in reactive scatter-
ing is likely to be very important. For the model
system discussed in this first paper, it is then pos-
sible to remove the dissociation channel by a sim-
ple limiting procedure and compare the results to
earlier studies. 3 Also, the sensitivity of the vari-
ous formulations to the inclusion of the continuum
may be studied. It is hoped that these studies will
also provide some indication of which formulations
of reactive scattering will be practicable for appli-
cation to more complex and realistic systems.

This first paper contains a consideration of a
simple model three-body rearrangement collision
using a channel-operator formalism. e'4 Further-
more, in this study attention is focused on only one
of several possible definitions of the various chan-
nel operators for a model system. ' In addition,
only two of the possible integral equations for these
operators which have appeared in the literature are
discussed. The model system to which these equa-
tions are applied is one which allows dissociation
and for which analytical solutions may be obtained.

We emphasize that no new formal theories of re-
arrangements are presented. Rather, the purpose
of this series of studies is to provide practical
comparisons of the existing formalisms. In a forth-
coming paper, various other formal developments
of the rearrangement scattering for the model sys-
tem herein considered will be presented and com-
pared with the present results.

In Sec. II the formal equations which form the

where V is the perturbation associated with the
initial configuration n, and V~ is the perturbation
associated with a final configuration P. K and Ka
are the unperturbed Hamiltonians for the initial and
final configurations. Thus if H is the full Hamil-
tonian,

H = K~ + Vo = K~ + V~ .

The operator (E —K~+ ie) is a noninteracting final-
configuration Green's function which assures that
causal boundary conditions on the scattered waves
are satisfied. In what follows w will stand for
the z operator for the nonreactive channel and 7~
will stand for the 7- operator for the reactive chan-
nel.

In general the "solution" to the integral equation
for r„(where y might be n or P) can be represented
by

7„=V + V„(E—H+ic) VN . (4)

Insertion of the following identity

basis of this paper are reviewed and the notation
established. In Sec. III the model system for three-
body rearrangement is described. Section IV con-
tains a discussion of the model system based on un-
coupled equations for the channel operators defined
in Sec. II. A general analytical solution for the in-
tegral equations is obtained and the results illus-
trated by a simple example calculation. In particu-
lar, a limiting case of the solution is shown to be
incompatible with the requirements that the total
Qux be conserved. Section V contains a discussion
of the same model system based on a second set
of formal equations for these same channel opera-
tors. It is possible to obtain analytical solutions
of these equations also and the limiting case is
once again considered. Finally, the role of the
dissociative continuum states in the two approaches
is brieQy considered.

II. GENERAL FORMALISM

It is convenient to present a brief description of
the formalism employed in the present study of re-
active scattering probabilities. A detailed discus-
sion may be found elsewhere. '

The 7 operators are defined such that the "matrix"
element

;.(fli) = «(elf) I ~ I &(~ li) &

is related to the transition probability for going
from initial channel configuration n in state i to a
final channel configuration p in state f. This pre-
cise relation is exhibited in detail in the Appendix.
The particular 7 operator which we shall consider
satisfies an integral equation given by"

7 = V + VB(E —K~+ ic) 'r,
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(E —H+ ic) ' = (E —K„+ic) '+ (E —~ + is) '

x V~(E —H+ig) ~

into Eq. (4) yields

(6)

tor formalism is applied concerns the three-body
reactive system represented by

AB+ C- A+BC
+

7'~ = V + V„(E—K„.+ ic) [V + V„.(E —H+i&) ~ V j,
(6)

where y' can again be either n or p. Recalling
(4) we obtain the expression

= V, + V„(E—~ +i&) '7„.

Since y and y' are independent, there is no unique
form of the integral equations for 7 and 7~ .' It
is very common to write the uncoupled forms of the
equations where one replaces both y and y' by p or
by a. Thus, one obtains the equations'

v», ~= V~+ V„(E—K~+I&)

= V + V~(E —Q+ic) ~yq

(8)

(9)

These equations are extremely attractive because
they enable one to specify the scattering coordinate
in each equation as that most suited to the particular
final-configuration channel. Thus, these equations
appear to give the advantage one achieves for ex-
ample by introducing special "reaction" coordinates'
(but without the occurrence of complicated expres-
sions in the kinetic energy which arise in all reac-
tion coordinate formulations). Unfortunately, as
will be seen later, use of these equations in approx-
imate calculations which neglect the dissociative
continuum yields unreliable results.

On the other hand, if we replace y and y' once
by n and p and once by P and n, respectively, we
obtain a coupled system of integral equations given

where A, B, and C are three atoms which are as-
sumed to behave as three structureless particles.
The initial state n is taken to be particle C imping-
ing on the bound system of particles A and B vibrat-
ing in a given eigenstate i, and the final configura-
tion P consists either of particle C reflected back
leaving the bound system vibrating in some ener-
getically accessible final state, or of particle A
which is now free and the new bound system BC
vibrating in one of its eigenstates. In the following
discussion the particles are restricted to motion
along a line with the masses of A and C taken to be
equal and the mass of B taken to be infinite.

For the particular model being considered, the
Schrodinger equation can be written in the form

(
8 8 2py+ y+y I@ —&4 v)f)N=» (14)

where p is a reduced mass, E is the total energy
in the center-of-mass system, V(x, y) is the poten-
tial energy with y the distance between A and B and
x the distance between B and C (see Fig. 1). Clear-
ly, for the initial configuration n, y is the internal
vibrational coordinate and g is the collision coor-
dinate. In order to distinguish the initial and final
set of coordinates in the case of rearrangement,
the variables u and v are introduced where v is the
internal vibrational coordinate and u is the reaction
channel coordinate. For the particular case being
considered one has

= V~+ V (E —Kg+is)

= V, + V~ (E —K, + ie) 'v

(1o)

(11)

(16)

(16)

Of course, it is obvious that by substituting Eq.
(11) into Eq. (10) and vice versa for Eqs. (10) and
(11), one can again obtain an uncoupled system of
equations

r~, = V~+ V, (E —K~+ic) 'V~+ V~(E —K~+ie) '

&& V~(E —K, +it) 'v,

vz~= V~+ Vz(E —K~+ic) VN+ Vz(E —Km+it)

I -v„
10,

V(x, y) =(
!

—Vp,

ao

y&Q

Q&y&~

$&y&0

Q&y&oo
0&x&i

y&0

The potential energy surface V(x, y) is shown in
Fig. 2 and is expressed as'

x V (E —Q+ie) 'r~ elsewhere- (17)

These equations are much more complicated than
Eqs. (8) and (9). In what follows we will apply Eqs.
(8) and (9) and Eqs. (10) and (11) to a model for
three-body scattering.

III. SIMPLE MODEL FOR THREE-BODY REARRANGEMENT
SCATTERING

The problem to which the rearrangement-opera-

The potential surface in terms of u and v is clearly
the same except that v replaces x and u replaces y.

In order to obtain the explicit forms of the vari-
ous integral equations, it is necessary to know the
complete set of eigenf'unctions of K as well as the
complete set of K~. For the model under consider-
ation the unperturbed initial potential V, (x, y) is of
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U
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FIG. 1. Coordinates for the collinear collision system.
-Vp

the form (see Fig. 3)

-Vp

V~ (r,y)

v= I +~
Vf (U, V)

W y

v, (», y)=
—V„O&y&l x&0

l&y&oo

FIG. 3. Initial and final configuration potentials V&{z, y)
and V&(u, v).

x&0, all y

and the unperturbed final potential Vz(u, v) is

v&0

—Vo, 0& v& 1 ' u&0
V&(u, v)=

(18)
which can be written in the form

tank„l = —X„/~„.

(b) The continuous case is given by

A&,sinXy, 0 & y & l
t )ty gp -t ),y

y

(22')

(23)
u&0, all v .

8(u) = $(x)9 (y),
then $(x) is sinkx and the form of the y(y) depends
on the energy of vibration.

(a) The discrete case is given by

A„sink„y, 0~y ~ l
q„(y) =

g3 e- Tn3) l & y & ~ (20)

(18')

It is obvious that if the eigenstates of the unperturbed
Hamiltonian are written in the form

where

x = [(2p,/8')E, ]"', y, = [x' —(2u/I') v,]"',
27.2 1/2

A), = 2(s'sss si ',sis'si)

S„=A,e "&'[X(coeval)/v„+isinXl]/2i .
~The normalization for y„ is such that

(24)

where

A„= [2r„/(~„l + 1)]', 8„=A„sin(&„l)e'"',

1„=[(2g/ll')E. ]"', r„= [(2p/I') Vo —).„']'" .
(21) A~+ k~ = 2u, E/8, x~+ k~~ = 2u, E/8,

The relations between k„and X„and between k~ and
X are given by

The eigenvalues are determined by the roots of the
transcendental equations

where E is the given total energy of the system in
the center-of-mass reference frame.

IV. USE OF THE UNCOUPLED OPERATOR EQUATIONS

y, u,
is

-Vo

y = I-----
I

I

0
I

r=l

-Vp

~ X~V~

(22)

v, 8(el i) =Z„t'„(u)p„(v), (26)

We begin with a discussion of the model using the
system of uncoupled equations and will show that
the results derived are incorrect We introduce
"amplitude density functions" q„,8 (u I X) which are
essentially functions containing the same informa-
tion as the product of V„and the scattering wave
function g' (i) (see the Appendix).

Expanding the total amplitude density functions
v,9(a I i) and v~, 8(n I i) in terms of the respective
orthonormal sets Ci„(y) and p„(v), one has

8(& Ii) =@X.(x)e.(y), (25)

V (r,y)

FIG. 2. Interaction potential for full collinear collision
system.

where the summation includes an integration over
the continuous states. Substituting Eq. (25) into
Eq. (8), multiplying both sides by p„(y) and inte-
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V„', '(x)= f dy)I))„(y)V (x, y)y, (y), (33)

0 y

I

p
I

x=l 0
V~(x, y)

-Vp

V (u,v)

FIG. 4. Initial and final configuration perturbations
V {z,y) and V(u, o).

X (x) =
J, q (y) V (x, y)8(o'.

~
f)dy

+ J, dye (y)V, (x, y) J J, dx'dy'G(x, yix', y')

x Z„)I„(x')e.( y'), (27)

(u) = J dv e) (v) V (x, y)8(n
~
l)

0

+ J dve) (v)VS(u, v) f J du'dv'G(u, v~u ~v )

x Z„l'„(u')e)„(v') ~ (28)

Here 8(o) Ii) is the initial state given by

grating over y, and substituting Eq. (26) into Eq.
(9), multiplying both sides by rp„(v) and integrating
over v leads to

where r and s can be either discrete or continuous
indices. The same definition will be applied to
V„",'(u). From Eq. (30) we obtain

V(a)( )
Vo J, 9r(y)'Ps(y)dy ) 0 —x—l

(34)0, L'& x&

In a similar fashion one defines W' 0'(x) and iV+'(u)

(where again r might be either discrete or continu-

ous) by

iV„'„,'(x) = ("e)„(y)V (x, y)8(ni i)dy . (35)

Applying Eqs. (15)-(16)and (30)-(31) one finds

W„",'(x) = V„",'(x) smk„,x, (36)

—VOW„O(u) f y„(v) sink„vdv, l & u& ~
0""0 0, 0&~&l .

Since V„', '(x) = V„",'(u), the superscripts a and P
will be omitted in what follows.

Substitution of Eqs. (15)-(16), (32), (34), (36),
and (3V) into Eqs. (2V) and (28), respectively, yields

)I„(x)= W'",(x) -Z„[V „(x)/k„] g dx'e'"+&

x sin(k~&) )I„(x') (38)

8(u~ i) =sin(k„x) 8)„(y); (29) t' (u) = W'„' (u) —Z„[V „(u)/k„] J du'e"~"&

V (x, y) and V, (u, v) are the two perturbations asso-
ciated with the initial configuration e and with the
final configuration P, respectively. Thus (see Fig.
4)

—V„O&x&l, l&y&~
0, elsewhere (30)

—Vo, 0&u&l, i&v&~
0, elsewhere . (31)

The function G(x, y I x'„y') [as well as G(u, v I u', v')]
is the coordinate representation of the Green's func-
tion which is given by

&: sin(k„u&)L„(u'), (39)

where x& and x& are the greater and the lesser of x
and x', respectively, and similarly for u& and u&.

These two systems of equations are very similar
and differ only in the inhomogeneity term. Conse-
quently we shall explicitly solve only the second sys-
tem and apply its solution to the first.

Following Sams and Kouri we use the matrix
notation

g(u)). = C.(u), (W„',"')„=lV„'„",', [V ).„= V.„,
(40)

Qh) =5 „e""", [S )„„=5„(sink„u)/k„.

Consequently, Eq. (39) can be rewritten as

d
"~ 8)„(y)sinkx8&„(y')sinkx' 2(u) =W„' '(u) —V (u) ~ Yl(u) ~ J S (u') t'(u')du'~

'P))( y)sUlkx e)g ( y )slllkx+ dX

~ ~

E-A —X +Q2 2 ~ (32)

+V(u)' S(u) f h (u') ~ t'(u')du'
0

—V (u) S(u). f h (u') f(u')du',
0

(41)

It is convenient to define V„', '(x) by where we have for the continuous indices an integra-
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C"' = —J E(u) ~ g(u)du
0

(42)

tion instead of a summation. %e define a column
vector C+'by

where K is a diagonal matrix whose elements are
given by

(K}„,= (u —k„) 6„ (5o)

It is convenient to define the column matrix B' ' as
and write g(u) in the form

E(u) = C"'(u)+ t "'(u) C"', (43)

B(tn) K ~ A(ttt)

Then Eq. (49) can be rewritten as

(51)

(u)=V(u) S' '(u)-V(u) j S(u' —u) ~ 0' '(u')du,
0

(46)

where S' '(u) is the mth column of a diagonal matrix
S(u) given by

(s(m) ( )) n
(4V

n

For the following it is noted that V (u) is indepen-
dent of u for 0 & u & l [cf. Eq. (40)] and therefore it
may be replaced by V.

The solution of this system of equations is then
written in the form

g"'(u)=A'"' S(u) (48)

where A ' ' is a square matrix whose elements are
to be determined and S(u) is a column matrix whose
elements are

Qs(u)), = sin a, u . (47')

In order to determine the matrix elements of A ' '

and the a, values, it is sufficient to write t' '(u) in
the form

where f' ' is a column matrix and f "' is a square
matrix. Following Sams and Kouri we obtain the
equation

t' '(u)=W„' '(u)-V(u) ~ J S(u' —u) f (u')du'

(44)
for ( +' and for f "' the equation

7"'(u)=V(u) S(u)-V(u). $S(u' —u) t "'(u')du'.

(45)

We now consider the solution of Eq. (45). It can be
seen that each column of the square matrix t' "'(u)
is determined independently of all the others. Thus,
if the mth column of f "'(u) is denoted as f ' '(u),
one finds

K ' ~ B' 'sinnu=V S' '(u)+V S(u) ~ oB' '

—V B")sinnu (52)

and by equating the coefficients of sinou one finds

(v+K '). B"'=0. (53)

Recalling the definition of K and defining a square
matrix V'by

~nm y
™

nn n

Eq. (52) becomes

(V'+ n I ) B' '=0

(54)

(55)

V [S' '(u)+ S (u) B ' ' n]=0, (56)

where a is now a column vector the elements of
which are the square roots of the eigenvalues. One
can easily show that the independence of the sink„u
function leads to

which is an ordinary eigenvalue problem for u and
O' '. Clearly, V ' is a real symmetric matrix so
that the eigenvalues of V ' are real. Consequently,
n will be either real (open channels) or purely
imaginary (closed channels). Returning to Eq. (51)
we notice that the square matrix A ' ' is related to
the orthogonal matrix B ' ' by the relation (B ' '),„
= (A ™),„/(o.,'-k~) so we have obtained an explicit
solution for the column matrix t' '(u) This. is true
for the n values and for the A' ' matrix elements
as well. However, one has to keep in mind that the
B ' ' matrix elements are only determined up to a
normalization factor and consequently this is true
also for the A ' ' matrix elements. Thus in order
to determine the A ' ' elements uniquely, one has
to apply some "normalization" rule. This normali-
zation rule can be derived very easily by returning
to Eq. (52) and equating the coefficients of sink„u.

Thus we have

'(u) =A' ' sinnu, (48') (nt)
~ (nt)B ~ @=I (57)

—V ~ K A' ) sinou, (49)

where A' ' is now a column matrix. Substituting
Eq. (48') into Eq. (46) and performing the integra-
tion over u', one obtains the equation

A' 'sinnu=V S' '(u)+nv ~ K S(u) ~ A' '

where I ' ' is a column matrix

(I'"kr = -6i. ~ (58)

Up to this point we have obtained the solution for
the square matrix f '"(u) Equation (. 38) is treated
exactly in the same manner. Thus if one represents
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the solution of this system by the expression

x(u) = x"'(u) + x "'(u) C

where C is defined as

8"=f &(u) X(u)d
p

(59)

(60)

In order to get additional insight we consider now

the one-channel case in detail. Here the various
matrices reduce the single numbers or functions
and consequently all the subscripts can be omitted.

The single element of the matrix of V '+0. I is
V —k + e and since the determinant of this matrix
has to vanish we find

then it is easily seen that

X '"(u) = 0 "'(u) . (61)

(k 2 V)1/2

Combining Eqs. (51) and (57) we find

(69)

We have now to derive the solution of t'0'(u) and
x"'(u)

As to & 0'(u) it turns out that Eq. (44) has a very
simple solution. Recalling the definitions of W„' '(u)
and V (u) one finds that

40, Q &L

W"'o'"' =0, O=u=l
(62)

o.A/(u —k') = 1 0)

so that
A= V/(k —V) /

Thus, we find

1 (u) = [V/(k —V) ' ] sin(k —V)
' u .

From Eqs. (6'l) and (68) we find the complete
solution is

(72)

=0, Q&L
V (u)

&0, 0 —Q —l

and consequently

7'"( u)=W"'(u) ."p (63)

(k+C '),k2 V,/z sin(k —V) u, 0& u & l
X u)=

0, l&u&~

(73)

np np
(64)

As to x' '(u) we recall the definition of W ' '(u).
From Eq. (36) we get that Cu'[V/(k —V) / ]sin(k —V) / u,

—Vows(u}, l &u &~
0(Q(l

4)

Equation (64) can also be written as

W ' ' =k V ~ S '"0'(x)
tip f1p

(65)

where

w= f y(v) sin(kv)dv

and consequently X'0'(u) is given as

X'"(u) =k.,X'"0'(u) =k.,E'""(u) . (66)

To sum up the results derived we see that the solu-
tions of the two systems of integral equations are
given by

vof, Iv'(3') I
dy . (76)

(Here Vo is given in units of 2p/g . )
Defining

Z= [V/(k —V) / ]f sin[(k —V) u]e' "du, (77)

X(u) =k„,t '"o'(u)+0 '"(u) ~ C'",

F(u)=W'"(u)+ L "'(u) C'~'
f1p

(67)

(68)

$ = —Vow) y(u}e "du,

we have

(78)

where the mth column of f "' is given by a linear
combination of sinai functions. However one has
to keep in mind that all the matrix elements of

'"(u) are different from zero for O~u ~l whereas
elsewhere they are zero. Similarly we have that
W„', '(u) is identically zero for 0 ~u ~l and different
from zero for Q larger than l.

Once t' +'(u) and f "'(u) are given there is no
essential difficulty in determining the two column
matrices C' ' and C' ' and therefore the problem
of determining x(u) and l(u) can be considered as
solved.

C' '=- kZ/(1+Z),
C' = —t'/(I+ Z) .

9}

(80)

R= r (1 1)= f X(x)sin(kx)dx,

T= r~e(1-1)= f f(u)sin(ku)du,

(81)

(82)

and consequently

R = Im(Z)/(1+ Z), (83)

From the definitions of the 7 matrix elements we
have
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T=Im($) —) Im(Z)/(I+ 2) . (84)

It is very interesting to see what happens in the
limit that Vp tends to infinity. In such a case it
can be seen that V-0 and consequently Z-0. On
the other hand ( is finite and satisfies

(94}

(1/k„.) f rp„(y) dy fp
e' "'") sink„. y(

xf ~ (y')dy' 0«x«l
0, l&x&~

lim ( = —X(2/l)' we' ' .

Clearly

Iim Im($)= —X(2/I)" w sinkl,
Vp

so consequently

(85)

(86)

(1/k„.) f, rpn(v)dv f e "'")sink„.v(

P (u) = xXp (v )dv', 0 —u «l
0 i&@&00, (95)

R 0,

T- —X(2/l)" w sinkl .

(87)

(88)

These results can be compared with those derived
by the more direct method of Hulburt and Hirsch-
felder. It can be shown that in the one-channel
case this method leads to the coupled equations

R —T wXe' '(2/l) /k= 0
(89)

RwXe-"'(2/1)' /k+ T= (2/I)"'wXsinkl .

1'„(u) = —Vpw„„qr„(u), u) l . (96)

We now define

From the definitions of V~p(x) and n .(x) it is
easily seen that X„(x) is different from zero for
0 —x~l and is identically zero for x) l. As to
g„(x), one can see from the definitions of w„(u) and

P (u } that it is different from zero along the whole
interval, but for Q & l it is equal to the inhomogene-
ity term, i.e. ,

Thus we notice that the terms that are responsible
for the interaction between the reactive and the
nonreactive channels are missing from Eqs. (87)
and (88). It can be shown that in the limit Vp- ~
for the many-channel problem, all the R values
are identically zero. This means that in the non-
reactive channel the system behaves as if no reac-
tive channel is open at all, and the scattering is
purely elastic.

V. USE OF COUPLED OPERATOR EQUATIONS

R„=7' (np-n)= f X„(x) sink„x dx,

T„=7p (np- n) = f g„(u) sink„u du,

such that

R„=V S +Vpg atf St!p SNp

T„=q„+ „„wV+p Q P ~ w„„.
n'

The quantities q and S„„aregiven by

(97)

(98)

(99)

(100)

Again the total amplitude density functions are
expanded as in Eqs. (25) and (26). Substituting
these expansions into Eqs. (10) and (11) and going
through the same procedure as described in the
Sec. IV we obtain the following coupled equations:

q = Vp f rp (v}sink„. v dv

S„„.= fp sink„x sink„. x dx .

(101)

(IO2)

X„(x)= V (x) sinkwx+ VpEo.'„„.(x) p„.(x),
p I

(9o)
We still must calculate n ~ and P„„.and we first
consider p .. Since X„(y) is different from zero
only in the interval 0 —y —l, P„„.can be written as

1'„(u)= —w„&(u) Vpp&(u)+ V Q P„„.(u) rp„. (u}, (91)
ff'

Here

P ~ =(1/k„.) f y„(v)e' "'"dv f sink„.v'X„(v')dv' .
(103)

—V f y„(y) cp„(y)dy, 0 —x —l

V,(x) =

0, l&x&~ (92) —Vp P„„.= (I/k~) Q ~ R„ (Io4)

However, the limits of the inner integral are in-
dependent of e so one can write

w .(u) =
f y„(v) sink„v dv,

0, 0 —Q&l

l-Q&

(93) Q„„=—Vp f, y„(v) e""'"dv . (101')

where R„. is defined by Eq. (97) and for Q„; we have
that
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For a„„.we have a somewhat more complicated ex-
pression because f„(y) [ in contrast to y„(x)] is
defined also for y values larger than l. The ex-
pression for a ~ is given by

n„„.=(1/k„) f, q„(y)dy[e'&'" f, t'„.(y')sink„. y' dy'

lim q„„.= (- 1)"(2/1)"2l„sink„, 1,
Pp ~no

lim Q„n. = (- 1)"(2/l) X„e'
Pp~ ao

lirn S„„,=finite,
p'0 ~ no

(114)

(114')

(116)

+ sink„, y f„"g„.(y') e'"'"' dy'] (105)
(116)

If Z„„.„ is defined by
0

~... = (VVk. ) f, q.(y) dy

x f "sin[k„,(y —y')] q „(y')dy',

(108)
then we obtain the equation

—V2 a ~ = (T„./k„. ) Q„„.+ Z .„2e„.„nn np n tip (109)

Substituting Eqs. (109) and (104) in Eqs. (99) and
(100), respectively, we obtain a system of algebra-
ic equations given by

R = V~ Sn--. + 2en'ngn 'n 2e 'n ~ (Tn'/kn') Qnn' "'n'

(110)

T„=q„&2u„„-Q (R„./k„. ) Q„„.co„„.fe npn nnp

We now again consider the limit when Vp- ~. In
this case it can be verified by using Eqs. (20), (21),
and (22') that

lim V„&=0,
ao

0
(112)

(2/l)'~2(- 1)"&„sink„.
nn' (k2 2) (gl = nn);

(113)

which can be written as

o„„=(1/k„.) ([f, y„(y) e" '" dy]

x [f f„(y') sink„. y' dy') —V22e„.„ f, y„(y) dy

xf [-e'&'" sink„. y'+ e'nn'" sink„. y] qn (y') dy') .

(106)

The second term is obtained by using Eq. (96) and

recalling that the lower limit of the inner integral
in the second term is always larger than /.

Applying the definitions of Q ~ and T„, we find
that

Vo o~. = (T„./k„. ) Q„„+Vz (Ie„.„gkn. ) f q'„(y) dy

x f"q'„(y') sin[k„. (y —y')] dy' . (107)

Substituting Eqs. (112), (113), and (114) into (110)
and (111)we obtain the coupled albegraic equations

R„= —Z(T„,/k„, )Q„„,ur„„, (110')
n'

T„=q„.~.. —~ (R„/k. )Q..~. .
and substitution for Q ~ and ~„.„ leads at last to

R„=—(- 1)"A„sink„lZ " " 2, , (117)

2 l,n~, (- 1)"'"2sink, g sink„l
(k2 12 )n np

R , P , ei&n i
( 1)n'

+ —(-1)")„sink„lZ " ", 2 2, . (118)

In this paper two methods for treating the three-
body rearrangement collision are discussed. Both
methods are based on a & operator formalism. '

In the first we used the uncoupled integral equa-
tion system in which the nonreactive channel and the
reactive one are treated independently. In the sec-
ond use is made of the coupled system where both
the reactive and nonreactive channels are explicitly
treated simultaneously. The equations were ap-
plied to a solvable model for three-body rearrange-
rnent collisions.

It is, of course, to be kept in mind that all the
results derived were based on the particular model
considered and it may be that they are not general
enough to apply to other more complex systems.

Our analysis appears to indicate that the solution
of the uncoupled integral equation system is funda-
mentally incorrect (at least so long as the contribu-
tions from the continuum are either ignored or ap-
proximated by a quadrature sum). "2 Support for
this conclusion comes from the fact that in the limit
Vp- , the uncoupled equations do not yield the known

It can be shown that these equations are exactly
those that are obtained by the method of Hulburt
and Hirschfelder. In case of one channel, Eqs.
(110) and (111') reduce to Eqs. (89) where Q„ is
replaced by Q»=(2/l)"'& e"', and ~«stands for
&u. Again, the relationship of the T„and R„ to trans-
mission and reQection probabilities is presented in
the Appendix.

VI. SUMMARY
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correct results. Of course, a major feature of
such a limiting case is the absence of a dissociative
continuum.

Qn the other hand, the solution obtained for the
coupled operator equations appears correct in that
the proper limiting equations are obtained when

Vo- . This is true even though no special atten-
tion is paid to the role of the continuum states. Con-

sequently, although the uncoupled equations appear
very attractive, it appears that one must be much
more careful in dealing with the continuum so that
any apparent advantages are illusory. Indeed, it
appears that in the uncoupled equations it is only
through the continuum states that information about
reacted flux enters the nonreactive equations so
that probability can be conserved. In the coupled
operator equations method, the information stored
in the continuum is less important so that solutions
of these equations are less sensitive to the way in
which such states are treated. (All the above dis-
sussion is restricted to energies below threshold
for breakup. )
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APPENDIX: DERIVATION OF TRANSITION PROBABILITIES
RELATED TO r OPERATOR MATRIX ELEMENTS

In order to derive the transition probabilities we
refer to the wave equation and study its behavior
in two limits, namely when x goes to infinity and y
is finite (nonreactive collision) and when y goes to
infinity and x is finite (reactive collision).

Consequently, if for finite y values and for x val-
ues going to infinity the wave function takes the form

P„, „(E)=(k„/k„,)~P„I'. (A2)

Similarly, if for finite values of x and for y values
going to infinity, the wave function takes the form

limp(x, y) =C5 t„e"', » (A3)

where N is the number of open channels and C is an
arbitrary constant, then the various transition prob-
abilities P„.„(R) for nonreactive scattering are
given by

P„,.„(T)= (k„/k„,) i
f„i' . (A4)

The wave function in general can be written as

g, = 8 (no) + (E —H + i(.) ~ V„8 (no) .
Again, applying the identity

(A5)

(E —H+i») '=(E —K„+i@) +(E —K„+is) '
V„

x (E —H+i6)

to Eq. (As) one notices that

g~= 8 (no) + (E —K„+ic)

x [V + V„(E—H+ie) V ]8 (no) .

(As)

(AV)

But since 7„ is defined as

= V + V„(E—H+i&) V

we find that

(j), =8 (n,)+(E —K„+i~) '7„8 (n,),

(AS)

(AO)

and recalling Eq. (23),

8, = Z„}i„(x)y„(y), (A12)

one derives an equation for g, (x) by substituting
Eqs. (All) and (A12) into Eq. (A10), multiplying both
sides by 4),(y) and integrating over y. Thus, we
find that

p, (x) = sink„x J dye, (y)rp„(y)

+ (I/v) Z f dk sinkx

x [f dye, (y)q (y)](k'„—k'+Ze) '

dy dx smkx p y ~&y& x y& y

(A13)

where the coordinate representation of the Green's
functions have been used. Performing the various
integrations over y and y', we obtain

where 7„8 (no) is the total amplitude density for
going from channel o to y and where y is indepen-
dent of u and can therefore be either n (nonreactive
collision) or p (reactive collision). It is clear from
Eq. (AQ) that r„8 contains the same information
that VP contains. We shall treat first the nonre-
active channel and consequently we insert y = a to
obtain

=8 (n())+(E —K +i&) v 8 (no) . (A10)

In the following, we suppress the initial state index.
Assuming (l)(x, y) to be of the form

() (», y) =~&„4.(x)V.(y) (Al 1)

then the various probabilities P„„(T)for having
rearrangement are given by

g, (x) = S, „,sink„,x+ — )t dx'}i, (x')
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sinkx sinkx
k', —km+ ie

(A14)

In order to evaluate the inner integral use is made
of the residue theorem by which the following result
is obtained:

ol

limt(*, y)=- —.e ",*y„(y)- y
~'~

)fIP

x e"~o*q&„(y) + Z " e' ~p„(y) . (A19)
2$+s

sinkxsinkx' 1 e"'"sink, x', x & x'

~ oo

(A15)

Comparing this expansion and the one given in Eq.
(Al) we see that, up to an arbitrary constant factor,
the two comparisons coincide if

Consequently, when x tends to infinity we have p„,= - (1 —2fR„gk„) (A20)

limp, (x) =5, „sinn„» —[e" */k, ] J dx'sink, x'gg(x') .
pm 40

(A18) p„= 2f~k„y n +nQ . (A21)

We now recall the definition of R, given by Eq.
(97) to obtain

Consequently,

limp, (x) = 5, „sink„ox —(R,/k, )e" * .
g~ 00

(A1V) P;.;(R)=
I
1 —»R„gk; I

' (A22)

Substituting Eq. (A17) in Eq. (All), we obtain

limp(x y) =-—.e ""o*y„,(y)+ —.— ' e"~e'y„(y)

@e""'y„(y) (A18)
Atp n

(A23)

(A24)

&.,-.(R) = 4
I R.I'/k. k.

By proceeding through a similar analysis for the
reactive channel, it can be shown that

~...(T ) = 41 T'.I'/k. ,k. .
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