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Excitation effects due to rotational motion of the internuclear line during an atomic collision
are considered in the two-state approximation. These effects are governed by a pair of first-
order differential equations which couple adiabatic levels of different angular momentum (e.g. ,
o to m transitions), which actually do cross. The equations are cast in such a form that the
solution for rotational excitation may be expressed in terms of the well-known Landau-Zener
solution. It is found, however, that application of these results to a real collision suffers from
defects which are worse for the case of rotational excitation than for ordinary Landau-Zenner
transitions. The coupled differential. equations are then solved numerically to document the
shortcomings of the Landau-Zener approach to a real collision and to present cross-section
results which are free from these defects.

I. INTRODUCTION

Since 1932, excitation effects in near-adiabatic
atomic collisions have been treated in terms of a
two-state approximation which describes the dy-
namic coupling between two adiabatic molecular
levels at a pseudocrossing. This has come to be
known as the "Landau-Zener approximation. "'
A convenient summary of the model may be found
in the quantum-mechanics text of Landau and Lif-
shitz. Use of this model was, however, restricted
to excitation effects due to the radial component of
the relative motion only. Bates' realized that the
adiabatic molecular states used in representing the
transient molecule are quantized along the body-
fixed internuclear axis. Since the internuclear line
is rotating during the collision process, he recog-
nized a second dynamic coupling mechanism be-
tween the adiabatic molecular levels. This cou-
pling mechanism is called "rotational coupling " and
will be used, in Sec. II, to extend the Landau-Zener
model to take into account all terms in the Hamil-
tonian which cause departure from adiabaticity in
the two-level approximation. It should be men-
tioned here that Lichten also treats rotational cou-
pling, but from a different (albeit equivalent) point
of view. A comparison of the two approaches will
be presented at the end of Sec. II.

Despite the fact that rotational coupling in the two-
state approximation can be solvedby the same math-
ematical techniques as those used in standard Lan-
dau-Zener transitions, some problems still remain.
These problems are treated in Sec. III and have to
do with the breakdown in the validity of the Landau-
Zener approximation when applied to a real colli-
sion. The principal defects are found to lie in the
rather substantial interval around the crossing in
which the Landau-Zener transition takes place.
Bates considered this effect for transitions due to
radial motion (i. e., standard Landau-Zener tran-
sitions). lt is here shown that the defect is even

morse when considering rotational transitions,
mainly because rotational excitation occurs pre-
dominantly at impact parameters close to the
crossing radius, where the angular velocity at the
crossing is greatest. This creates several diffi-
culties all at once. (i) The transition regions for
the two traversals of the level crossing made by
the collision trajectory strongly overlap, and (ii)
the energy difference at the crossing cannot be con-
sidered to vary linearly along the trajectory in the
region of strong interaction between the two levels.
Because of these difficulties, the pair of coupled
differential equations is solved numerically in Sec.
III for the case of rotational transitions. Cross
sections are presented for rotational excitation in
the approximation in which the collision trajectories
are taken to be undeviated straight lines.

II. ROTATIONAL EXCITATION

A. Derivation of Excitation Probability in
Landau-Zener Approximation

In this section we will first review the general
interaction between two adiabatic states, in order
to display more clearly the comparison between the
Landau-Zener transition and rotational excitation.

Let R stand for the vector internuclear separation
and r stand for the coordinates of all electrons of
the colliding systems in a space-fixed frame. In
addition, let r' stand for these same electron coor-
dinates in a body-fixed frame. The distinction be-
tween the two frames is needed in discussing rota-
tional excitation. For convenience, the z axis is
taken to be the internuclear axis of the quasimole-
cule. Finally, let 0 stand for the electronic Hamil-
tonian. The adiabatic states Ic(((r', R) and ()12(r', R)
are defined as eigenstates of the electronic Hamil-
tonian 0 for fixed internuclear separation R,

H j;(r(', R)=e((R)g((r', R), i= i, 2.

The variables r ' are used here because the elec-
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4=c,(t) g,(r', R) exp[- (i/K) f e,dr]

+ca(t)g, (r ', R) exp[- (i/g) f emd7], (2)

where, it must be remembered, R is a function of
time which defines the collision trajectory of the
nuclei. In this paper, the trajectory will be taken
as a straight-line path.

Everything is determined in the state (2) by the
solutions of the eigenvalue equations (1) except for
the coefficients c, and c2. These are determined
by Schrodinger's time-dependent equation

H-N —4=0, (3)

which the true state satisfies. Within the context
of the two-state approximation, however, (3) is re-
placed by the weaker condition

&g, lH —ix —
l

4'&=0, &g, lH —iK —
l
g&=0, (4)

9 8

tronic states are quantized in the body-fixed frame.
For example, a m state has azimuthal quantum num-

ber A= 1 about the internuclear axis.
In the two-state approximation, the state 4 de-

scribing the quasimolecule during the collision pro-
cess can be written, in the impact parameter for-
mulation, as

ties as g, , the Landau-Zener transitions couple
only states of identical symmetry (e.g. , o~-to-o,
transitions). On the other hand, the second term
in (6) is responsible for rotational excitation; it
couples, for example, o and m states, but does not
couple 0-to-o or m-to-m transitions. To see this,
take the collision plane to be the X-Z plane in the
space-fixed frame and Z' the internuclear axis in
the body-fixed frame. Then L, is the y' component
(recall that it is in the body-fixed frame) and can
be written in the form

L~ = L ~ = [(L;+iL„.}—(L; —iL~e)]/2i = (L, —I )/2i,

(7)

where L, and L denote the raising and lowering op-
erators for azimuthal angular momentum along the
internuclear axis.

From Eq. (7) it is clear that the second term in

(6) couples o states to v states and vice versa lt.
also couples z to 5 states, etc. ; but it will not cou-
ple two states having the same z' component of an-
gular momentum. Thus, when discussing rotational
excitation, the symmetry of the two states must be
different, with the consequence that

(8)

where the inner product is taken over electronic co-
ordinates only. Remembering that g, and g2 are de-
pendent on time because they are functions of R,
Eqs. (4) yield, with the help of Eq. (1),

['i+cd &&il&i&le~[-(t«) f'~~«]

and the first term on the right-hand side of (6) will
not contribute. Also, because the states g, are
normalized,

(9)

+c,&g, lg, &exp[-(i/g) f'e, dr]=0,

[c,+c, g, lg, &]exp[- (i/tt} f &g«]

+ c,&P, l g, & exp[- (i/I) f c,d~] = 0.

(5)

[Note that the result (9) assumes that g, is real or
has at most a complex factor such as exp(imp'} which
does not vary with time. Such is the case for mo-
lecular orbitals. ] With the help of Eqs. (8) and (9),
Eqs. (5) reduce to

When carrying out the differentiations of the wave
functions with respect to time, it must be kept in
mind that the electronic coordinates are defined
with respect to the body-fixed internuclear axis,
which is rotating during the collision. As a conse-
quence,

~ 8$; . Og(=A +t
BR

(6)

where A is the relative radial velocity of the two
nuclei, O is the angular velocity of the internuclear
axis, and L, is that component of the electronic
angular momentum operator, in the body-fixed
frame, which is perpendicular to the plane of the
collision trajectory.

The first term in (6) is responsible for the con-
ventional Landau- Zener transitions. Inasmuch as
sf&/sR has the same electronic symmetry proper-

In the neighborhood of a level crossing at R=R~ the
energy difference e& —z& can be considered to vary
linearly with internuclear separation and, there-
fore, linearly with time as well:

(e, —e, )/K= b(R —R„)= ut, (1 la)

with

vg~ =
g dR (&a —&i }

l z=z„~ (11b)

Also, the matrix element in (10) can be considered
to remain essentially constant in the region of
strong interaction between the levels:

t
cq+iOI c& &yilL l&2&expl ih f (ea —eq-)dv]=0,

(10)

cz iO+K c~ P&z l,L pl~ e&xp[ —i@ f (aq —E~)dv]=0.
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Note that V has the dimensions of angular momen-
tum, because 8 has been extracted. The quantities
n and V are taken to be constants. With these sub-
stitutions, Eqs. (10) become

cf+i~ VIf 'c, exp[- ig' J (e~ —c,)dr]=0
(13)

ca+is& V 5 cqexp[+iK '5 (cz —e, )dr]=0,

with (d and v& being the angular and radial relative
velocities at the level crossing. If a straight-line
trajectory with impact parameter p is taken, co and

v& are given by

Finally, ~ and v& may be expressed in terms of the
initial relative velocity v and impact parameter p:

v I Vl la
fi(d/dR) (&I —c, ) I „„R,'(R„—p )'

It will be noted that for rotational excitation, y
varies linearly with relative velocity. By contrast,
y varies inversely with relative velocity in the
standard Landau-Zener excitation.

To summarize the results just obtained, the
probability p for making a rotational transition at
a level crossing between two adiabatic states dif-
fering by one unit of azimuthal angular momentum
is

u) = vJR„=vp/R, ,

vs -—v(R, —p ) /R„.
(14) p 1 Off

with y given by Eq. (18).

(19)

Ic,(-")
I
=0, Ic,(-")

I
= 1

the final values are given by

Ic, (+ )I'=1-e '",

(15)

2i ~ 2'

where, with the constants as they appear in Eqs.
(13),

(d )Vl ~'1 VI
I(d/df) (tm —Eg) I g p Kv„(d/dR) (tg —ff) Is'.„

(1'7)

Now Eqs. (13) are exactly in the mathematical
form as those solved by Zener, with only two minor
differences. (i) The constant &uV in (13) replaces
the constant coupling matrix element in Zener's
work. (ii) The present paper uses a time depen-
dence exp(-ia f e dr) which is now standard,
whereas Zener used the alternative formulation in
which the Schrodinger equation Hg= —ill so that
the time dependence comes out as exp(+ I I e dv).
This, of course, makes no difference in the physi-
cal results.

One important difference must, however, be
noted. The adiabatic states of identical symmetry
considered by Zener do not actually cross. Zener
therefore introduced what Lichten has since
termed the "diabatic" states, which do cross. On
the other hand, the adiabatic states used in the
present paper are of different symmetry and do,
in fact, cross. Thus, the results of Zener can be
taken over intact.

The solutions obtained by Zener to the Eqs. (13)
do not actually yield workable expressions for the
coefficients at all time t, only at t= +. The co-
efficients are expressed in terms of Weber func-
tions of complex argument, which are not tabulated,
but the asymptotic behavior of which are known.
Thus, Zener demonstrated that for initial conditions

B. Comparison with Lichten Approach

Although the basic physics in this section and in
the work of Lichten are equivalent, they appear suf-
ficiently dissimilar at first glance that a word of
explanation is in order. Lichten uses the rotational
coupling term of Bates in defining the adiabatic mo-
lecular state. He is therefore quantizing in a ro-
tating frame of reference. As a consequence, the
only nonadiabatic interaction term which remains
is that due to the radial component of motion, and
Lichten is then able to apply the standard Landau-
Zener results to complete the calculation. On the
other hand, the formulation of the present paper
remains in the space-fixed frame and uses the Bates
rotational term as a dynamic interaction between
the two adiabatic states defined in the space-fixed
frame.

Clearly, the reference frame used to describe
a process cannot have any physical consequence.
However, there can be important mathematical dif-
ferences as to which aspects can be dealt with more
readily. Thus, in his formulation, Lichten finds
it easy to encompass excitation with arbitrary
change in azimuthal angular momentum. Calcula-
tions in the present paper, on the other hand, are
restricted to unit change in this angular momentum.
To handle here the sort of excitations which Lichten
can easily consider would require inclusion of
virtual excitations to intermediate states and there-
by immediately destroy all the simplifications in-
herent in the two-state approximation.

On the other hand, the formulation used in this
paper has compensating benefits. It permits easy
inclusion of nonadiabatic effects due to the variation
in angular velocity of the rotating internuclear line.
This aspect is considered in Sec. III, along with
other effects which cause a breakdown in the valid-
ity of the Landau-Zener approach to a real collision.
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nR = (sa vs s/b) i (21)

where Ib, defined in Eq. (lla), is the slope of the
energy difference at the level crossing and s is a
number of the order of, but greater than, unity.
This is illustrated in Fig. 1 by a direct numerical
integration of Eqs. (13) to exhibit the probabilities
as functions of internuclear separation in the vicin-
ity of a single crossing. Clearly, if the turning
point Ro of the nuclear trajectory lies within an in-
terval bR of the crossing radius, the simple picture

III. APPLICATION TO COLLISIONS

In applying the results of Sec. II to a real colli-
sion, it must be remembered that the crossing ra-
dius R, if crossed at all will be crossed twice, once
on the way in and once on the way out. Thus the
probability (P for making a transition as a result of
the collision is generally considered to be

(20)

which is a, sum of p(1-p)+ (1-p)P, each of which

represents the probability of making a transition on

one of the crossings but not on the other. It is
recognized, in accepting (20), that the probabilities
for each of the two alternative ways of achieving
the transition should not, in fact, be added. Rath-
er, the amplitudes should be added and then the
square of the absolute value obtained. This will
have the result of producing oscillations about the
values given by Eq. (20) as any of the relevant pa-
rameters is varied. Such oscillations can, in
selected cases, actually be seen, but are generally
averaged over by the experimental technique.

Such a simple picture of the collision process is,
unfortunately, not generally valid unless the cross-
ing radius R„ is large compared to a relevant pa-
rameter to be discussed below. It will be recalled
that the assumptions made in Sec. II, in deriving
the probability for rotational excitation at a level
crossing, are, in the region of significant interac-
tion between the two states, the following: (i) The
relative radial and angular velocities, e& and w,

and the matrix element V governing the interaction
can all be considered to remain essentially con-
stant; and (ii) the energy separation between the
two levels varies linearly with time. For a wide
variety of collisions, however, this is not the case.
The probability p given by Eq. (19), it will be re-
membered, is derived from the asymptotic be-
havior of the Weber function. Consideration must
be given to the time (or distance) interval required
before asymptotic conditions obtain. Bates has
shown that the interval of internuclear separation
4R on either side of the crossing radius R„ in which
the probabilities of two states achieve the major
portion of their changes from initial to final values
is given by

of two separate traversals of the crossing radius
breaks down. If

R„—Ro —(skvs s/b) i

Eq. (20) is invalid, and if

R„—Ro» (s @vs s/b)

Eq. (20) is valid (if phase interference oscillations
are averaged over).

The breakdown in the validity of Eq. (20) is par-
ticularly bad in the case of rotational excitation.
From Eqs. (18) and (19) it will be seen that y is
large and p approximately unity when the impact
parameter is closest to the crossing radius. In-

deed, a significant amount of excitation can occur
for impact parameters greater than R„. Moreover,
since the contribution of larger impact parameters
is more heavily weighted in the total cross section,
it is clear that the Landau-Zener approach de-
scribed above is inadequate except for cases in
which R„»4R.

To better understand the rotational excitation
process, therefore, Eqs. (13) were solved numeri-
cally. The most convenient independent variable
for the purpose is O, the orientation angle of the
internuclear axis:

Ch, ~ dc& dc&

dt dO~ dO.

(22)

where, it must be remembered, ~ is not a con-

lcg)
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E X C I TA T ION Ic, I
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v/b- 2.0
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..6
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FIG. 1. Nonrotational Landau-Zener transitions. The
three curves show the values of I c2 I and Ic~ l as func-
tions of R —R„for the three velocities v/b =0.125, 0. 5,
and 2.0. In all three cases, the matrix elements have
been so chosen that 2~ =3.14. Thus, the asymptotic value
of Ic2I for each curve will be e ' =0.043. The ordinate
scale on the left-hand side of the figure gives Ic2 I, while
that on the right-hand side gives Ic~ ) . The vertical ar-
rows touching each curve show bA computed from Eq.
(21) with z taken equal to unity. This choice should yield
a somewhat small value for ~, precisely what the results
show.
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stant, but a function of 8. With this substitution,
Eqs. (13), after dividing through by &o, take the
form Ic I

I.O—

ROTATIONAL EXCITATION

—=.Ol Ic I

b
-0

VI ' "'"'=0+z cue (23a) .B- -.2
dc '+zV+a 'c e'"'""'=0
dO (23b)

with

~,(e) -~,(8) „I J a)(O)

.2- p=. 6

0 I I I I I I I I I I.P
-I.5 -I.2 -.9 ".6 "3 0 .3 .6 .9 I.2 I.5

8
For a straight-line path and with energy separation
varying linearly with internuclear separation as in
(1la),

Q
t. e) hp p &

de
Av cosO" cos 8 (25)

As shown in Fig. 2, the angle 8 is measured with
respect to Ro and varies from --,'m to+ —,'m, which
are the only singular points. The equations were
therefore integrated over the domain —1.35 —0
-+1.35 rad which also served as the lower limit of
the integral in (25).

Figures 3 and 4 illustrate typical results for the
variation of I c&I and Ic, I with 8 as the collision
progresses. It will be remembered that the final
transition probability s =

I c& (+ 2v) I . In all cases
the curve crossing has been taken at R„=1 a.u. and
the coupling matrix taken to be V= 0. 6 a.u. Figure
3 shows the variation for several values of incident
velocity but for fixed impact parameter. Contrary
to what would be expected on the basis of the sim-
ple two-independent-crossings picture, the results
show that the main change in probability occurs in
the region between the two level crossings. (Here,
these are marked by the vertical arrows )Ther.e
is no indication of a rapid variation in probability
centered about each level crossing, with rather
constant probability elsewhere. The reason for the
behavior seen in Fig. 3 is not hard to find; it lies
in the phase development t'(0) given by Eq. (24).
When t; changes rapidly (i. e., when I dt;/dO I is

large), integration of Eqs. (23) yields c& and cz to
be almost constants, performing rapid oscillations
of negligible amplitudes about these constant val-
ues. Conversely, when I dt'/dO~I is small, c, and
c2 make large changes. From (24),

dg I a, (O~) —c, (O~) I

dO~ )i&a&((~))
(26)

where, it will be recalled, the geometry has been
so chosen that ~ 0. Now, going from a crossing
out&card, the absolute value of the energy differ-
ence monotonically increases while ~ in the de-

I.O-

ROTATIONAL EXC ITAT ION

Pa I.4

Ic, I

-.2

.6-
b

FIG. 3. Rotational excitation. The ordinate at the left
gives (c2I; the ordinate at the right gives lc~ ) . The
abscissa gives internuclear orientation, e. Curves are
shown for several values of incident velocity, but with
identical value of impact parameter p=0. 6, crossing
radius R„=1.0, and matrix element V=0. 6 (all in a.u. ).
The level crossing points are indicated by the vertical
arrows marked R„. The values of Ic~ I for the largest
value of O~ shown are, for all practical purposes, (p .

0 I I I I I I I I I I. O
-l.5 -1.2 -.9 -.6 -.3 0 8 .3 .6 .9 I.2 I. 5

FIG. 2. Collision geometry in the laboratory frame.

FIG. 4. Rotational excitation. The ordinate at the left
gives I c2I; the ordinate at the right gives Ic& I . The
abscissa gives internuclear orientation, e. Curves are
shown for several values of impact parameter p, but with
identical values of incident velocity y/b =0.3, crossing
radius R„=1.0, and matrix element V=0. 6 (all in a.u. ).
The level crossing points are indicated by the vertical
arrows marked R„. The values of tc& ( for the largest
value of 0 shown are, for practical purposes, (p.
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TABLE I. The first column shows the velocity divided
by slope of the energy difference at the crossing, in
atomic units, while the second column shows the total
phase change between the two crossings. The crossing
radius and impact parameter are 1.0 and 0.6 a.u. , re-
spectively.

1.0-

.8-

.6-

ROTATIONAL

EXC ITATION

4-

0.01
0.03
0.10
0.20
0.30

6.44 x2~
2. 15x2~
0.64 x2~
0.32x2~
0.22 x2~

1.0
1.0
1.0
1.0
1.0

53.3'
53.3'
53.3'
53.3'
53.3'

0.6
0.6
0.6
0.6
0.6

.2-

0
0 .2 .4 .6 .8 1.0 1.2 I.4 I.e

P

FIG. 6. Rotational excitation probability versus
impact parameter. The curve shows 6' vs p for v/5=0. 3
and V=0. 6, in a.u.

nominator monotonically decreases; both behaviors
work in the same direction to make the ratio in-
crease very rapidly going outward from a level
crossing. On the other hand, going inward from
a crossing (i.e., in the region between the two lev-
el crossings), the absolute value of the energy dif-
ference again increases, but here co also increases
and the ratio remains rather constant over the en-
tire region between the two crossings. This can
be most clearly seen in the case v/b=0. 03; the
oscillations are nearly sinusoidal in 8. It is also
true in all other cases depicted in Fig. 3, but it is
not so obvious. In the three cases vlb = 0. l, 0. 2,
and 0. 3, f does not change by a full 2m in the en-
tire intercrossing region; for v/5= 0. Ol the osciQa-
tions are too small to be drawn clearly. Table I
shows the total change in f between the two cross-
ings for the five cases of Fig. 3. The first column
shows the velocity divided by slope of the energy
difference at the crossing, in atomic units, while
the second column shows the total phase change
between the two crossings. The crossing radius
and impact parameter are 1.0 and 0. 6 a.u. , re-
spectively. From Fig. 3 and Table I, it is seen that
the transition here takes place over the entire re-
gion between the two crossings.

1.0-
ROTATIONAL

2.0-
CF'

gRt
g

1.5—

GROSS - SECTION
FO R R OTATIONAL

EX C ITATION

hv—I VI~R bR

Figure 4 shows the functions I cz(8) I and I ca(8) I

for fixed value of v/b = 0. 3, but for several values
of impact parameter. From this figure it is seen
that g achieves its maximum value at an impact pa-
rameter somewhat less than the crossing radius.
(Note that S should be read from the scale at the
right in Figs. 3 and 4.) &p is quite large at p= R, and
does not drop off to negligible values until p is sub-
stantially larger than R„. This behavior is illu-
strated more clearly in Figs. 5 and 6 which show
6 as a function of p. Smaller values of v/h yield a
p which is sharply peaked at a value just under R„.
Larger values of v/h yield a broad-peaked p which
has its peak at somewhat lower values and extends
further out beyond p= R„. Since the curves in Figs.
5 and 6 must be multiplied by 2np before integrating
to obtain the cross section, it is clear that impact
parameters greater than p= R„make a major con-
tribution to the total cross section for rotational
excitation. In Figs. 5 and 6, no results are shown
for impact parameters less than p=0. 2. The rea-
son for this is that as p-0, (d approaches the 5

.e-

.6

4-

.2

EXCITATION

p

1,0-

y — r&i
//"i ///

~t ///
«//'r

0 fr
0 , .8

fiv/bR,
.8 LO

0
0 .2 .4 .6

I I

~8 1.0 1.2 l.4 I.e
p

FIG. 5. Rotational excitation probability versus impact
parameter. The curve shows g vs p for v/5 =0.1 and
V=0.6, in a.u.

FIG. 7. Collision cross section for rotational excita-
tion. The reduced total cross section O~t/xR„ for rota-
tional excitation is plotted as functions of reduced velocity
Sv/bR„ for collisions with several values of angular mo-
mentum coupling V, given in a.u.



1924 A. RUSSEK

function, &g(Q~)- xb(Q~). In this limit all levels are
strongly coupled and the near-adiabatic behavior
inherent in the two-level approximation completely
breaks down (see Schneiderman and Russek). "
Thus, any results for p & 0. 2 would be completely
spurious. Fortunately, such small impact pa-
rameters make a negligible contribution to the total
cross section for rotational excitation.

Finally, Fig. 7 shows the total cross section for
rotational excitation as a function of incident veloc-
ity for the straight-line trajectories used in this
paper. Five physical parameters appear in Eqs.
(23)-(25): V, b, R„, v, and p. Since the impact
parameter is integrated over in obtaining a total
cross section o; this would normally be expected
to depend on four variables. Three of these are
properties of the projectile plus target molecular
system: V, b, and R,. The fourth is the incident
velocity v. However, because of the form of Eqs.
(23) and the straight-line approximation for t, Eq.
(25), the results in Fig. 7 can be expressed in
terms of only two variables, with the help of scaling
parameters. If the dimensionless quantities

x= p/R„, y = Iv/bR, (27)

are defined, then 2mpdp = 2mB~dr, and the cross
section can be written in the form

o„~=vR, j 6 (x, y, V) 2xdx. (28)

The quantity vR, is the geometric cross section for
getting inside the crossing radius. It will be re-
membered that in the two-independent-crossing
picture 6 is always ——,

'

in the two-independent-crossing picture. A glance
at Fig. 7 shows that this is far from the case for
rotational excitation.
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The channel operators v~ describing scattering from configuration n to configuration y are
utilized in considering a model for three-body rearrangement scattering. The r„o are those
defined by Vo+ V„(E—H+ie) ' V . Two well-known forms of integral equations for the v~ ob-
tained from this expression are explicitly solved for the model potential surface. Using these
explicit solutions, results are examined in the limit that no dissociative continuum is present.
It is found that the integral equations in which the v„o are not explicitly coupled do not yield
the correct results for this limiting case. Integral equations explicitly coupling the v„~ give
limiting results in agreement with those obtained by more-common boundary-matching tech-
niques. These results indicate that the major effects of the dissociative continuum may be
accounted for by considering the coupled equations for the v„o (at least so long as one is well
below threshold for the production of three free particles).

I. INTRODUCTION

The formal theory of rearrangement collisions

has been the subject of many investigations which
have resulted in a large number of alternative ap-
proaches to reactions. ' These various approaches


