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Some of the key approximations involved in the application of the eikonal method to atomic

physics are analyzed, and the method is related to the close-coupling approach. The impor-

tance of an accurate treatment of kinematics is stressed, and a Monte Carlo integration tech-
nique is used to facilitate the application of eikonal equations without simplifying kinematical

assumptions. Results are presented on the excitation of the 2 ~P state of helium by electron

impact, on the excitation of the 2p state of atomic hydrogen by electron impact, and on the ex-
citation of the 2s state of hydrogen by electron and positron (or proton) impact. Detailed com-
parison with experiment is made wherever possible.

I. INTRODUCTION

The purpose of this paper is to comment on an

approximation, usually referred to as the Glauber
approximation, ' which has been in the past few
years used to study electron-atom scattering.
In order to make connection with a more familiar
approach, we may characterize this as a close-cou-
pling method in which all channels are included at
the expense of making certain approximations in
each channel. This is to be contrasted with the
approach of Burke, Schey, and Smith, in which
only a small number of channels are included but
they are treated exactly. In systems such as e+ H

or e+ He, where the polarizability sum rule is
known to saturate very slowly, this is a question-
able approximation, and one might well hope that
a technique which includes an infinite number of
channels, even in an approximate way, could pre-
sent a significant improvement.

The key approximations which go into the Glauber
approach are

k]a] » 1,
E, »V,

(la)

(1b)

ap 6/Sv| « 1, (2)

where k& is the incident projectile's momentum, E,
is its energy, V is a typical potential strength which
occurs in the problem, 4 is a typical energy differ-
ence occurring in the spectrum of the target, and v&.

is the incident velocity of the projectile. If all
quantities are expressed in atomic units, one sees
that these three requirements are roughly equiva-
lent. However, as one gets to the borderline of
validity of the approximation, it may be useful to
distinguish between them. We have separated Eq.
(2) from Eqs. (1) because the role of energy differ-
ences between states is particularly important in
electron-atom scattering, since the long range of
the Coulomb potential means that these energy dif-

ferences are crucial in guaranteeing that "optically-
allowed" transitions have finite cross sections in
electron-atom collisions. We shall look at this
point in particular detail in what follows.

We shall begin in Sec. II by deriving some results
in the close-coupling spirit utilizing only Eqs. (la)
and (1b), which we will refer to as the "eikonal ap-
proximation. " Then we shall attempt to check the

validity of this approximation in e-H scattering by
comparison with exact results obtained by Burke et
al ~ Next, the assumption of Eg. (2)—the Glauber
approximation —will be introduced and, after com-
menting further on the nature of the momentum
transfer problem, we will use the Glauber approxi-
mation, without any of the usual auxiliary assump-
tions about the momentum transfer, to analyze cer-
tain key problems in e-H and e-He inelastic scatter-
ing.

II. EIKONAL-CLOSEXOUPLING APPROXIMATION

We will keep the discussion in this section as
general as possible, rather than specialize to elec-
tron-atom collisions. Let us consider the collision
of two composite systems whose internal coordi-
nates will be denoted collectively by r. The vector
joining their centers of mass will be denoted by R.
We will write the interaction between the two sys-
tems as (e /ao) V(R, r), recognizing that we will be
dealing exclusively with Coulomb interactions. Ex-
change effects will be neglected.

The Green's function for the "unperturbed" prob-
lern will have the form

g „(2v) (a k /2M+ c„—E —i 5)

where I is the reduced mass of the projectile and
the integral sum represents an integral over k and
also, in principle, over the continuous part of the
spectrum of the internal degrees of freedom of the
composite particles, as well as a sum over their
discrete spectrum. Q (r) is the internal wave
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function of the composite system, m denoting, in
general, a collection of quantum numbers.

We may write for the total scattering wave func-
tion which corresponds to center-of-mass incident
momentum k& and initial internal state n

2

4'e (R, r)=e'"'"P„(r)-—Go(R, R', r, r', E„)
Qo

x V(R', r') 4'e (R', r') dR'dr', (3)

where E„=I k(/2M+ e„. In the close-coupling spir-
it, let us now replace the sum integral over the
internal degrees of freedom by summing only on

an index set I. Of course, in principle, I should
contain all states, but this will not, in general, be
practical, as we shall see later. Thus 4'e (R, r)

n

can be written in the form

(R, r)= Z f'"'(R)(f (r}
nf Gl

Inserting this expression for the total wave function into Eq. (3), we obtain the following equation for f'"'(R):

2 (i-( ft -R')

a k ~2M, . a. k /2M
"-( 'f-'"'( ')dR'

~0 ~el +&m-

for all mEE. Here we have defined the dimension-
less quantity

& ~~ (R)= fP*(r) V(R, r)(t) ~ (r) dr .

If we define further

6 „= (2M/I )(e„-e„),
and make the eikonal ansatz

f.'"'(R) = e'"'"X'"' (R), (&)

then we obtain the following equation for y'"'(R):

(q (5-5') y
(8)

where we have made the change of variable q= k- k&. is the reduced mass in units of the electron mass.
Since we expect values of q of the order of magnitude of 1/ao to be important in Eq. (8}, and since k, » 1/ao,
we rewrite Eq. (8) as

M +f(((y(Y Y )
&

tQQ(Z Z )
(n) R g

~ ~(q~(X-X')
Xi)I ( ) II!II 8+apB III E ) q + n /2k i8

-1
x 1+ . U„.(R')y„.(R') dX'dF dZ dq„dq, dq,

2~(&g+ 4n- ~&

We now utilize Eq. (Ia) to expand the term in large
parenthesis. Because of Eq. (la) it is clear that
the second term in the expansion will be small com-
pared to the first term, in fact, of order 1/k, ao.
However, it is easy to see that the second term is
of absolute order '0„./E(. Since we expect on physi-
cal grounds that all the quantities we will be deal-
ing with (the g'")) will be oscillatory in nature with
absolute magnitude unity, it is important that terms
neglected should be negligible compared to I. Thus,
if we assume Eq. (1b) to hold, we can neglect the
second term in the expansion, but only if Eq. (lb}
holds-Eq. (la) is not sufficient.

Throwing away all but the leading term, we now
can perform the q„and q„ integrations (obtaining
5 functions} and also the q, integration, making use
of the relation

x '0 ~~'(Xi » Z ) X~' (X F, Z') dZ', (8)

where

q„„=-n /2k(=M(e„—e„)/8'k, . (10)

In order to simplify Eq. (8), we define a„'")(X,Y, Z)
by

y(")(X, Y, Z)=e "~~en((")(X, F, Z)

and obtain for n'") the following expression:

Integrating the two resultant 5-function integrals,
we obtain

PZ
(n)(R) 8 P ll e(a~„(z-e')

k&~o

~

~

e'" 2' if p&0
q —i5 0 if p(0

Z
o('"'(X, F, Z)=5 „-

& ~0 nt'e r
~ (X, Y, Z')
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x a'".)(X, Y, Z'} dZ', (12) = k(+ M (&„-e„,)/I k( —k, + q„„, ,

where

(13)

subject to the boundary condition

a(") (X, Y, Z= —~)=5 „. (15)

For most practical work, Eq. (14) is very useful
since it lends itself readily to standard numerical
techniques. Of course, if we truncate the sum in
Eq. (14) so that only the single index n is contained
in I, then the equation can be solved exactly. How-
ever, in general, a useful exact solution is not pos-
sible.

Now, in terms of a'")(R), the total wave function
has the form [according to Eqs. (4), (7), and (11)]

4((„(R,r)=e'" Z e "~bra(")(R)(t) (r) . (16)
mal

Using this expression, let us now look at the equa-
tion for the scattering amplitude:

MeT(i=-2 k,,

(&~IVIES((},

where

4}( = e "~' P„.(r)

and 4'( is given by Eq. (16). Thus we have

OR
T e f (ff -fy) R'f 2'

0

x Z e "~" 'U„. (R)a(")(R) dR . (17a)
mal

But

jqmnZ e fq'nmZ e finn'Z f~nimZ

so we have

T
sit

f(~f ff)' ef~nn'
2WQ 0

x Q '4, (R)(r &(R) dR
mGI

(17b)

But k, R+ q .Z = (k(+ q„„.)Z. Now by conservation
of energy

8 k(/2M+ e„= k k&/2M+ e„, ,

from which we conclude that

k( = k( [1+2M (e„-e„,)//P k, ]"b

Note that the Volterra integral equation of Eq. (12)
is equivalent to the differential equation

de(") X r Z Q 'll (X Y Z)n'") (X Y Z)
f+0 m Ql

(14)

if we assume that typical bombarding energies are
large compared with atomic excitation energies
[this is equivalent to Eq. (1b}in atomic physics].
Thus we have

k(. R+q„„.Z= (k(+q„„.)Z=kyZ=k» R,
where kj is a vector in the Z direction whose mag-
nitude is kz. Hence, Eq. (17b) becomes

& ~ 'ub m (R) &~"'(R) dR
ma0 m& I

(18)
Since Ik', I = lk&l, Eq. (18) has the appearance of
an elastic scattering amplitude, and we may use
the familiar argument which tells us that, for im-
portant scattering angles, k,'- k& is nearly perpen-
dicular to the Z axis [to be precise, for all scat-
tering angles 8 which satisfy 8 «(2/k&a()) ( ]. Note
that this result would not generally follow if we had

(k, —kz) instead of (k,' —k~). Thus, we shall use cy-
lindrical integration coordinates and write R= (b, Z),
where b is a two-dimensional vector in the XF plane.
Let us write in Eq. (18)

i(|j-fy) R f (ff-fy) ~ 8e =e

so Eq. (18) becomes

T = f (tf ky) bb2'' e
0

'd„. }b,Z}d'"'(t, Z} dZ) db
mQ al

Looking back at our basic integral equation, Eq.
(12), we see that the quantity in large parentheses
has a very simple expression. Using Eq. (12), we
obtain

e(& (-kf) 'b [(r(n) (b Z od}) 8 ] db
27]z

n' s nn'

(19)
The evaluation of the scattering amplitude now

involves only the solution of the set of coupled dif-
ferential equations given by Eq. (14). The n'th
element of the column vector of solutions to Eq.
(14) goes into Eq. (19), and a two-dimensional
integration must be done to give the scattering am-
plitude. Note that a„(".)(b, Z) is needed only in the
limit Z-~, not for all Z. In most cases of inter-
est, the dependence of a(",) (b, Z= ~) on the angle of
orientation of b can be extracted explicitly from
Eq. (14) in the form e "b. Then the (t} integration
in Eq. (19) can be done in closed form, yielding a
Bessel function of the first kind.

If differential cross sections are not needed, then
one can bypass Eq. (19) altogether and obtain a very
simple expression for the cross section v„„.:
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o .= (k~/k()J IT+i

where T(z is given by Eq. (19). Using Eq. (19}and

calling 4=k& —k&, we have

x [a„'".'*(b') —5„„,] db db' dQ .

Here we have written n„'.")(b, Z= ~) simply as a(.")(b).
Now dQ= sin8d8dp, where (8, (t)) defines the direc-
tion of the vector k&. But 6 =0; +k&- 2A", kfcos8
and since Ik; I =kz, we have & = 2k&(1 —cos8}, and
therefore bd~=4&sined8. Thus, we can write

till (2 )zk
db db' e'~'~ b'

&0 p

x[&'"'(b- ~- ][&'"'*(b')-~- ] ndnd& .

x [n„(".)(b)- 5„„.] [a„(".) (b')- 5„„.],
where the integral on dz ranges over the entire two-
dimensional plane. The integral yields (2v) 5 (b —b')
Finally, doing the integration on b', we have

o„„.= (k, /k, )j la!."'(b) —5„„,l'db. (20)

Thus, in the eikonal approximation, the total cross
sections, both elastic and inelastic, can be obtained
directly, without looking at the differential cross
sections. For inelastic processes, 5„„.= 0. There-
fore we have

a(( 1) (
l

o( ) (b) l2db (21)

As remarkec'. above, in most cases of interest the
Q dependence of n„'."'(b) has the form of a phase
factor, so the (t) integration in Eq. (21) is trivial,
giving just a factor of 2~. Note that if we had cal-
culated transition probabilities by working in a
time-dependent straight-line-trajectory model, we
would have obtained for a„'„',""Eq. (21) without the
factor k(/k). We will discuss this point further in
Sec. III.

III. TEST OF EIKONAL HYPOTHESIS

The results which we have obtained for a coupled
system described by the index set I are very easy
to use if I contains only a few states. The most

Now 2k& will, according to our assumptions, be a
large number (» 1/ao in atomic units}, so we can
effectively consider the upper limit of the 4 integra-
tion to be infinity. Therefore, our expression for
o'„„. becomes

1 ~] ) db db dd e~~ (b b')
(2(()' k, /,

n',

with P(tt()'(b, Z=
~ nl m, n'l 'nt '

equal to zero.
range of values

~.)-.') - (b, Z)&'.",'(. (b, Z),l', nt'

(22}
—~)= 1 and P„'t" (b, Z= —~)=0 for n

is just equal to +„, ,„., „.with Q set
Equation (22} must be solved for a
of b. This set of five coupled equa-

obvious domain of applicability of Eqs. (la} atld

(lb), which have been basic to our work above, is
certainly in heavy-particle-heavy-particle colli-
sions. For example, consider the simple system
H'+ H at energies greater than 1kV. We clearly
have E&» V, taking a typical potential strength con-
servatively to be about 1 a. u. (27. 2 eV), and since
k;ao—- (2M~aoE;/8 ))(, if E, is greater than 1 kV
k~ Qp will always be greater than 100. In fact, even
for energies significantly less than 1 kV, Eqs. (la)
and (lb) will be adequately satisfied.

The only difficulty which prevents the close-cou-
pling eikonal approximation from being a panacea
for heavy-particle-heavy-particle collisions (apart
from purely technical matters concerning the use
of complicated bound-state wave functions} is the
tricky question of how many states should be in-
cluded in I. It would not be useful to go into this
question in detail here; suffice it to say that in many
cases the number of states necessary to give use-
ful results will be prohibitively large.

In this payer, we are concerned with electron-
atom scattering, and it is this domain that we wish
to test the assumptions of Eqs. (la) and (lb). For
electrons with energies from 50-100 eV, these
assumptions are, at least formally, only marginal-
ly satisfied. When E, = 50 eV, k(a0=2 and V/E( 2,

again taking V=1 a. u. When E&= 100 eV, k&ap=3
and V/E, = &. Thus, Eqs. (la) and (lb) are not im-
pressively satisfied. However, a much more prac-
tical approach would be to test an exact solution of
a finite close-coupled system against an eikonal-
close-coupling solution. The two-collision config-
urations e + H and e'+ H are ideal candidates, since
Burke and his co-workers have expended consider-
able effort to obtain exact solutions for these prob-
lems in a finite-state close-coupling framework.

Since we merely wish to test hypotheses, let us
look at the relatively simple five-state close-cou-
pled system: 1s-2s-2pm. The matrix elements
which go into Eq. (14}are trivially evaluated in this
case (because of symmetry considerations, there
are only six matrix elements needed). Also, by
symmetry, the fIt) dependence of the amplitudes can
be displayed explicitly:

&()s)
(b (b Z)= P(1~) (b Z)e

so that Eq. (14) becomes

dP(„",.) (b, Z)
dZ k,gp
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TABLE I. Comparison of eikonal- and exact-close-coupling results with kinematical simplifications.

Initial-
final
state

1s2s
ls2p,
1s2pp
1s2pz

Born

0. 1027rap

0. 2837rap

0.4757rap
1.047rap

Eikonal-
Born

0. 114vrap

0. 378zap
0.4577rap
1 ~ 217ra2p

Exact
close

coupling
(e +H)

0. 101vrao,

0. 2397rap
0. 3937rao
0.877rap

Eikonal
close

coupling
(e + H)

0. 1077rap
0. 3907rap
0. 3597rao
1.14vrap

Exact
close

coupling
(e'+ H)

0. 1387rap
~ ~ ~

~ ~ ~

0. 927ra()

Eikonal
close

coupling
(e'+ H)

0. 1997ra()
0. 3227rao
0. 5217ra()
1.177ra()

tions [actually four equations, since P z',f'(b, 2)
= —P z,"I(b, Z}]is readily solved by elementary nu-
merical techniques. Then, using Eq. (21), we may
evaluate the various inelastic cross sections. We
have done this for both e + H and e'+ H for k,ao
= 2(Z& = 54 eV), so we cancompare withthe results
of Burke et al. at the highest energy in their calcula-
tion. The results are shown in Table I.

Before discussing the entries in Table I, we
should point out that the exact e + H close-coupling
results in column 3 of Table I were obtained with
exchange included. However, the effects of ex-
change are probably quite negligible at k, ao= 2, so
our comparisons should be valid. For the e'+ H

system, no such difficulty arises since the Pauli
exclusion principle plays no role in the e'e wave
function.

The most striking aspect of Table I is the dis-
crepancy that exists between the Born results and
the eikonal-Born results, where by the latter we
mean the first nontrivial term in the iterative so-
lution to Eq. (14) used in Eq. (21) for the total
cross section. The differences are purely kine-
matical in origin since, for example, it is obvious
that the same method applied to Eq. (17a) or Eq.
(17b) would lead immediately to the usual Born re-
sults. [In these equations, the Born approxima-
tion consists simply in setting o„'"'(R)=s . ] A
glance at Table I shows that these kinematical ap-
proximations leading from Eq. (1Vb} to Eq. (19)
or (21) can easily have effects of the order of mag-
nitude of 20%.

In order to make the most meaningful possible

comparison, we therefore have returned to Eq.
(1Va) and used this to evaluate differential cross
sections for the processes of interest. Actually,
since the differences between the Born and close-
coupling results are not too large, we have not
evaluated Eq. (17a) exactly, but rather have eval-
uated the difference between Eq. (17a) and Eq. (19)
in Born approximation. This is not as accurate as
evaluating Eq. (17a) exactly, but since these few
state methods are not our major concern, this ap-
proximation will suffice. The results are shown in
Table II. We see that the changes from Table I
are significant, but that, in general, the agree-
ment is only qualitative between the two methods,
especially if considered in terms of the difference
between the Born approximation and the exact re-
sult. Note that in this case, since we start from
Eq. (17a), the Born and eikonal-Born results agree
exactly. It is interesting to note also that the ei-
konal results of Table II seem to be a bit better
than the results that would be obtained by a
straightforward time-dependent straight- line-tra-
jectory approach. The results of such a method can
be obtained directly from Table I by multiplying by
kz/b, = 0.9. The qualitative improvements of Eq.
(17a) over Eq. (19) make it a natural candidate for
the further approximations which we shall make in
Sec. IV.

IV. GLAUBER APPROXIMATION

We have already commented in the Introduction on
the desirability of including a very large number
of states in the close-coupled equations. We now

TABLE II. Comparison of eikonal- and exact-close-coupling results without kinematical simplifications.

Initial-
final
state

1s2s
1s2p+
1s2pp
ls2p~

Born

0. 1027ra()
0. 2837ra~~

0.4757rap
1.047ra()

Exact
close

coupling
(e + H)

0. 1017r~o
0. 239vrao
0. 393vrap

0. 877rap

Modified
eikonal
close

coupling
(e +H)

0. 0987ra~

0. 2967rao
0. 367vra()

0. 967rap

Exact
close

coupling
(e'+ H)

0. 1387ra()

~ ~ ~

0. 927ra()

Modified
eikonal
close

coupling
(e'+ H)

0. 1857rap
0. 236vrap~

0 524vrao

1.007ra()
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show that, if we make use of Eq. (2), we can in-
clude an infinite number of states and obtain a
closed form expression for n„'".)(b, Z}. We begin
by noting that according to Eq. (10}

q „Z =aors/8~~, ,

if we assume that important values of Z are of or-
der a~. Ne should remark that because of the long
range of the Coulomb potential this assumption is
somewhat shaky; clearly, for a nuclear potential
with range ao this assumption would be quite rea-
sonable. In the above equation 4 is a typical energy
difference between important states of the composite
system. Thus, using Eq. (2), we see that (I „Z is
small compared to unity, so that

QfftftZ ~ ]

Using this result in Eq. (17}we find that

&mm =~~

in the spirit of the Glauber approximation, so that
Eq. (14) becomes

dn'"' b Z Z)o;{b Z

(14')
If we let m' run over the complete set of internal
states of the composite system, we can solve Eq.
(14') exactly. Using closure, we can see immedi-
ately from Eq. (5) that

n(")(f), Z)=J (fr P*(r) Q„(r)

C"-
xexp — z ~~

V' b, Z', r dZ'
k ]ao

(23)

Putting Eq. (23) into Eq. (19), we obtain for the
scattering amplitude

4 *. (r) 4. (r)
mz

P ~ P ao

x e p, (( )r(b, Z, i)dZ) —( dbdr, (24)
k]ao 3

where the symbols are as defined above.
Equation (24) has two features which are very un-

desirable. First, because the minimum value of
k&- k& is zero, it can be shown that the total cross
section for an "optically-allowed" transition is in-
finite. This is obvious if one looks at the first non-

vanishing contribution from the expansion of the
eikonal exponential. Although this is consistent
with unitarity in the sense that the imaginary part
of the elastic amplitude is infinite in the forward
direction, it is very unsatisf actory from a practi-
cal point of view. This infinity results from the
long range of the Coulomb potential and would not

occur in problems involving nuclear potentials,
where Eq. (24) could be used with confidence if
Eqs. (la), (lb), and (2}were satisfied. A second,
more detailed, feature of Eq. (24) which is rather
unfortunate is that it predicts that for s-P transi-
tions in e+ H collisions transitions to the m = 0 sub-
state of the p state are strictly forbidden.

It seems to us that the most natural way to remedy
these difficulties is as follows. Looking back at
Eq. (I%a), let us set e '~" = 1 in that equation. If
we now insert Eq. (23) for a'")(R) into Eq. (1Va)
the sum can be done by closure, leaving us with

T«=- —

z
e" ~ ~' P„*. r P„r U(b Z, r

xexp —
&

z ~
V b Z', r dZ' dbdZdr . 25

a,a,z

This expression, although it has been obtained
through somewhat ad Roc procedures, has the ad-
vantages of possessing correct kinematics and also
retaining the key feature of Eq. (24), namely, the
eikonal exponential oscillates when the incident
electron is near one of the bound electrons in the
target. We shall refer to Eq. (25) as the Glauber
approximation. The presence of the correct mo-
mentum transfer in Eq. (25) insures that the large-
R part of the integral will be cut off properly and
there will be no infinite cross sections appearing
in the theory, although the elastic amplitude is still
weakly divergent in the forward direction. We
should note that because of the simplicity of the

Coulomb potential the eikonal phase can be eval-
uated exactly for anv atom using the fact that

1 1 rz-zz
lrz- r& i rz Irz- rg) zz+zg

The problems involved in the evaluation of Eq.
(25) are formidable. Even for the simple e+ H

case, Eq. (25} involves a six-dimensional integra-
tion, whereas Eq. (24} can be reduced to a rela-
tively uncomplicated two-dimensional integral in-
volving only simple transcendental functions. This
integral can be done numerically with ease. Un-
less some further undesirable approximations are
made concerning the momentum transfer Eq. (25)
cannot be simplified.

Fortunately, the recent generations of high-speed
computing machines have made it possible to do in-
tegrals like the one in Eq. (25) by brute force, We
have elected to do the integration by the Monte Carlo
method which consists essentially in evaluating the
integral at a large number of points chosen random-
ly in the multidimensional integration space. The
sum of these values divided by the number of points
gives an approximation to the integral which im-
proves as the number of points is increased. Ac-
tually, since a few of the variables are integrated
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over an infinite range, it is convenient to pick some
of the variables with respect to a weight function
which is determined essentially by the bound-state
wave functions. The integral over the radial co-
ordinate of the incident electron is slowly conver-
gent, so it was done by integrating on this variable
out to some large, finite distance using the Monte
Carlo method and then doing the rest of the integral
by expanding the eikonal phase and keeping only the
lowest-order contribution, which can, in fact, be
evaluated exactly. This is equivalent to using Born-
approximation phase shifts for large angular mo-
menta. The eikonal phase was retained out to r,„
= 20 a. u. , where ~&, is the radial coordinate of the
incident electron. Checks performed by keeping
the eikonal phase out to r„=30 a. u. agreed with the
results obtained by keeping the eikonal phase out to
x„=20 a. u. , to within statistical errors.

An excellent check on the accuracy of the Monte
Carlo method itself is provided by doing the Born-
approximation integrals by this technique. Since
the Born integrals can be done in terms of simple
functions for systems such as e+ H and e+ He, one
can check the accuracy of the procedure. A partic-
ular advantage of this method is that for atoms
other than hydrogen, the fact that the target-atom
wave functions are very complicated offers no sig-
nificant difficulties.

plitude by using Eq. (25) along with the familiar
six-parameter Hylerras wave function for the

ground state and an Eckart' screened hydrogenic
wave function for the excited state ("inner charge"
equal to 2. 003, "outer charge" equal to 0. 965). '4

We used 100000 randomly chosen points in the nine-
dimensional space for the Monte Carlo integrations
at each value of the momentum transfer. A typical
result (for E, = 103 eV) is shown in Fig. 1. For
comparison, the dashed curve shows our fit to the
experimental results of CMK at 100 eV using Eq.
(26). The fit is seen to be excellent.

Before attempting to compare experiment with

theory, several comments should be made on the
reliability of the Monte Carlo method. From Fig.
1, it is clear that statistical fluctuations at a given
momentum transfer are significant. On the other
hand, one might expect that in integrating over all
angles to obtain total cross sections the effect of
such fluctuations would be reduced, since there is
no correlation between errors in do/dQ at different
values of the momentum transfer. Thus, the total
cross sections are undoubtedly more reliable than

any particular value of Ch/dQ at some momentum
transfer. Since we evaluate both the Born and the
Glauber differential cross sections by Monte Carlo

n2(o2 na)6 +
(

8 gR)7 (26)

where a = k, -k~- 2k, k~coss. Integrating Eq. (26)
over all angles one finds total cross sections for
the 1'So- 2'P, transition in reasonable agreement
with optical measurements.

We have evaluated the 1'$0-2'P& scattering am-

V. DISCUSSION AND RESULTS

A. Electron-Helium Scattering

In order to test the Glauber approximation, let
us first look at the process e + He. This is partic-
ularly well suited for experimental investigation
because the target gas is inert, and at the same
time the target-gas wave functions are sufficiently
simple to make accurate calculations possible. Re-
cent experiments by the Electron Physics Group
at the National Bureau of Standards' '" have cul-
minated in an absolute measurement of e + He dif-
ferential cross sections at 5' for a number of pro-
cesses. " We will concentrate on e + He(lss)-e
+ He(ls2p'P, ) in what follows. These absolute
measurements, carried out at several different
energies, calibrate earlier relative measurements
of differential cross sections by the N. B.S. group. '
We then fit the differential cross-section values ob-
tained at various angles to the simple analytic form
(see Ref. 10, where a similar form is used):
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FIG. I. Differential cross section for excitation of the
1s2p ~P state of helium by electron bombardment as a
function of momentum transfer 4; the incident electron
energy is 100 eV and the minimum physically allowed
value of b, is 4= 0. 305. Differential cross section is
multiplied by b for convenience of scale. The dashed
curve is a fit using Eq. (26) to the results of Ref. 10 as
normalized by Ref. 11; the dots are experimental points
(with experimental uncertainties as shown) at 5, 10,
15, and 20'. The solid curve represents the results of
the eikonal approximation in which Eq. (25) is evaluated
at a number of values of b by the Monte Carlo method.
All quantities are in atomic units.
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FIG. 2. Ratio of the Born differential cross section at
5' [for e + He (1s ) —e"+ He (1s2p P)] to the eikonal dif-
ferential cross section at 5' for the same process is
shown in the solid curve. The dashed curve is the ratio
of the Born differential cross section as measured in

Ref. 11. k; is the incident electron momentum in atomic
units. The error bars on the solid curve represent sta-
tistical uncertainties in performing the Monte Carlo inte-
grations. The error bars on the dashed curve represent
experimental errors.

methods, it might be hoped that the ratio of these
two quantities would be more accurate than either
one individually. That this is indeed the case was
verified by computing the ratio
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FIG. 3. Ratio of the Born differential cross section at
10' [for e +He (1s ) -e + He (1s2p P)] to the eikonal dif-
ferential cross section at 10' for the same process is
shown in the solid curve. The dashed curve is the ratio
of the Born differential cross section at 10 to the corre-
sponding experimental differential cross section as mea-
sured in Ref. 10 and normalized by Ref. 11. k» is the in-
cident momentum in atomic units. The error bars on the
solid curve represent statistical uncertainties in perform-
ing the Monte Carlo integrations. The error bars on the
dashed curve represent experimental errors.

Born

at a fixed angle and doing such a computation sever-
al times (always using 100000 random points in
each computation). The statistical spread between
independent evaluations of the ratio was quite small,
and we feel that p& is the most accurately deter-
mined quantity.

Figures 2 and 3 show ps. and p, oo compared with
the measurements of CMK and of Ref. 10 as nor-

0.5—

0

FIG. 4. Total cross section for the excitation of the
1s2p P state of helium by electron bombardment as a
function of k», the incident electron momentum. Of~2@ is
in units of &ao, k» is in atomic units. The upper curve is
the Born approximation; the middle curve represents the
results of this paper using Eq. (25); and the bottom curve
shows the results of Ref. 10 (normalized at 5 by Ref. 11).
The differential results of Ref. 10 were turned into total
cross sections by fitting them to Eq. (26).

malized by the results of CMK. The error bars on
the theoretical curve represent the results of a
statistical analysis of several determinations of p.
As one would expect, the results at low energy,
particularly for p5, reveal a strong disagreement
between experiment and theory, with the agree-
ment improving at higher energies. The most
striking aspect of Figs. 2 and 3 is the fact that
even at k, =5 (E, =-400 eV) one sees experimen-
tally that there is a significant departure from the
Born approximation at both 5' and 10' and that the
Glauber approximation also shows such a behavior.

Finally, in Fig. 4, we show the total integrated
cross section for the process in question. The
departure at low energy from the Born approxima-
tion is striking, as is the agreement between ex-
periment and theory. This comparison is less
compelling than the ones presented in Figs. 2 and 3
since the "experimental" curve involves an extrap-
olation via Eq. (26) and the theoretical curve is less
precise than the theoretical curves in Figs. 2 and

3.
On the basis of a few spot checks involving two

independent measurements of do jdA at a fixed en-
ergy and over a complete range of momentum trans-
fers, we feel that the error in the theoretical curve
is of the order of 10%. In fact, as far as the Born
approximation is concerned, our values of the to-
tal Born cross section obtained by the Monte Carlo
method agreed at all energies to within 6% with the
exact result. Of course, the amplitude integral of
Eq. (25) has more oscillation in it than does the
corresponding Born amplitude integral as a result
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of the eikonal phase. Thus, in a statistical integra-
tion, the Glauber results cannot be expected to be
quite as accurate as the Born results.

If at each momentum transfer studied one used
the same methods that were employed in obtaining

p, ~ and pmo (namely, repeated evaluation of do/dA,
followed by statistical averaging), then, of course,
one could give a better estimate of the "theoretical
error" in Fig. 4. However, the amount of comput-
er time involved in this more precise attack seemed
extravagant. At this point, it would appear that a
more important task is to obtain a better under-
standing of why the agreement between experiment
and theory is as good as it is.

B. Electron-Hydrogen Scattering

The situation in e + H scattering is qualitatively
similar to that found in the case of e + He, but here
we have the additional possibility of looking at re-
sults on the polarization of the radiation emitted
from the final state of the scattering process e
+ H(ls)-e + H(2p). Such information is not avail-
able in the case discussed above involving the 2'P,
state of helium since the 584-A line in question is
extremely difficult to deal with experimentally.
However, the 1216-A (2p- ls) line in hydrogen is
accessible to experiment and has been studied by
Ott et al. " In these experiments, the 2p state is
produced via the reaction e + H(ls)-e + H(2p).
The relative population of magnetic sublevels gives
rise to a polarization of the emitted radiation. This
polarization is a very important quantity since in
the modified eikonal result of Eq. (24), the polar-
ization is independent of energy and equal to -~.
The polarization for this case is given to sufficient
accuracy by

P= 3(l —x)/(7+ llx),
where x= o,/oo, o, being the cross section for e
+ H(ls)- e + H(2p, ) and oo being the cross section
for e + H(ls)-e + H(2PO).

For the case of a hydrogen target, we followed
the same procedure as discussed above for helium,
except that the exact bound-state wave functions
of hydrogen could be used in Eq. (25) for both the
initial and final states of the target. The integra-
tion is over a six-dimensional space and was done
by the Monte Carlo method, again using 100000
randomly chosen points. We looked at both the 2s
and 2P final states. Several workers ' have al-
ready investigated this problem under the dynami-
cally undesirable assumption that the momentum
transfer is perpendicular to the incident momen-
tum, as mentioned above in relation to Eq. (24)
this gives a selection rule bm = + 1 for s -p transi-
tions, leading to a polarization
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FIG. 5. Polarization P of reemitted radiation following
electron excitation of the 2p state of atomic hydrogen as a
function of the incident electron momentum k& in atomic
units. The solid curve represents the results of this pa-
per; the squares represent the experimental results of
Ref. 15.

This result is in strong disagreement with experi-
ment; the work of Ott et al. ' shows that P is posi-
tive from threshold to about 250 eV.

Such a serious discrepancy is perhaps not sur-
prising given the drastic nature of the assumption
that the angle between the incident direction and
the momentum transfer is 90'. In fact, for for-
ward scattering this angle is always O'. When k&

=1.5, the largest value the angle attains is only
about 55; when k; = 2. 0, the largest value the angle
attains is about 65'.

To begin with, we shall discuss briefly the 1s-2s
excitation process. Our result for o&,2, as a func-
tion of k; agree virtually exactly with the calcula-
tions of Refs. 2 and 5 which made essential use
of the assumption

&~kI .

Taking cascade from higher P states into account,
Tai et al. ' find good agreement between experi-
ment and theory and a very significant improve-
ment over both close-coupling calculations and the
Born approximation which, in the energy range
considered (0, & l. 5), are very nearly equaL Since
our results are identical with those obtained under
the assumption of Eq. (27) (which have been very
thoroughly discussed by Tai ef al. ), we shall not
comment further on them here; we will have more
to say about this case in relation to positron-hy-
drogen scattering (Sec. VC).

The 1s-2P process contains more interesting
information. Our results are summarized in Figs.
5 and 6. Figure 5 shows the polarization P as a
function of k;. The results of our calculation, given
by the solid line, fall systematically below the ex-
perimental points of Fite et al. , although there is
obviously a major improvement over the result P
= -~ obtained using the assumption of Eq. (27). The
error bars are a rough estimate of our Monte Carlo
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FIG. 6. Total cross section (in units of mao) for the
excitation of the 2p state of atomic hydrogen by electron
bombardment as a function of the incident electron mo-
mentum k» in atomic units. The upper curve is the Born
approximation; the second curve is the five-state close-
coupling calculation of Ref. 6; and the bottom curve is
the result of this paper using Eq. (25). The solid squares
are the experimental results of Ref. 16.

(25); as remarked above this curve, when corrected
for cascade, agrees well with experiment. The
remaining curve shows the results for positron ex-
citation, we see that the differences between positron
and electron excitation are particularly striking
below an incident momentum of about 2 a. u. This
illustrates once again the importance of treating
the kinematics of the momentum transfer correctly.
It would be extremely interesting to have experi-
mental evidence pertaining to this question; since
positron scattering is not feasible, proton scatter-
ing from hydrogen in the range 50-150 keV would
be desirable. Since the results for proton excita-
tion scale quite well with the velocity in the velocity
range shown, the results for p+ H(ls)-p+ H(2s)
will be very similar to the positron results of Fig.
V. For example, even at the lowest velocity shown
in Fig. 7, the value of the cross section by proton
excitation will be only about 5/o above the value for
positron excitation. Proton- hydrogen excitation
would have the additional interest that the assump-
tions of Eqs. (la) and (1b) are very well satisfied,
so one would have a direct test of Eq. (2).

error in I', which was found to be significantly more
sensitive to random error than 0,~. Figure 6
shows 0&,» as a function of k&. Included for com-
parison are the five-state close-coupling result of
Burke, Schey, and Smith and the Born-approxima-
tion curve. The theoretical curve, which we feel
represents the content of Eq. (25) to better than
10%, lies a bit below the experimental results, '
but represents a substantial improvement over the
Born approximation. We may conclude, as in the
case of helium, that Eq. (25) gives a good qualita-
tive explanation of experimental results and a rea-
sonable account of departures from the Born approx-
imation.

VI. CONCLUSIONS

We have tried to give a discussion of the eikonal
approximation which relates it clearly to the com-
monly used close-coupling method and have at-
tempted to isolate the key assumptions and test
them by comparison with exact calculations and
with experiment. On the basis of this work we can
say that the eikonal method has qualitatively very
satisfactory behavior: In both e-He scattering and

O.I5-

C. Positron-Hydrogen Scattering

The case of positron-hydrogen scattering (or,
equivalently, proton-hydrogen scattering) is of in-
terest because of the fact that both the Born approx-
imation and the results of Refs. 2 and 5 [which
make use of the assumption of Eq. (27)] predict
that e'-H scattering cross sections and e -H scat-
tering cross sections should be identical, whereas
the close-coupling method shows very significant
differences between the two cases. The differences
between positron scattering and electron scatter-
ing in the close-coupling approach are particularly
pronounced in the case of the excitation of the 2s
state of hydrogen, so we have examined this case
using Eq. (25). The results are shown in Fig. 7.
The upper curve shows the steeply rising Born
curve which is the same for both electron and pos-
itron excitation of the 2s state. The solid curve
shows the results for electron excitation using Eq.
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FIG. 7. Cross sections (in units of 7lao) for the excita-
tion of the 2s state of atomic hydrogen by electron and
positron bombardment as a function of the incident pro-
jectile momentum k; in atomic units. The upper curve
is the Born approximation result which is the same for
electrons and positrons; the solid curve is the result for
electron bombardment computed using Eq. (25); and the
remaining curve is the result for positron bombardment
computed using Eq. (25).
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e-H scattering reasonable (although not perfect)
agreement is found between theory and experiment.
It is clear that in atomic physics applications it is
necessary to treat the momentum transfer in as
correct a manner as possible; in order to do this
we have utilized the Monte Carlo method to deal
with integrals which would otherwise necessitate
serious kinematical approximations. This has the
additional advantage of enabling us to tackle prob-
lems with more complicated wave functions than
simple hydrogenic ones. In particular, for the ex-
citation of helium, where good wave functions are
mandatory, we have been able to extract the exact
consequences of the eikonal hypothesis and test
them against what are probably the most accurate
electron scattering experiments available.

Obviously the above methods could be routinely
applied to other transitions, and it may even be
possible to give a much improved account of ex-
change scattering using these eikonal Monte Carlo
techniques, although serious difficulties must be
overcome. Perhaps the first order of business,
however, would be to do a more precise job on the
Monte Carlo integrations using a present generation
computer which, because of its great speed, would
enable one to use many more random integration

points and thereby reduce our "theoretical error
bars. "

One particularly interesting question remains for
direct collisions, namely, the excitation of atomic
hydrogen by proton impact. If such experiments
can be done in the 50-150-keV range, we predict
that one will find (at the same velocity) a very sig-
nificant difference between P+ H(ls)-P+ H(2s) and
e + H(ls)-e + H(2s).
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