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Within the framework of time-dependent perturbation theory, general expressions are de-
rived for the cross section of multiphoton processes induced by radiation acting on a hydrogen
atom. Bound-bound transitions involving emission of a single quantum and bound-free transi-
tions are calculated for a wide range of photon energies. In the case of resonance, the transi-
tion probability is also discussed. The procedure used to evaluate the sums over intermediate
states is described. The numerical computation allows one to compare the results obtained
for various competing processes.

I. INTRODUCTION

The interaction of radiation with atomic systems
has been the subject of a considerable amount of
recent theoretical work. ' ' Most of this concerns
two-photon processes. In this paper, we shall pre-
sent calculations for the treatment of many-photon
problems. First, we shall discuss any process in-
volving absorption of several photons and emission
of a single quantum sufficient to conserve energy in
a transition of a bound hydrogenic electron. This
study will enable us to compute numerical cross
sections for processes involving a quantum emis-
sion in the region of low photon energies as well
as in the vacuum ultraviolet range of the spectrum.
Next, the transition probability for the absorption
of N photons will be derived. Finally, we shall in-
vestigate the multiphoton ionization of atomic hy-
drogen in the ground state and in the metastable 2s
state.

Section II contains explicit formulas for multi-
photon transition and multiphoton ionization. The
case of resonance is discussed using a procedure
developed by Low' to take radiation corrections
into account.

The evaluation of the Nth-order matrix element
is performed in Sec. III. The sums over inter-
mediate states, discrete plus continuum, are car-
ried out through the Schwartz and Tieman method. '
However, the generalization of this technique de-
scribed in a previous paper, ' is rewritten in a form
involving the momentum operator.

In Sec. IV, the numerical procedure is described
and the precision of the solution obtained from our
computer program is discussed. This latter in-
vestigation has led to the verification of an interest-
ing theorem due to Cohan and Hameka, which con-
cerns the role played by the quadratic A term aris-
ing from the interaction Hamiltonian. Some of our
numerical results are reported in Sec. V.

II. MULTIPHOTON CROSS SECTIONS

The differential cross section for absorption of

(N —1) photons and emission of a single quantum

may be derived by direct application of time-de-
pendent perturbation theory.

The nonrelativistic interaction Hamiltonian be-
tween the radiation field and an atomic electron
ls

Hz —(e/m——)p A + (e /2m ) A

N-Pdo'(g) g I (N)
do =ro I && &s E&z-z '1)i (E&„E,) . (2)

0

do&E&/dQ is the differential cross section per
atom, in cm /sr, for an electron described by
quantum numbers (zz, l, m). ro is the classical elec-
tron radius, I is the incident intensity in W/cm,
and Io is 14.038&&10' W/cm . The incoming pho-
ton energy E~, the outgoing photon energy E„and
the remaining quantities are expressed in atomic
units.

The Nth-order matrix element may be set up in
the form

N

3)t'"'(g„E,)= & ~„. (3)

Using the notations

d. .= (e p)+~. .He' p)- (e p)I,
tl& v= tl«-z) v+&& —"& v(E&+Es) ~ tlo. v-0

we have
Iz&z z) (z„z Id„z

EN-~+ ~N-1,

(4)

(5)

But the problem is greatly simplified by using
an interesting proposition due to Cohan and Ham-
eka. ' It may be shown that for any multiphoton
process involving more than two photons, the quad-
ratic A term does not contribute to the transition
probability. In such a statement the vector poten-
tial A is assumed to be constant throughout the
atomic volume.

Therefore, considering only the linear (p A)
term in the dipole approximation, we have, for tran-
sitions between two hydrogenic bound states,
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l ie) (i, Id, „g Ill) &i, ld, , „
I ))„E~—EI,+ Aq „,.~ E~-Eg+ Q „

(6)

ln Eq. (6}, E and Ee denote the energies of the
initial state Ig) and intermediate state Ii«), re-
spectively. I f) is the final state function and p
= —i V' is the momentum operator. & is the unit
vector in the direction of polarization of the inci-
dent radiation. e' is the final unit polarization vec-
tor of the emitted radiation.

For the value N= 2, it can be seen that Eq. (2)
gives the Raman scattering dispersion formula.

When the energy E, goes to zero, Eq. (2} is no

longer valid. However, within the framework of
time-dependent perturbation theory, the differen-
tial cross section for absorption of N photons may
be directly derived. We get the result

o(~)= (») $'oc
f

— «-1&'"' (Ee, O) g(NEe) ~

Ip E, E,

The Nth-order matrix element R (Ee, 0) is
obtained from Eq. (6), for the particular value v

=0

y)i&"&(E„O)= I, .

g(NEe) is the atomic line-shape function in sec.
The special case of E,=E~ and N = 2 corresponds

to the coherent scattering from a bound electron.
This interaction is clearly described by the well-
known Kramers- Heisenberg dispersion formula

Equation (9}has been treated in some detail by
several authors. "'" The method discussed in
Sec. III will allow us to check some available re-
sults.

The last process we wish to investigate is the
multiphoton ionization. The expression of the dif-
ferential cross section, derived elsewhere, '" can
be rewritten in the form

d(X(g) Vp I 1 (N)
2 N-1 2

dn

(10)

where k is the wave number of the ejected elec-
tron and z is the fine-structure constant. Since
the atom is left ionized, the final state function
must belong to the continuum. In contrast with the
calculations reported in a previous paper, ' the
evaluation of the matrix element Mp will be per-
forrned by using the momentum operator instead
of the position operator. Obviously, it must be
expected that the previous way of operating will
also lead to the same final result.

In spherical polar coordinates, the hydrogenic
wave functions are expressed as a product of two
functions, )1&„» = R(n, l I r) F» (8, @). Therefore,
the calculation of a given matrix element may be
carried out in evaluating separately the contribu-
tions arising from angular and radial parts, re-
spectively. We must rewrite Eq. (3) in a more
convenient form for numerical computation. Each
state is denoted by its index Ik) =- Ii, ), IO) -=Ig),
and IN ) =

I f ). By defining the quantities

&»lpl~)=p», &1 I0 Pl~)=Pl, , E; E=E,,„-
„„"'= 'I(") ""'(E,.E,) I'.

we have
(11a,)

~
p I

3;1...» ~ .~ »&N 1&
( e, l+ 1.1) ( e, 2+ --~, 1)' ' ' ( g, (N))+ n(N l&,i)-
P01(P12 P23)P34' ' 'P(N-2)(N-1)P&N 1)N-

E + ~ ~ ~

~ ~ .» " »
&

( e, l+ n1, 2) (Ee 2+ n2, 2)' ' ' (Ee& &N-1&+ n &N-i&, 2)

I l I
P01P12P2$' ' ' P(N-$)(N-2) (P (N-2) (N 1)' P (N-1) N)

»1 ~ ~ ~ »$ ~ ..
»&N 1&

(Eg, i+ ni, (N 1&)( g, 2+ &l2-, («-1)} ' ( e, (N 1)+ n(N 1) (N 1&)---
+ E P01P 12P2$' ' 'P(N-$)(N-2)(P(N 2&(N-1)'P(N-1)N-)

»1 ~ ~ ~ »)''&(N-&1) (Ee,l+ nl, N)(Ee, 2+ n2, «)' (Eg, (N-1) + n(«-1&, N)
(11b)
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To compute the matrix components of the inter-
action Hamiltonian, we use the following notations
for the well-known relations between spherical
harmonics

V, [R(n, l ~r) Y, ]= [A(l, nti Y „., &

q'

+ It ( I, m ) Y& & -1& m q ]R (n ~
I

I
r )~

Xth-order matrix element for transitions from the
initial state characterized by the three quantum
numbers (n, l, m) to the final state described by
(n', L, M), may be transformed in a more convenient
form for the numerical calculations. All the tran-
sitions allowed by the selection rules are deter-
mined in computing the angular contributions to

&IIt '"'(Ea, E,) By .assuming that the unit polariza-
tion vector is along the z axis, we have

(V„+iV„)[R(n, l ~r) Y, ]= [C(l, m) Y&,.1&& „,q'

+D(l, m) Y(r-&)(m.))q )R(n~l Ir) ~

(V* iV»)[R (n~ I Ir) Y( ]= [E(t~ m) Y('&+(&&m-1&q'

+F(t, m) Y((1)&.1)q I]R(n, t~r),

where the q' operators are given by

(12)

G„(l1,m(;. . . ; ta, ma; . . ;.L,M)

Qo (L, I»-1) Qo ( l » 1t» a)-
«o(t»-a t»-a)' Qo(ta, a t».1)

(Qo(t», 1, la) Qo(t~ ta 1)+ a [1—&((v, 0)]

x [Q,(t„„t»)Q (ta, t», )+ Q (ta,&, ta)Q, (ta, t», )]].

d L d l+1
q'(l, r)= ———,q (l, r)= —+ . (13)dr r ' ' dr r

In order to have formulas in as simple a form as
possible, we shall next define the quantities

O(»-&i a-a)' ' '
QO( 1, l) . (17)

In connection with the evaluation of each factor
G „(l„m„.. . ; ta, m»;. . . ; L, M), the calculation of the

corresponding radial contribution must be per-
formed. This quantity may be written in the form

Qo(t1.&, t1) = [A (I), m&) 5(t , 1t)&+ 1) P„(t„.. . , t„.. . , L iE„E,)

+R(4 mj)5(t1,(, t1-1)],

Q, (t1,1, t1) = [C(t1& m1) 5(t),1, t1+ 1)
(14)

+ D(l;, m)) 5 (t).1, l ) —1)],

Q (t).), l;)= [E(t;,m))5(t).1 I)+I)

+ F (I&, m1) 5 (I),„I) —1)],

(R» Iq IR„1&
n(»-I)" na" n) (Eer (» 1)+ ~(»-.1&,v)-

1 Iq IR,& (R, Iq IR, ,& (R, Iq IR, )
(E,.a+ 1»..) (Ee.)+ t)..)

The total cross section o'(„, &, &
is obtained by

squaring(ot'"'(E~, E,), then summing over the final
states of polarization when the emission of photons
occurs, and finally integrating over the solid angle
Q. Finally we have

~e(»&(E„E.) ~a

(15) =fr iZ
1 $1'..ta. ..i(N 1)

G„(l,m„. . . ;t„m»;. . . ;LM)

where 5(i,j ) is used for the Kronecker symbol 5(&.
From Eqs. (12), (14), and (15), we can write

{(l)d 1 I
v. I&I&) &= Qo(t', t1) {R.) Iq IR) &

{&t, , l(v, +tv, )I&I', &=Q. (t, „I,) {R,&IqlR, &, (16)

{&I&).) I (v,- iv, ) I((t&1 &
= Q-(l, ,1, I1) {R) 11q IR) & ~

R~ being an abbreviation for the radial wave func-
tion R(n, , l, Ir, ).

In combining expressions such as Eq. (16), the

x p„(t„.. . , L ~IE„E,) ~' . (19)

When E,= 0, then Eq. (19) reduces to

/s&t '"'(E„o)i'=Z
f

j~ ~ ~ ~
&

e ~ ~ &(g g)

x Go(t)m„. . . ; t„ma;. . . ; L M)

x Po(t), , ta, ",L IE., E.)la. (20)

The coefficient K arising from the previous man-
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ipulations takes the values Sv/27, 1, Sv/27, and
Sv /0 for the processes described by Eqs. (2}, (7),
(9), and (10), respectively.

The dispersion formulas Eqs. (2), (7), (9), and
(10), are not valid in the case of resonances, i.e. ,
if E, —E, +Q„„=O. Then, the expression of M„may
be rederived by using the procedure developed by
Low' for the resonance scattering. As a principal
consequence of this treatment, every energy term
appearing in the denominator of Eq. (6) is modified

by the introduction of a complex damping term
(~siy). Then, we can expect that the inclusion of
the natural linewidth must lead to finite results.

The probability of a spontaneous transition o of
an atom from a state In) to a state ln') may be
written

(W«)).,.=~so' ' E. l
&n'I ~' I ln) I',

ro

and the natural linewidth as

yn= ~ (W(s)4, n ~

(21)

(22)

For a transition from an initial state Ig) to a final
state If) via a resonant state IR), the multiphoton
process may be described in terms of transition
probability per unit time S',z. By combining Eq.
(2) or (10) with Eq. (7), (9), or (21), we easily find

(W())() )
(W(A)}ER( (s, l) }Rf K)

(s,l) tf (~ y )s 2v g(KE )

!

(23)

In Eq. (23), the transition probabilities W„and
y& are expressed in sec ' and the incident photon
energy is taken in atomic units. K, = 1 unless 8'„z
is identical with (W(c))ng or (W(s))nfl' in these
cases we have K, = (1/9).

III. METHOD OF EVALUATING RADIAL MATRIX ELEMENTS

The chief difficulty in calculating the
P„(l), . . ., 1». . ., L I E~, E,} function stands in the
correct evaluation of the (N 1) -summations over
the n„which are extended over the complete set
of all possible intermediate states of the unper-
turbed Hamiltonian, discrete plus continuum. In
a previous paper' it has been shown how a partic-
ular technique, introduced by Dalgarno and Lewis~'
and reformulated by Schwartz and Tieman" could
be generalized to calculate the sums contained in
transition matrix elements built up from the ma-
trix components of the position operator. We
present here the method of operating with Nth-
order matrix elements IK(")(E~,E,) ( expressed as
functions of the momentum operator.

Let us write the radial contribution in the form

P„(l(, . . . , I)). . ., LIE~, E,)=f drr R(n, llr)

x[q(l„r) V„(l„.. . , l„.. . , Llr, E„E,)] . (24)

From Eqs. (6), (18), and (24), we find

V„(l„.. . , l„.. ., Llr, E„E,)=
~ ~ ~ yfig y ~ ~ e8 (g g)

( I )
(R, IqlR, ) (R„,lqlR~)

(Es, (+~1,u} (Eg, (N-1) ~(N-l), ~}

This function is a special ease of a more general function defined by

V„(l&, l;„,. .. , L
I r, E~, E,) =Z R(n& l& I r) dr& r

& R(n, , 1& I r& )
— —q(lq, (, r~) V, (lq.t) lq ~, . ~, L

I r, E» E,),
1

v )» )+1~ ~ ~ ~» ()~ I 1) y y )~ y ) E + J+~ i ~ 5*1) J+si » )» I ~

(26)

V(LIr, Eo, E.) =R(n', Llr) .
To perform the jth sum over n„we must consider

the Schrodinger equation

D, (r) R(n, l, Ir)

*+——+ —— J ~
s IR(n l lr)

1 d 1 d 1 l(l+I)&
2 dr r dr r 2r

= f"
dx& (r& /r)Z„rR(n), 1) I r)

x r~R(n~, l, I r, )[ (ql~,„r)
x V,(l~,i, 1),s, "., Llr~, E„E.H (29)

By means of the closure condition, Eq. (29) be-
comes

=-E, R(n„ l, lr) . (28) (E + Q), „+D)) V„(l,, 1),), . . ., L
I r, E(„E,)

Equation (28) can be transformed in order to involve
the V„(l~, l~„, . . . , L I r, E~, E,) functions. It may be
checked that we have

(E~+ A) „+D)) V„(l~, l~,(, . . ., LI r, E~, E,)

= q(l, ,„r)V„(l,,„l, ,„.. ., L
I r, E„E,) . (30)

Finally, we have shown how the (N- I) sums in-
cluded in Eq. (25) can be evaluated by solving
(N- 1) equations analogous to Eq. (30).
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where

(31)

To go further into the computation, a more ex-
plicit expression for the radial contribution must
be obtained. The bound-state wave function is used
in the form

nj-1
R(n, 1

~ r) = p(n, l) 2i ( —1)'(1(n, l, s)r ' "exp( —r/n),

a finite sum of derivatives of the Laplace transform
of V„(l„.. . , 11, . . ., L I r, E» E,} computed at the
point p=1/n. Let us define

S„(l„l, ,„.. . , I. I p}

= 1 dr V„(l» 1(.». . . , L~r, EN, E,)e N', (34)

( 2" ( ( ~ 1)r)'
P(n, l)= ——

2 n ~((n —l —1)! (32)
=

d"'
y„(l(, 11,». . . , L

~ p) = — S„(11,l(,1, . . . , I-
~ p) .

dp

(35)

(N(n, l, s}= (n —l —1)!(2/n)'
(n —l —1 —s)!(2l + 1 + s)!s!

The exponential included in R(n, l I r) allows us to
express the quantity P„(l„.. ., 11, . . . , L I E» E,) as

As a consequence of definitions in Eqs. (34) and

(35), it will be noted that S„(l„l„„.. . , L Ip) and
all its derivatives are finite for all p such that
Re(p) & 0. After some algebra, Eq. (24) becomes

f d"' d "&
P„(l». . . , l». . . , L~IE»E, )=p(n, l) 2 ( —1)'a(n, l, s) 5(l, 11+1)~ (2l+s+1) — +p — ~+5(l, l, —1)

dp p J

+p —„,I y.(l, "., !1, , Llfp) . (35)
k dp dp P=|/n

Thus, we have expressed the radial contribution
to IR(")(E» E,) I as a function of
y„(l». . . , 11, . . . , L IP). But the function

y„(l„ l;,„.. . , I IP) is the analytic solution of the
first-order differential equation derived by taking
the Laplace transform of Eq. (30) and by differ-
entiating the result l~ times with respect to P.
Then, in defining o(, „=-2(E,+ 01 „), we have

and it depends on the y(I. I p) function which must
be specified. From Eqs. (27), (34), and (35), we
get

d
y(L /(p) = — dr R(n', L

/
r)e» .

dp
(39)

Equation (39) leads to the following results. (i) For
a bound radial function,

~ &f(l, ~ 1)& —if) &„()r, ),.„, , & l&l~ ~ ~

d 2 d
5(l„1,l, - 1) 2P —+ (411 + 2)—

y (I ~p) =( —1) ' p(n', L)(p —1/n')"

x(p+ 1/n')-'

(ii) For a continuum radial function,

(40)

'r&(4 )r '()(&&)I & (4 4. , . ».l,&\ (&&)

—2 I +1

II (1 +j 'l ')' "
p +k

From Eq. (37), a hierarchy of inhomogeneous
differential equations may be set up. The solution
to the first is used to construct the right-hand side
of the second, and so on. In this way, the first
equation is

„exp[ —2k ' arc cot(p/k)]
[l. —exp( —2w/l1)]'~' (41)

The other equations are defined without difficul-
ties. To solve Eq. (37), we need to know an initial
value of y„(l,, . . . , L IP). This one will be simply
determined at the positive value p = n,
[(E,+Q1 „)& 0] for which the coefficient of the de-
rivative vanishes. The unique solution of the set
of Eq. (37) is the desired y„(l„.. . , l, , . . . , L Ip)
function, which has been defined by Eqs. (34) and
(35) as an analytic function.

d5(I, l» 1
—1) 2P —+(4l» 1+2)—

dp ' dp

(p o(N-1), )r} d +[(1»-1+1)p —11 y.(l» 1& LI»-'"
dp

~ &(&., ),., +))(»)I&(&l&) (»)
IV. NUMERICAL COMPUTATION

The two-photon ionization cross sections have
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been calculated in using different computational
procedures. For the second-order matrix element,
KlarsfeM" derives an exact analytic formula in
terms of hypergeometric functions of Appell's type,
which may be computed at any degree of accuracy.
To eliminate the sums over the intermediate states,
Gold and Bebb~ replace the atomic energies appear-
ing in Eq. (6) by an average energy independent of
the state. Chan and Tang' evaluate the ionization
rate by utilizing the fact that Eq. (38) may be re-
duced to quadrature by the use of an integration fac-
tor. To solve Eq. (38), Zernik and Klopfenstein
have developed a method based on Taylor-series
expansions. From the initial value
y„(l« „,L I a« „„),a Taylor series is formed
about the point pa= a,&,&

„. The function
y„(l«,|,I. l p) is evaluated at the point p, in the re-
gion of convergence. Then, a new Taylor series
is formed about thepoint p= p, and the process is
continued until the solution can be computed at the
desired value p = 1/n.

This method was employed to calculate the mul-
tiphoton ionization cross sections presented in a
previous paper. For the two-photon ionization of
the 2s metastable state, our results were in ex-
cellent agreement with those obtained by Zernik;
but later, the comparison with new available values
related to the ionization of the ground state" '
exhibited some discrepancies. This disagreement
gave rise to a delicate question, since any error
in the second-order calculation may tend to grow
and accumulate until the accuracy of the solution
for the higher-order processes is eventually im-
paired. To remove any kind of doubt, our previous
results have been improved in performing new cal-
culations with a more powerful computer. For this
purpose a numerical program has been written for
the CDC 6600. With this computer it is possible to
store informations related to 300 Taylor series
containing 50 terms each. Because of the big size
of the 300& 50 array, the value of each p may be
chosen in such a way that the convergence of each
Taylor expansion is quickly obtained. Thus, a

diminution of the truncation error is to be expected.
Another source of uncertainty arises from the ne-
cessity of rounding off each entry. This error may
be simply minimized by performing the computation
in double precision. For CDC 6600, this technique
procures about 30 significant figures which must
give a sufficient precision. In fact, truncation
errors and round-off errors must necessarily co-
exist and interact in any numerical computation.
Their presence cannot be avoided and the best we
can do is to estimate an upper bound z~ ' on the
relative error in the matrix element IR'"'(Z~, E,)/
F~" '

I . The derivation of this bound can be obtained
at the expense of additional calculations which may
take a long machine time and be costly for higher-
order processes. The analysis of errors and the
evaluation of upper bounds are given in the Appen-
dix.

Some typical results for the two-photon ionization
of hydrogen in the ground state are summarized in
Table I. It may be seen that our new data agree
quite well with those obtained by IQarsfeld. " Ex-
cept for some wavelengths around 1100 A, the
agreement is good also with the values given by
Chan and Tang. With the possibility of storing
more information for each equation, the discrepancy
resulting from the comparison between our present
and former results has been simply resolved by
using a larger number of Taylor expansions.

In Table II, we present some results concerning
the anti-Stokes Raman scattering and the coherent
scattering from the metastable 2s state. For these
second-order processes, our data are in good ac-'
cordance with those obtained by Zernik. ' The dis-
agreement around the Balmer-n resonance seems
to be due to the factor relating energy and wave-
length. The calculation performed in keeping a
maximum number of significant digits in each arith-
metic operation leads to precise values and small
bounds (as' ' (10 0) on the total error. For the
processes higher than second order, we have car-
ried out an additional verification of our data.
Starting from the conclusions of Cohan and Hameka'

Klars feld
(Ref. 15)

s.s21 {-ss)
4.049 (-34)
s.8os (-32)
1.283 (-32)
8.453 (-33)
9.143 (- ss)
1.O24 (-S2)

Gontier- Trahin
(present work)

6.752 (-33)
4.013 (-34)
6.303 (-32)
1.276 (-32)
8.450 (-33)
9.1s4 (- sa)
1.025 (-32)

1.887 (-32)
2. 1oa (-ss)
8.938 (-S2)
4.953 (-33)
3.2s1 (-as)
s. s28 (-ss)
8.054 (-33)

s. s22 (- aa)
4.049 (-34)
s.8os (- 32)
1.283 (-32)
8.453 (-33)
9.143 (- 33)
1.o2s (-32)

1020
1100
1200
1300
1400
1600
1700

1.0 (-»)
6.6 (-32)
1.1 (-32)
7.o (-sa)
6.8 (-sa)
8.4 (-33)

TABLE I. Values of the two-photon ionization rate 0/I (cm4/W) for atomic hydrogen in the ground state. The numbers
in the parentheses indicate powers of 10. The results ascribed to Bebb and Gold are estimated from the dispersion curve~
of Ref. 6. The first column of values headed Gontier-Trahin has former values given in Ref. 12 and the second is pres-
ent data calculated with an upper bound e& & 10

Bebb-Gold Gontier- Trahin Chan- Tang
z(A) {Ref. 6) (Ref. 12) (Ref. 19)
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TABLE II. Values of the cross section 0 (cm ) for the
(2g —ls) anti-Stokes Raman scattering and the coherent
scattering from the metastable 2s state. The numbers
in the parentheses indicate powers of 10. In both cases,
the upper bound is e''&' & 10

o.z(2s —ls) (cm ) oc'(2s —2s) (cm )

Zernik Gontier- Trahin Zernik Gontier- Trahin
(Ref. 1) (present work) (ref. 1) (present work)

5 000
5 300
6 000
6 550
6 570
6 934
8 000
9 000

10 000
10 600

2. 171 (-23)

7.166 (-24)
8.069 (-20)
1.285 (-19)
1.263 (-22)
2. 361 (-23)
1.564 (-23)
1 ~ 298 (-23)

2. 208
1.908
7.077
6.022
1.971
1.273
2. 364
l. 565
1.299

' 1.219

(- 23)
(- 24)
(-24)
(-2o)
(-19)
(- 22)
(- 23)
(- 23)
(- 23)
(- 23)

7.779 (-25)

3.495 (-24)
1.102 (-20)
1.70 (- 2O)

l. 02S (-23)
7.02 (- 24)
2. 322 (-25)
1.083 (-26)

8.o44 (- as)
1.264 (- 25)
3.473 (-24)
8.246 (-21)
2. 616 (-20)
1.036 (-23)
7 ~ 042 (-24)
2. 327 (-25)
l.086 (- 26)
7.487 (-26)

reported in Sec. II, we have numerically checked
that the sum of matrix elements containing one
quadratic term (matrix elements constructed from
one double-photon jurnp and a certain number of
one-photon jumps) does not give any contribution
to the multiphoton transition probability. The proof
seems to be significant since the calculation has
been performed in adding up the N(N-1) indepen-
dent solutions obtained in solving N(N 1) sets-
of differential equations. In such a computation,
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FIG. 2. Dispersion rate cd/I for six-photon transition
from the ground state. The solid line corresponds to a
ls ls transition. The dashed line represents a lg-2g
transition; at 6078k, the A. z (ls-2p) threshold is a~/
g(5EJI4= 9.6 x10 st; at 4863 A, the A. &4~ (1s—2s) threshold
is os/g(4EJI -1.8x10 4s. The "dot-dashed" line gives the
results for a ls-Ss transition; at 51291, the Xz (lg 3p)
threshold is os/g(5EJI = 2 x 10 +. The upper bound is
~"' &10-'

an accumulation of errors should necessarily ap-
pear; we have observed nothing but the usual round-
off error.

V. NUMERICAL RESULTS
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FIG. 1. Dispersion rate gz/I2 for four-photon transi-
tion of a hydrogenic electron in the ground state. The
solid line corresponds to a lg -lg transition. The dashed
line gives the results for a lg 2s transition; at 3647 A,
the A, &3 (ls 2p) threshold is az/g(3E&)I =8.9x10 '. The
"dot-dashed" line represents a ls-3d transition; at
3077k, the X~ss'(ls —3p) threshold is os/g(3EJIt=2. 9 x10
The upper bound is e z &10

The total cross section o has been computed for
the competing processes which may be produced
by the interaction of radiation with atomic hydro-
gen. When necessary, these quantities have been
evaluated by summing over the final quantum nurn-
bers (L, M). The calculation of Raman-like pro-
cesses from hydrogen in the ground state has been
carried out for a range of wavelengths from 1000
up to 7200 A. The agreement is good with the
values obtained by Saslow and Mills'~ for a ls - 2s
two-photon transition. But our results will be
presented only for radiations which are accessible
experimentally by the light from ruby or neody-
mium-glass lasers.

In Figs. 1-3, the rate o/I" s is given as a func-
tion of wavelength, for transitions from the ground
state to states withn=l, n=2, and n=3, and per-
turbation orders 4, 6, and 7. The dispersion
curves are plotted for wavelengths between the
(N —1)-photon ionization threshold Xtt" " and the
(N- 1)-photon absorption threshold X„'" ". Within
these limits, the scattered photon energy 8, varies
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FIG. 3. Dispersion rate g&/I5 for seven-photon transi-
tion from the ground state. The solid line corresponds
to a ls 2P transition; at 7294 A., the A, z (ls —2s) thresh-
old is oz/g(6EJI'= 4. 9x 10 ". The dashed line represents
a ls-3p transition; at 6154A, the ~z) (ls-3s) threshold
is oz/g(6EJI'= 2. 2 x10 "and the Xzt' (1s—3d) threshold
is o~/g(6EJI 2x10 =. The upper bound is es7~&10

photon absorption threshold X'„" ' and the (N)-photon
ionization threshold Xz'"' successively (Fig. 4).
Since the damping corrections to the perturbation
theory results have been neglected, F~s. 1-3 and

Figs. 5-7 exhibit the expected peaks arising from
the resonant structure of M„. The transition rate
goes to zero below the X„'" " threshold and between
two consecutive resonances. At the wavelength
X„'"', one can note that the absorption cross section
defined by Eq. (7) is very useful to compute the
resonant process determined from Eq. (23), which
is, indeed, the dominant one. Out of resonances,
the most intense processes seem to be those which
involve emission of ultraviolet photons. In partic-
ular, the Nth-order 1s -1s transitions have an ap-
preciable cross section.

In Fig. 5, we present plots of o/I for some third-
order processes which can occur from the meta-
stable 2s state. For a range of wavelengths from
8000 to 11000 8, this graph exhibits the general
feature of the transition rate for the generation
of excited states. Within the preceding frequency
limits, the three-photon ionization rate of the meta-
stable 2s state is given in Fig. 6. In each case,
the computed upper bound e&

' is indicated in the
relevant figure caption.

In Figs. 7(a) and 7(b), we present the dispersion
curves obtained from our new computer program
for six-photon and eight-photon ionization of H in
the ground state, respectively. In general, the
dispersion curves show an increase in cross sec-
tions with respect to our former results. For N= 6,
our data deviate from those computed by Bebb and
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tion cross section Eq. (10) is equal to the Raman-

like transition cross section Eq. (2) [o&q~(l, )/«&s~(l, )
= 1]. Then, we observe that the direct multiphoton

ionization process is the dominant one when the
intensity J is greater than J,. From the values
taken by the two cross sections c,~& and o &» in

some particular cases, we have deduced interesting
results for the J, threshold. At 6943 A, we have
obtained I,= 109 W/cm for a ls - 2P transition [Figs.
3 and 7(b)]. At 5300 A, the threshold is I,= 5x 10S

W/cm for a ls-ls transition [Figs. 2 and 7(a)].
At 3471. 5 A, we find the intensities I,= 10 W/cm
for a ls-ls transition, and I,= 2&&10 W/cm for a
ls -2s transition (Fig. 1 and Fig. 3 of Ref. 12).
From these results, we shall conclude that each
case requires a detailed analysis of multiphoton
processes.

We can go further in our investigations by con-
sidering the case of resonance. At 5128.65 A,
the five-photon energy coincides with the energy
of the Lyman-(ls —SP} line. The sixth-order
(ls - SP -c ) ionization rate of hydrogen in the
ground state and the sixth-order (ls-3p-2s)
transition rate both are resonant process [Figs. 2

and 7(a)]. The related probabilities per unit time
can be evaluated by means of Eq. (23). To do that,
we need to lmow the probabilities 8,&"(Sp- 2s),
W,

'"(Sp- c}= 2QI, y3~ which have been discussed in
literature, 0 and the fifth-order (ls - Sp) absorption
probability which is W„"'(ls - Sp) = 4. 8 &&10 I'g (5&&,).
The computed values of each rate are
W,'"(ls- 3p —c) =2X10 "I' and Ws(ls —Sp-2s)
= 2. 4&10 I . In order to determine the role played
by resonances in multiphoton processes, these
probabilities have to be compared with the corre-
sponding data in a different situation. Out of reso-
nance, at 5100 P. , one finds W,'s'(ls-c)=2X10 SI

and Ws '(ls -2s)= 8X10 I . If the intensity is
increased by a factor of 100 for incoming photons
at 5100 A, we can note that the corresponding prob-
abilities may reach the values obtained in the case
of resonance.

simultaneous with the evaluation of the numerical
solution.

As a consequence of definition [Eqs. (34} and

(35)], the solution of Eq. (37) is an analytic func-

tion y„(l„„l, ~, . . . , Llp). It may be expanded in

a Taylor series

y'(p &)= + s'(i)(p&.&
—p&) (Al )

about some point P& & 0. But it is more convenient

to use the following form:

(A2)

The computational procedure which has been de-
scribed by Zernik, ' leads to recursion relations be-
tween the A'(p, )'s. For j =N, the (I. + 1)th deriva-
tive of the Laplace transform of the final state func-
tion may be determined by formulas in the form

A~(p&}= p„s(i)A~ 2(p&)+ y~ ~(i)A~ ~(p&) . (A3)

p 3(i) and y ~(i) are coefficients depending on L,
m, and P&, which exist only when m ~ 0. The ab-
solute error in A (P,) is denoted by e"„(i). The er-
ror due to the necessity of rounding off each result
is sR, and the relevant error affecting A "(p,) is
lesA" (p;) I. The absolute error eo (i) in the func-

tion y" (P, ) may be easily computed from analytic
expressions such as Eqs. (40) and (41). It prop-
agates through Eq. (AS} into all following terms
of the Taylor series. The error resulting from
this process is

( ) I ~m-2(i) s."~(i)
I

+
I y. &(I)e."&(I) I

. ( 4)

We define & 2(i) and 8', (i) as the errors com-
mitted in the computation of p 2(i) and y„,(i), re-
spectively. They combine to give the term

& "(&)= I&"-a(p&) 8 a(i) I+ I&" &(p&)e'-~(i)l .
(A5)

Neglecting the contributions to s"(i) that involve
products of errors, the uncertainty

in'�

"(p&) is
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APPENDIX

To discuss the accuracy of numerical results, it
is necessary to determine the sources of uncer-
tainty and to calculate upper bounds. It seems to
be impractical to try to correct errors after each
step in the computation; but it is possible to im-
prove a prior routine in order to derive smaller
upper bounds. The estimation of these bounds is

In order to follow the accumulation of errors,
we must examine how equi) propagates into the next
equation with j=N —1, and then into the following
ones. The coefficients of the Taylor series formed
about the initial point P& = o &

verify recursion rela-
tions in the form

A~(a, )= &7~~(i)A~,'3 (a, )+ y~, ,(i)A' ( ~)a

+ e. ,(i)~'. ,(a,}.(A7)

Proceeding as before, we can obtain

".(I}= I~.~(i)~V.(i)
I lx.,~(i) sV~(')I
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n' (f) = I&".a(&g) @~,2(&) I+ IA'x(og) 0 '.|(&) I

+ I&'. |(o~)e.-i(f)l, (»)

where p ~(i) and Q'„(i) represent the errors in

q~,~(i) and g~,, (i), respectively F.inally, we ob-
tain

e' (f)=
I
e„A' (n, ) I+ x~(x)+ p' (i) . (A10)

(Al 1)

The total error in Ao(P~,q} is

&o(&+1)= ~) &'(&)+&'r(&) +l&z~o(pi, i)l, (A12)
mW

where er(i) denotes the truncation error committed
by summing only a finite number of terms in Eq.
(All). The error e'„(i+ 1) in A' (P~,q} and all other
successive errors can be computed as e' (i).

Since the Taylor series considered in Eq. (Al)
depends on the difference (P;,, —p, ), it can be made
as quickly convergent as desired. In addition, it

Starting from the solution at the point P;, we must
solve the equation at the point P;,z. We have

may be noted that two successive &~& coefficients
have opposite signs. In most cases, (P;., —P;) is
positive and Eq. (A2) represents an alternating
convergent series that is terminated after calculat-
ing about 50 terms. In doing this, we introduce
a truncation error which is no greater than the first
term neglected. In Raman scattering calculations
it happens that (P...—P&) & 0; then the truncation
error is estimated to be less than the last term
retained. But in all cases, experience has shown
that the errors caused by truncating the infinite
series are usually small for the (p;,|-P;)values
employed in the computation. Thus, it appears
that the errors affecting the precision of the solu-
tion are mainly due to the use of numbers that are
subjected to round-off. From the e~ (f)'s, we can
derive an upper bound e& on the relative error
committed in the numerical evaluation of
IR'"'(E~, E,)/E~ 'I. This bound is generally
smaller than the error introduced by the physical
constants such as ro and I~. Although &~~ probably
does not represent the smallest upper bound, it has
the advantage of being easily evaluated without a
prohibitive expense of machine time. When the
parameter (p...—p, ) is varied, the values taken by
the upper bound present minima; in contrast, the
first significant figures of the numerical solution
remain unchanged so that the final result seems to
possess a good stability and a sufficient precision.
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