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interchange the variables of integrations. This
seems to be a very trivial point, but happens to be
the main difficulty in the actual calculation of the
rearrangement collisions. In fact, this is the main
motivation for the formulation of QMP, and ob-
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viously we no longer have to evaluate the kernels
such as K;,. An improved calculation of the e'H
pickup collision is in progress using the QMP and
incorporating some additional simplications peculiar
to this particular system.*
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Two approximations to Seaton’s unitarization scheme are described which make it possible
to impose the conservation-of-particle-flux requirements on an approximate calculation of in-
elastic scattering without making calculations of elastic scattering in the two channels which

the transition connects.

One approximation is based on the black-sphere model of Feshbach

and Weisskopf. Another approximation corrects only for back coupling and can be equivalent

to a method of Levine.

The methods are illustrated by applying them to the Born approxima-

tion for the 1s-2s excitation of the hydrogen atom by electron impact.

I. INTRODUCTION

It is well known that as a consequence of time-
reversal invariance and particle-flux conservation
for a scattering process, we can assign phases to
the wave functions in such a way that the scattering
matrix S is symmetric and unitary, the transition
matrix T is symmetric and satisfies the generalized
optical theorem and the reactance matrix R is
symmetric and real.!~® Cross sections and scat-
tering amplitudes calculated by many theoretical
approximations to the S and T matrices do not
satisfy these requirements, even within an artifi-
cially limited subset of open channels. Although
cross sections can be most directly calculated
from S and 7, it has often been recognized that it
is advantageous to make approximations to R (or
to the reaction matrix K =2R) rather than directly
to S or T, because the S and T computed from any
Hermitian R (whether approx1ma.te or exact) auto-

matically satisfy the conservation and time-rever-
sal requirements. * Using these ideas, Seaton pro-
posed a calculational scheme (his method II) in
which the conservation and symmetry require-
ments are fully satisfied even if the conservation
laws are violated in the initial approximation.’

For electron-atom scattering, this scheme has
been applied many times.®='? It has also been
much applied for other quantum-mechanical scat-
tering problems.?°~?" For inelastic scattering,
Seaton’s method requires approximate calculations
not only of the inelastic scattering amplitudes, but
also of the elastic scattering amplitudes in at least
the initial and final channels. We consider here
two similar methods for making the scattering cal-
culation satisfy all the conservation requirements
for an inelastic process without calculating the
elastic scattering. They are alternatives to Sea-
ton’s method which may be considered as approxi-
mations of it. They are, however, different ap-
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proximations than his and may in some cases be
more appropriate. The methods may be applied
in approximate treatments of a wide class of
quantum-mechanical and other wave-scattering
processes; however, in this article we are inter-
ested in elucidating the method, not in particular
applications.

Calculational techniques used recently by Levine?®
and Roberts and Ross®® are special cases of the
general technique discussed here.

II. THEORY

We consider as an example the scattering of a
structureless particle with mass unity and wave
number k, off a target with spherically symmetric
eigenstates n=1,2, ... . For the partial wave with
relative orbital angular momentum 71, the scat-
tering amplitude for scattering angle 6 and an
m - n transition is

Fan'(6)= 5oy (20+1) T Pyleoss) , (1)
(k)
where T,,' is an element of the T matrix. The
contribution to the integral cross section for the
m - n transition is

Qua’ = 27(kn/ k) [ | fan'(6) |* sin6 6 , @)

Q' = (1/k,2) (21 +1) | T |2 . ®

The reactance and scattering matrices are given
by

T=2(Q1-iR)’R @)
§=1-T, (5)
S=(1-iR)* (1+iR) . (6)

Equation (6) is a general transformation of a Her-
mitian matrix into a unitary matrix and is known

as the Cayley transformation.® Beginning with an
approximate Hermitian R matrix R®, the T matrix
computed from (3) and (4) is automatically symmet-
ric, and satisfies the generalized optical theorem

2ReT'=2, | T, |? ™

and the upper bounds imposed by conservation re-
quirements

| Tt [ <148, . 8

Further, the S matrix computed from (4) and (5),
or equivalently from (6), is automatically unitary
and symmetric. (The superscript ! identifying the
subblock of a matrix to which an element belongs
is not always indicated in the rest of the article.)
The direct computation of S or T in a first-order
theory (e.g., the Born approximation, the dis-
torted-wave approximation, or any method which
does not couple the transition of interest to real
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transitions to other channels or to real elastic
scattering) is called method I. It is consistent with
such a theory to set’

-2R°=T', (9)

which is a first-order approximation to (4). Sea-
ton’s method II, which has become the usual uni-
tarization scheme, is to calculate T'' from this
R°by Eq. (4). Seaton’s method II can also be de-
rived using the Lippman-Schwinger equation for
the T matrix by neglecting the principal part of
the Green’s function and retaining only the contri-
bution from on the energy shell.?42%2%3 If the
original T is not already symmetric and purely
imaginary, it is necessary before applying (9) to
symmetrize it

T'=3(T+T7) (9"

(where TT is the transpose of T), or adjust its
phase (see, e.g., Refs 13, 14, and 17)

Tux= ’ Ty l i, (9")
or both. Seaton’s method III is similar and has
been applied a few times,'®® but will not be further
considered here.? Ideally, R®and T" are NXN
matrices where N is the number of open channels.
In practice, the further approximation is almost
always made of treating only M X M subblocks of
R%and T" where M <N. For inelastic scattering,
however, M must be equal to two or larger and the
necessary elements of R? are obtained via (9) from
approximate calculations of elastic and inelastic
scattering.

We now consider alternative methods of forcing
the inelastic cross sections Q,,,'(m # ) to satisfy
the conservation laws. Since the unitarization
scheme is most important when the transition is
strong, a useful model is the black-target model
first used for a totally absorbing sphere (“opaque
sphere”) in nuclear physics3'3; there the absorp-
tion is into many inelastic channels. This model
leads to the elastic cross section being exactly
equal to the inelastic cross section (in general, the
inelastic cross section may be larger than, equal
to, or smaller than the elastic cross section®).

If we apply this model in a two-channel approxima-
tion to the m -~ x transition, then we want @,; = Q,,
=@z =@z . If we obtain R, * for m #n from Eq.

(9), then the desired relation among the cross
sections is obtained if Ry;,*= Ry,%= R,,*. Method IV
is to use these approximate reactance matrix ele-
ments in the 2X 2m, n subblock of (4) to obtain

-2iR,°

T, = ——"—"‘—1 2R, j=n,m; i=n, m (10)
v T,.!

= ’

Tw'= 1T, - (109
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This is an alternative to Seaton’s method II which
allows us to correct the inelastic cross sections

so as not to violate the conservation theorems with-
out making calculations of the elastic cross sec-
tions. Method IV has much the same spirit as the
statistical theory® when the inelastic coupling is
strong (the statistical theory can be defined in a
natural way by making averages over the scatter-
ing matrix elements corresponding to a range of
energies). When the coupling is weak so that R,,°
is small and the first-order theory is accurate, then
method IV is just as accurate (the statistical theory
would be inaccurate if applied in such a situation).
When the coupling is strong, method IV gives the
same kind of results for the inelastic scattering as
a 2-channel statistical theory.

Method II for an m - » transition simultaneously
includes first-order corrections for back coupling
(m=n-m, m-n-m-n, etc.), successive first-
order transitons (m—p-n, m-m-n, etc.), and
competition (m - m, m - n,m—p). The 2-channel
approximation to method II includes back coupling,
successive first-order transitions involving the
two channels, and a correction for competition be-
tween these two channels. Further, in a two-chan-
nel approximation, it is the 2X2 subblock of S that
is unitary and it is the two-channel optical theorem
that is satisfied. Method IV is a two-channel ap-
proximation which includes a first-order correc-
tion for back coupling and approximate corrections
(which will usually be too small) for successive
first-order transitions involving the two channels
and competition between the two channels.

Finally, the inclusion of only back coupling will
be called method V. In this method R,,° (and R,,*)
is determined from Eq. (9) and we set

R a(V) _ R a(vy _ 0
mm nn .
Then (4) gives

v_ —2R.,"

Tnm =1+(R’ma2 , n#*m (11)
v Tom'
- nm ’
GO T T AR T L a1

Equation (11') is a more general statement of a
result obtained previously by Beigman and Vain-
shtein®” and obtained by a different derivation by
Levine. ?® Levine® and Roberts and Ross?® have
applied method V to the problem of atom-rigid
rotor scattering.

As a generalization of methods IV and V, the
unitarization scheme (9) may be applied to results
of weak-coupling theories in approximations in-
cluding more than two channels by filling in average
R matrix elements or zeros whenever particular
R,,” values are not available. The results for the
transition probability of interest will be essentially
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unaffected by such a scheme when the coupling is
really weak, but will be improved when the coupling
is so strong that violation of the conservation re-
quirements becomes important.

Another generalization is to use the unitarization
schemes for the prediction of probabilities in cases
where a first approximation is not known. For ex-
ample, the method of Weare and Thiele® (see also
Roberts and Johnson®® and Roberts and Ross?®) is
equivalent to approximating the R matrix as a tri-
diagonal matrix and then using Eqs. (3) and (4) to
calculate transition probabilities between states for
which R, is zero. If one further sets the diagonal
matrix elements of R to zero, this becomes a
generalization of method V. The use of such a
method for a multiple-coupling situation is an exam-
ple of how these methods might be useful in a weak-
coupling situation, whereas in the other cases
(methods IV and V and the generalizations of IV) we
envision these methods being more useful in strong-
coupling situations as discussed above.

These unitarization methods account only for
real transitions (transitions on the energy shell),
not for virtual transitions. Thus, if increasing
the number of channels included in the unitarization
scheme does not change the cross sections much,
it does not prove that virtual transitions (a polar-
ization effect) to the added states are important.
This point has been sometimes misunderstood in
the past (see, e.g., Ref. 10).

Although these methods are useful under differ-
ent circumstances (e. g., method IV and its gener-
alizations might be very useful for the lowest par-
tial waves in molecular collisions since these pre-
sent a strong-coupling situation”), Sec. III gives
an example where methods I, II, IV, and V are all
applied to one well-studied and fairly well-under-
stood*® case.

III. EXAMPLE

As an example of the use of the methods dis-
cussed in Sec. II, we now consider their applica-
tion to the Born approximation for the 1s - 2s excita-
tion of the hydrogen atom by electron impact, a
well-studied process. In this example we can see
separately the effects of coupling of real processes
(processes whose initial and final states are both
on the energy shell) and the effects of virtual ex-
citations (processes whose initial or final states
or both are off the energy shell). The discussion
should make clear how the unitarization schemes
and various ways of computing the scattering ma-
trix from close-coupling approximations could be
interpreted in terms of selective summation of
Feynmann diagrams.

Table I gives the integral cross sections (in atom-
ic units)
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TABLE I. Integral cross sections @y, (in a(z,) for 1s-2s excitation of hydrogen by electrons.

Source of R matrix Born Close coupling including exchange
Method to compute
S matrix I 1T v v I I v \% I
M 4 2 2) (2) 4 2 2) 2) 1
ki
0.81 0.0904 0.0854 0.4855 0.5133 0.5459%
(Ref. 7)
1.00 0.2227 0.1624 0.6767 0.7224 0.7797* 1.1348 1.1138 8.1340 7.8804 213.4806
(Ref. 7) (Ref. 42)
1.44 0.3211 0.2279 0.6457 0.6774 0.7168% 0.8201 1.2982 3.4168 4.0811 5.7371
(Ref.7) (Ref. 42)
2.25 0.3073 0.2373 0.4923 0.5076 0.5249% 0.4695 0.7534 2.0373 2.3687 5.7542
(Ref. 7) (Ref. 42)
4.00 0.2317 0.1941 0.3092 0.3145 0.3201* 0.2827 0.2893 1.0714 1.2458 3.4874
(Ref. 7) (Ref. 42)
2First Born approximation.
Qyp= 201 Q12" (12) S matrix from the R matrix includes all virtual

for the 11.0-54. 4-eV incident energy range as com-
puted by five of the methods. (The reactance ma-
trices for these calculations are taken from the
Born-approximation calculations of Lawson et al.*')
The table shows that correcting for back coupling
(methods IVand V) only makes a 2-14% reduction of
the cross sections. Thus only a small part of the
much larger 39-85% reductions found in the 2x2

II method is due to back coupling and correc-

tions for conservation of particle flux and unitarity.
The larger reductions are thus mainly due to com-
petition. The cross sections from the 2x2 II meth-
od are much different than those from the 4x4 I
method. The difference between these two methods
is that the latter allows for coupling of real transi-
tions involving the 2p states. Such coupling is
therefore very important. Table I also shows the
cross sections computed from reactance matrices
from the 1s - 2s - 2p - 2p~ close-coupling approxi-
mation calculations of Burke ef al.* The close-cou-
pling calculations include not only the complete
coupling of these four target states (real and virtual
transitions to all orders) but also distortion of the
free-electron wave function and exchange. All
these effects are neglected in the Born-approxima-
tion calculations. The disagreement of the close-
coupling results (columns 7-9) with the results

I-V (columns 2-6) shows that the effect of coupling
virtual processes (polarization) and the effects of
distortion and exchange are important. The virtual
processes involving excited p states can be in-
cluded approximately by using a generalized optical
potential such as an induced dipole-polarization
potential. ® The 4x4 matrix calculation of the
close-coupling S matrix from the R matrix includes
all real and virtual processes among the four states.
The 2X2 matrix calculation of the close-coupling

processes among the four states but only real pro-
cesses involving the 1s and 2s states. The large
difference between these two calculations (columns
7 and 8 of Table I), like the large difference be-
tween columns 2 and 3 of Table I, shows that cou-
pling of real processes involving 2p states is impor-
tant. This coupling of real processes is called the
absorptive part of the charge polarization and has
been studied less than the virtual dipole effect. It
has been studied recently by Mohr, * Bonham, 548
and Green.*" The comparisons presented here
show the 2p state enters in an important way both
as a virtual intermediate and as a real intermediate
for the 1s-2s transition. Bonham’s study of elastic
scattering off the helium atom led to the conclusion
that p states enter in an important way both as vir-
tual intermediates and as real intermediates. ‘¢ The
success of the tridiagonal reactance matrix calcula-
tions of Weare and Thiele® (see also Roberts and
Johnson®) for v =0 to v = 2 transitions in collinear
atom-vibrator collisions shows that v =1 states en-

TABLE II. Collision strengths Q! (1s-2s).

Method II 1 v v I
M 4 2 2) 2) 1
1 R
(1] 0.81 0.0035 0.0146 0.1171 0.1243 0.1326
1.00 0.0158 0.0191 0.1637 0.1779 0.1957
1.44 0.0243 0.0238 0.1547 0.1673 0.1830
2.25 0.0237 0.0233 0.1167 0.1238 0.1321
4.00 0.0193 0.0192 0.0722 0.0749 0.0778
2 0.81 0.0106 0.0002 0.0002 0.0002 0.0002
1.00 0.0282 0.0040 0.0043 0.0043 0.0043
1.44 0.0124 0.0212 0.0266 0.0267 0.0268
2.25 0.0317 0.0485 0.0622 0.0666 0.0670
4.00 0.0644 0.0727 0.0988 0.0998 0.1008
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FIG. 1. Differential cross sections vs scattering
angle for the 1s-2s excitation of the hydrogen atom by
electron impact as calculated for several approximations.
The circles indicate Born.I; dots, Born.II; straight
line, Born.IV; dashes, Born.V; dash-dot, close cou-
pling with eigenstates » =2 included and S matrix cal-
culated using 1s, 2s submatrix equations (2X2); and
dash-dot-dot-dot, close coupling with eigenstates n =2
included and usual 4% 4 calculation of S matrix.

12 150 180

ter essentially only as real intermediates in their
cases. Roberts has used this fact to make second-
order corrections for atom-vibrator excitation
collisions by keeping only contributions from real
processes.* He got good results. Further, Roberts
and Ross [see Eq. (1) of Ref. 29]showed that real
transitions dominate in atom-rigid rotor collisions.
Returning to Table I, the large difference be-
tween columns 8 and 11 (like the large difference
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between columns 3 and 6) shows that real competi-
tion effects involving only the 1s and 2s states are
also important.

Table II gives the collision strengths

Q' (1s, 28)= (k,%/7) Q1. 13)

for two partial waves. These results illustrate the
well-known fact that the unitarization procedures
are most important for the lowest partial waves.
They also show that the correction for back cou-
pling becomes small with increasing ! faster
than the correction for competition. Figure 1
shows differential cross sections. The Born,
unitarized Born, and 2X2 matrix calculation in the
four-state close-coupling approximation do not
show the increased forward scattering caused by
interaction with the 2p state. This increased for-
ward scattering is shown by the full close-coupling
approximation. This polarization effect requires
further study. The difference in large angle scat-
tering between the close-coupling approximation
and the unitarized approximations is due to ex-
change and distortion. The IV and V method re-
sults show that back coupling alone makes only a
small change in the Born differential cross sections.

IV. CONCLUSIONS

Two methods for forcing approximate cross sec-
tions for inelastic scattering to satisfy the require-
ments of conservation of particle flux and time-
reversal invariance may be useful in calculations.
Generalizations of these methods may also be used
to simplify scattering calculations.
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APPENDIX

The general solution of a 2X2 subblock of (4) is
easily obtained. Let Ry,= Ry and U= Ry,>— Ryy Ry,.
Then

___2U-2Ry el 2
H 14+ U-iRy+Ryp) * =
- 2iR,,;

T =
BT 14+ U-i(Ry +Rg)
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