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electrons. Clearly, beyond a certain value of 5,
the average radius would exceed one-half of the
average internuclear separation at a given density
and temperature. In this region, the approxima-
tion that the electron is bound to a single proton

(or an ionized impurity) is no longer valid and one
must take into account systems of the type (S. C. )2,
(S. C. )2, etc. Here S. C. represents a neutral
system (analogous to an H atom) in which the elec-
tron is bound in a SSCP.
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A new variational principle for multichannel scattering is derived which combines certain
simplifying features of both Kohn and minimum principles. The rigorous bound property of
the latter is relaxed slightly to gain simplifications and efficiency, especially for collisions
involving particle rearrangements. The approach is essentially equivalent to treating varia-
tionally the open-channel part of the wave function, rather than solving for it exactly as re-
quired by the minimum principle. However, variations of parameters for the open and closed
channels are carried out separately using a double functional.

I. INTRODUCTION AND SUMMARY

The variational principles for scattering problems
of Kohn, ' Hulthen, and Schwingers types do not
provide bounds on scattering parameters. Because
of this lack of bound property, scattering param-
eters calculated may fluctuate, often violently. '
Nevertheless, it has been demonstrated' that mean-
ingful stationary values can still be extracted by
performing an extensive numerical analysis with
large numbers of trial functions. The essential
advantage of these methods lies in their simplicity
of applications, as all the parameters introduced
are determined variationally in a uniform fashion.
There have also been several modifications of the
principles to avoid the violent fluctuations due to
spurious singularities. For example, the method
developed by Harris identifies the scattering energy
to be one of these spurious points. Another
approach' avoids the singularities altogether by
analytically continuing to the complex energy

values. These approaches still require a fair num-
ber of trial functions and their convergence is not
always uniform. However, their applicability for
simple scattering systems is reasonably well under-
stood by now. We do not distinguish different ver-
sions of the methods and denote them in the follow-
ing as the variational principles for scattering
(vps).

The minimum principles and their generaliza-
tions have been successfully applied to many of the
low-energy scattering problems, ' ' with the re-
sulting bounds on scattering parameters. The pro-
cedure involved is considerably more complicated
than that of the VPS, and gets rapidly worse as
more reaction channels open up. Specifically, the
complication arises from the requirement that the
open-channel part of the scattering equations should
be solved exactly numerically. Of course, this is
necessary if the rigorous bounds are to be main-
tained. A recent calculation'~ of the positron-hy-
drogen pickup collision using the generalized varia-
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tional bounds (GVB} formulation clearly indicated
that the method is too rigid and unwieldy.

It is the purpose of this paper to suggest a new

approach which is much simpler to apply than the
GVB, but still maintains the bound property in a
slightly weakened form. It will also have some
fluctuations that the VPS have, but they can be
readily controlled or eliminated by one of the alter-
native VPS. The difficult part of solving a scatter-
ing problem involving many particles is the distor-
tion effect, and the important thing here is that
this effect of the closed channels will be efficiently
treated using the bound property just as with the
GVB. We denote this new method as the quasi-
minimum principle (QMP) and will show that it is
an approach intermediate between the VPS and
GVB.

In Sec. II, we discuss the relevant properties of
the Kohn principle and the GVB formulation for the
development of the QMP. The main result of the
paper is contained in (3. 1)-(3.4), with the result-
ing approximate bounds (3.6) on the scattering pa-
rameters. Some generalizations and possibilities
for further modifications of the QMP are also
pointed out.

II. VPS AND GVB

We briefly summarize in this section the specific
features'3 of the VPS and GVB relevant to our dis-
cussion of the QMP. We consider a scattering
system with Lo open channels and assume that the
explicit forms of projection operators I' and Q = 1
—P are available, where P projects onto all the
open channels. (This strong assumption can be
removed, 9 but we do not consider this possibility
here. ) With Mo =H E, we can-write the scattering
equations as

o~= —&~o

QM, Q4= —QM, P4 .

(2. I)

(2. 2}

- (Pi/bi)' "4i(r i)[ai 3 i+ bi. i]~i/tti (2. 4)

as A, -~, where

s, = sin(b, R, + y,), s, = cos (b, R, + y;),

and '9, contains the angular and spin factors, the
y& being additional constant phase factors. For
each set of initial conditions (a,]; we have the pa-
rameters b, related to the reaction matrix K&~ by

By definition, Q4 contains only the closed channel, s,
so that

(2. 3)

as the channel coordinates R, - ~. On the other
hand, we have

Lo

bi=2 K, iai .
gnl

(2. 6)

We write the trial function 4, in the form

+t = &+~+ Q+~

with

LO
~ 1/2

6 [«fi &i+ b(i gi «]&i/& i
f

(2. 6)

Lp

+Z Ci'&Xii, (2. 7)

Lq
Q+ = + &'Qx (2. 6)

and the Kato identity as

~=X, +(elbi, ie, )

= X, + (O', I MO [4,) —7',

where

r=(&lily, l&), II =+-4'„
Lp

&, = —2stt Q aibi, .
ill

(2. 9)

In (2. 7) and (2.6), both P g„and Q y, are square-
integrable trial functions of perdetermined forms,
while f, (It,) and g, (R,) are inserted such that the
correct boundary conditions at R, = 0 are satisfied,
and both asymptotically approach unity.

The Kohn variational principle is obtained with
the functional

[~]=q+ (Pe,
~
bi,

~

Pg, )

+ 2(~iliito) Qg'i)+ (Qg'i( bto( Q~ ), (2. »)
and the variations

6[X] 6[X] 6[X]
bCs (2. II)

That is, the stationary value of ~ is obtained from
a single functional [A] by simultaneous variations of
all parameters. Obviously, this is the most gen-
eral way in which all the parameters can be varied,
but, as mentioned earlier, the VPS do not provide
the bound property. Thus, in general it is not pos-
sible to judge how small ~ should be. Further-
more, the determination of C ~ is completely mixed
up with the fluctuations, making it difficult to settle
the value A, By the QMP given in Sec. III, we un-
couple the effect of the fluctuations from C . Other
variational procedures mentioned earlier have the

For easy comparison of the VPS and GVB, we for-
mulate the VPS in a slightly different way, although
one probably never uses this way in practice.

A. VPS



QUASIMINIMU M I'RINC IP LE FOR MU LTICHANNE L SC ATTE RING 1883

similar features as that of Kohn.

B. GVB

The GVB formulation completely eliminates the

spurious fluctuations in X, which occur in the VPS,
and provides bounds on scattering parameters. It
requires an exact solution of (2. 1) for P4, for
given Q4'„while (2. 2) is treated variationally with

adjustable parameters. Thus, we write for (2. 1)
and (2. 2)

-=+(Pe,
l
SolPi, ),

where M« is a matrix with elements

(2. 24)

(2. 23)

(We neglect here the question of subtractions. )
From (2. 14), with (2. 8), we have

Lg
[&]=—2 (P~IMol Qx.~)[MoH-(qx-~l Mol Pq')

m, n

PM, P4, = - PM, Q4, , (2. 12) (QX ~ IMo I QX ~~} .

[«=2(q+~l Mol P+ )+ (q+, I Mol Q+~) ~ (2. ») This result can be combined with (2. 12) to obtain

with P[M, +So]P4, =0. (a. as)

(2. 14)

Defining the homogeneous solution of (2. 12) as

PMoPP =0, PMoPG P= —P

with the resulting parameter X, we have

(2. 15)

[X]=x'+ [z] .
It is simple to show that as P4, -P4'„[A] ap-
proaches [X]. From (2. 12) and (2. 15), we can
write

(2. 16)

P4, = P4 + G~PM Q4 (2. 17}

[z] = 2 (q e, l N~) + (q 4,
l
M~ [ q 4,}, (a. 18)

We have noted previously that (2. 17) and (2. 8), sub-
stituted into the Kohn principle (2. 10), result in
the GVB. We can also rewrite (2. 13) in the form

Thus, the requirement of solving (2. 12) exactly, in
order to maintain the inequality (2. 23), is complete-
ly equivalent to solving (2. 25) for P4', for a varia-
tionally determined So, , where (2. 22) gives im-
mediately

SQ (SQ(0 (a. 26)

The complication of the GVB, compared with the
VPS, lies in this requirement for P4, . However,
we have noted earlier that the physically complicated
part in the original scattering problem is contained
not in P4'„but rather in Q4, and thus in S ~, and
this part can be determined effectively using the
property (2. 26), without the complication of the open
channels. The nonlocal operator S P in (2. 24} can
also be written in a diagonalized form

Lq
S~ =-+ Moq&n~)Ãnc —E) '(Wni Mo, (2 27)

where

Mo+ MoG Mo y NJ, =Mo P4

Using the orthogonality properties

PMp=M~P=O, M~= QMpQ,

PNI =0, N~= QNJ, ,

[J]= (i,
l
M~

l
4,) + 2 (4,

l
xp),

we can write [J] without the Q operator as

(a. 18)

(a. 20)

(a. 21)

where (O' —E) and QX„are the eigenvalues and
eigenfunctions, respectively, of QMoQ. Some of
the low-lying states with E~ may correspond ap-
proximately to the resonances. It is clear that S~~

can be obtained if we have the explicit Q operator.
However, the need for the Q operator in (2. 25}
may be eliminated only if E%, is obtained exactly from
(a. 25). Qn the other hand, this nice feature may
still be present to some extent even if (2. 25} is
treated approximately, so long as the resulting
solution is a reasonably good one.

or

QMoQ & 0 (2. 22a)

QM~Q= M~& 0,
with results in the bound

(2. 22b)

where 4, is a square-integrable trial function. This
form was crucial in treating the rearrangement
collisions, where the explicit forms of P and Q
are not readily available.

The bound property of the GVB follows essentially
from the inequality

III. QUASIMINIMUM PRINCIPLE

In this section, we develop a new variational
principle which can improve the VPS insofar as
the determination of Q4, is concerned but still re-
tain the original simplicity, and, at the same time,
can simplify the GVB by eliminating the require-
ment of exact solution of (2. 25) and yet retain the
inequality approximately. The only assumPtion
we have to make for this purpose is that the VPS
are perfectly capable of handling a simple potential
scattering problem involving several open channels,
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such as that described by (2. 25), to any desired
accuracy. '-'

We introduce a double functional of the form

[~]= q+ (Pe, le, lPe, )+ [z],
with

(3. 1)

[g]=(q4,
l
iif,

l q e,)+2(P4, le, l
qq, }, (3. 2)

where the explicit forms of 4, are given by (2. 7)
and (2. 6). Determination of the parameters is
carried out in two steps: first

(3 3)

followed by

5[X]
p =0. (3.4)

(qfllbf, l
qfi)&0.

Therefore, if qC, in S~o and P4, in (3. 5) are such
that

ltq~lI » Ilm'tI

where»' denotes the error involved in (3. 5), for
given S~~, then we have an approximate inequality

7-- 0,
and thus

(3. 6)

which is the desired quasiminimum principle (QMP).
[We have to stress at this point that »' above does
not include the effect of QO itself due to the coupling,
but only that part of the error resulted from (3. 5}
for given S~o. ) It is essential, therefore, that the
variations (3.4) should be carried out with a suffi-
cient number of terms (L~) to yield reliable accu-
racy.

In this way, we have effectively isolated the problem
of determining C~ from the rest of the variations
involved in the Kohn principle. The double func-
tional (3. 1) is constructed to be used precisely in
the above sense of (3.3) and (3.4).

Obviously, we immediately recover the usual
VPS, (2. 11) with (2. 10), if (3.3) and (3.4) are com-
bined to a single-step variation. On the other hand,
combining (3.3) and (3. 1), we can also write

[x]=x, + (Pe, la, +S~olP@,), (3. 5)

which is simply a variational statement of (2. 25) and
thus the GVB. The form (3. 5) also suggests the
approximate bound property of the resulting ),.
That is, from (2. 9), we have.= (qfl I iaaf, l q»+ 2(qfi liif. l»)+ (Pfi le, l

»),
with

~~ = P.~t+P~~~+ @~&, (3.7)

where we are again assuming that such projection
operators exist, and this new form is substituted
into (3. 1) and (3.2). The variations (3. 3) are the
same as before, but (3. 4) are replaced now by

5[&]
5(P,e, )

5[~] 0
BC' ~

(3.4')

We then obtain the QMP,

(3. 6')

if the error made in the variations for C, ~ is less

The two-step variations (3. 3) and (3.4) of the
QMP cannot be as general variations as those in-
volved in the VPS, but this limitation is more than
offset by the advantage gained in the determination
of Co using the inequality (2. 26). The past studies
on the VPS and GVB indicate that the QMP could
yield reliable results with a much fewer number of
trial functions. The simplification of the GVB re-
sulting from (3. 5), rather than (2. 25), will be very
significant as the number of open channels goes
up. For rearrangement collisions, such as the
e'H system, ' the exact coupling kernels P,.M~P~
as required by the GVB are extremely complicated
to evaluate. Although the same quantities also
appear in (3. 5), for example, they will be immedi-
ately integrated out with PC „and this can simplify
the whole calculation as the integration variables
can be freely interchanged. This was in fact the
partial motivation for the present study. Thus,
the essential points to be retained in the QMP are
the variations (3. 3) and (3.4) from the VPS and the
strong inequality (2. 26) from the GVB. This latter
point will also allow the resonance energy calcula-
tions as a part of the program.

As stated earlier, the steps involved in (3. 5) need
not be the Kohn principle, and any other forms of
the VPS may serve the purpose equally well so long
as the mild restriction on the PQ' can be satisfied.
Thus, in the application of the Harris method, ~ the
energy values obtained by the diagonalization of the
matrix (P)i„ I MO I Py, .,) should be adjusted to coin-
cide with the value E, perhaps by varying the non-
linear parameters in Pg„, i.e. , zeros of the above
matrix. On the other hand, the method of analytic
continuation requires the change of the boundary
conditions on E%, to be the outgoing waves. This
will also change the expressions for X and X, but
mill not affect the above two-step procedure.

The QMP given above can be generalized to cases
in which some parts of the open channels may be
treated exactly. Thus, we write the open channels
in two groups as
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than that m (3. 3) for C~, i.e. , ~~P,Q II « IIQQII.

We add two remarks on possible extensions of
the QMP.

Remark 1. For some rearrangement collisions,
the operators P and Q are not available, so that
[J] cannot be constructed. The GVB formulation
solved this problem by requiring that the exact G

and +~ should be calculated. Then, the quantities
M~ and NJ, of (2. 19) can be constructed with the
orthogonality properties (2. 20).

However, these are precisely the quantities we
are trying to avoid in the present formulation: One
possible solution to this problem may be that, as
P%( is improved in (3. 5) for given S(o, which may
contain some P components because of the lack of
Q, these undesirable parts will be canceled out
through readjustments of C, in the integral
(P%( I Mo+ S(o I E%() Thu. s, even if we do not use the

Q projection in the construction of St~, and, as
a result, are without the help of (2. 26), the double
functional procedure may still give an improved
convergence and less fluctuations. This point
requires more extensive analysis, however. A
more satisfactory solution can be given in terms
of the theory of sequential projections, ' which is
in some sense related to the generalization given by
(3.7) and (3.4'). This will be discussed more fully
elsewhere in connection with the positron-hydrogen
pickup collision. "

Remark 2. Instead of (2. 1) and (2. 2), we may
also study a slightly different set of equations

PMp4' = 0 or P» Mp4' = 0 with P» P = P»

QMp+ = 0,
where P, =g() (g(. The GVB require that

(3.6}

P(M04'( = 0, (4'(, QM04'() = 0 . (3.9)

Although the set (3. 9) is very simple, it is not clear
at present whether its use will yield further simpli-
fications of the theory.

IV. DISCUSSION

We discuss here briefly the potentialities of the
proposed approach and point out where it could be
most effective.

(a) In the case of single-channel scattering, such
as the positron-hydrogen system, where the exact
target function and the open channel projection oper-
ator are explicitly available, the QMP may not be
needed because the original MP can be carried out
by simply integrating numerically the integrodiffer-
ential equation for the open channel. In fact, the
variational methods of Kohn and Harris are known
to be as effective in such cases. +6 As noted earlier,
the closed-channel contribution has already been in-
cluded in (3. 5), so that the problem is reduced es-
sentially to a scattering by nonlocal separable po-

tentials. The variational procedure can give re-
liable result with only a few linear parameters. '

Now, we consider the multichannel scattering. The
GVB require the exact solutions of a set of coupled
equations in which the distortion terms have been
included as before. Here the numerical solutions
require much more effort, although extensive works
of this kind have been done in the past. After all,
the accuracy of the open-channel solutions can and
need not be better than that of the closed-channel
distortions.

(b) The second real advantage of the QMP would
be in the scattering by a more complex system
where the exact target function is not available, as
in the electron-atom and electron-molecular col-
lisions (e.g. , e He, e N, e H2, and eNz). An
elaborate attempt to solve a set of coupled open-
channel equations mould be less meaningful here
since the original GVB no longer provides rigorous
bounds on scattering parameters. The scattering
solution is useful only to the extent that the approx-
imate target function is reliable. The question of
precisely how an approximate target function would
affect the resulting amplitude is only beginning to
be understood. "

Therefore, the modification of the GVB in the
form of QMP would allow wider applications to the
electron-atom and electron-molecule scatterings,
by not requiring an exact solution of the open-chan-
nel problem. Incidentally, we note here that, be-
cause of the exchange and rearrangement channels,
we do not in general have the exact channel projec-
tions even if the exact target functions are known.
Of course, the GVB formulation takes care of this
difficulty by requiring an exact evaluation of the
shift operators of the form P»MpG MpP;, with
[P,P(] w 0. Howev. er, this procedure will also be
affected if P; are not known exactly.

(c) The main reason for the QMP is of course in
the treatment of the rearrangement processes.
Here, even if the target and residual bound-state
functions are available, the open-channel projection
operators cannot readily be constructed. Thus, as-
sume that we have to apply the GVB formulation,
as in the positron-hydrogen pickup collision. '2 The
first step is to solve a set of coupled equations in
the coupled-static approximation, in which the cou-
pling kernels of the form P,K,zP~=P, (H —E)P2 ap-
pear. The integral kernel K,2(r2, R) is a function of
two variables for the positron-proton and positron-
ium center of mass proton coordinates r z and R,
respectively. The evaluation of K» is extremely
complicated because of the Coulomb singularities
and multiple integrals to be performed numerically. '
The final accuracy of the amplitude turned out to be
limited mainly by the accuracy of K». On the other
hand, any matrix elements involving P, (H —E)P2
are much easier to evaluate, because we can then
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interchange the variables of integrations. This
seems to be a very trivial point, but happens to be
the main difficulty in the actual calculation of the
rearrangement collisions. In fact, this is the main
motivation for the formulation of QMP, and ob-

viously we no longer have to evaluate the kernels
such as K„. An improved calculation of the e'I
pickup collision is in progress using the QMP and
incorporating some additional simplications peculiar
to this particular system. '
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Two approximations to Seaton's unitarization scheme are described which make it possible
to impose the conservation-of-particle-flux requirements on an approximate calculation of in-
elastic scattering without making calculations of elastic scattering in the two channels which
the transition connects. One approximation is based on the black-sphere model of Feshbach
and Weisskopf. Another approximation corrects only for back coupling and can be equivalent
to a method of Levine. The methods are illustrated by applying them to the Born approxima-
tion for the 1s-2s excitation of the hydrogen atom by electron impact.

I. INTRODUCTION

It is well known that as a consequence of time-
reversal invariance and particle-flux conservation
for a scattering process, we can assign phases to
the wave functions in such a way that the scattering
matrix S is symmetric and unitary, the transition
matrix T is symmetric and satisfies the generalized
optical theorem, and the reactance matrix R is
symmetric and real. ' ' Cross sections and scat-
tering amplitudes calculated by many theoretical
approximations to the S and T matrices do not
satisfy these requirements, even within an artifi-
cially limited subset of open channels. Although
cross sections can be most directly calculated
from S and T, it has often been recognized that it
is advantageous to make approximations to R (or
to the reaction matrix K= 2R) rather than directly
to S or T, because the S and T computed from any
Hermitian R (whether approximate or exact) auto-

matically satisfy the conservation and time-rever-
sal requirements. Using these ideas, Seaton pro-
posed a calculational scheme (his method II) in
which the conservation and symmetry require-
ments are fully satisfied even if the conservation
laws are violated in the initial approximation.
For electron-atom scattering, this scheme has
been applied many times. ' It has also been
much applied for other quantum-mechanical scat-
tering problems. o For inelastic scattering,
Seaton's method requires approximate calculations
not only of the inelastic scattering amplitudes, but
also of the elastic scattering amplitudes in at least
the initial and final channels. We consider here
two similar methods for making the scattering cal-
culation satisfy all the conservation requirements
for an inelastic process without calculating the
elastic scattering. They are alternatives to Sea-
ton's method which may be considered as approxi-
mations of it. They are, however, different ap-


