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been shown in Fig. 1 for energies up to 60 eV. %e
have also compared our results with the close-cou-
pling calculations of Burke and Taylor, the first-
Born-approximation calculation of Vainshtein et
al. , the classical binary-encounter calculation of
the authors, and the measurements of Hughes and
Hendriskson. "It is seenthatthepresent calculations
which are based on the polarized Born approximation
including exchange yield a value of the cross sec-
tion that is lower than the first-Born-approximation
calculation in the low- and intermediate-energy
region. Near the threshold the reduction in the
cross section is about 20%%uo. In the intermediate-
energy region the present calculations give a good
agreement with the experimental data and close-
coupling calculations. At higher energies (~ 55 eV)
the present calculations merge with the first-Born-

approximation calculations. The close-coupling
calculations also tend to agree closely with the
present calculations at higher energies. This is
because the effect of polarization is less important
at high energies. The inclusion of exchange in the
polarized Born approximation produces a rather
small exchange effect for the 2e-2p excitation of
lithium. Thus we conclude that the inclusion of
polarization improves the first-Born-approximation
cross section in the low- and intermediate-energy
range.
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Energies of s Eigenstates in a Static Screened Coulomb Potential
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Energies of the 1s, 2s, 3s, and 4s states are obtained by a perturbation calculation and by
a one-parameter variational calculation for a two-particle system interacting through a static
screened Coulomb potential. The variational results are practically identical with those re-
cently obtained by Rogers, Graboske, and Harwood by the numerical integration of the wave
equation, except in the region very close to the critical screening.

I. INTRODUCTION

The static screened Coulomb potential (SSCP)

V(r) = —e'e '/r,
where & is a screening parameter, occurs in sev-
eral fields of physics. In nuclear physics it goes
under the name of the Yukawa potential (with e
replaced by another coupling constant), and in
plasma physics it is commonly known as the Debye-
Hiickel potential. Equation (1. 1) also describes
the potential of an impurity in a metal and in a
semiconductor. The significance of & in these
different contexts is, of course, all different.

During the last few years a number of studies' '
have been carried out to calculate the energy lev-
els of an electron in such a potential and also to
determine the number of bound states. Since the
Schrodinger equation for Eq. (1.1) is not solvable
analytically, the aforesaid investigations have em-
ployed perturbation theory, ' the variational
method, ' and the actual numerical integration ' '
of the differential equation. Of these, the recent
results of Rogers et al. ,

' obtained by numerical
techniques, are of high accuracy over a wide range
of the screening parameter and cover 45 eigen-
states. In the present paper we show that at least
for "s" states, using analytical methods, one can
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II. EIGENFUNCTIONS AND EIGENVALUES FOR HULTHEN
POTENTIAL

For our problem, we write the Hulthen" poten-
tial in the form

~oft'

V(r) = —e (2 1)

When & is small, it tends to the potential of Eq.
(l. 1). It is possible to solve the Schrodinger equa-
tion for the potential (2. 1) for I =0 states. In the
following, we adapt Hulthen's treatment to our
problem.

The radial Schrodinger equation for l = 0, for
the potential (2. 1), is

obtain results quite comparable to those of Rogers
et al. '4 except in the region very close to the crit-
ical screening. We give results for the is, 2s, 3s,
and 4s states only, but the method can be extended
to higher "s" states without any difficulty. The
features in which the present study differs from
the previous work are indicated in the following
plan of the paper. We have made use of the fact
that the Hulthen potential" is a close approxima-
tion to Eq. (1. 1) for not too large values of a. In
Sec. II we outline the solution of the Schrodinger
equation for the Hulthen potential. In Sec. III we
carry out a first- order perturbation calculation,
using the Hulthen potential as the unperturbed po-
tential, and show that when & is not too large, the
resulting energy values show improvement over
the previous first-order perturbation calculations. 6

Section IV deals with an application of the varia-
tion method to the problem. In such calculations,
of practical importance is the economy of parame-
ters necessary to achieve a given accuracy of the
eigenvalue. With a single variational parameter,
we have been able to obtain energy eigenvalues
which are practically identical with the best avail-
able values' obtained by numerical techniques,
except at the very highest values of &, and are
very close to the three-parameter variational re-
sults of Harris for the 1s and 2s states.

and substitute

P„= 1+2a„.

Then (2. 3) becomes

y(I-y) d
a" —Py &

"+
5 4.=0.d Q~ d$~

dg d$

(2. 6)

(2. 7)

The solution of the differential equation (2. 7)
has the form

0=J+cX =+cÃ
@=0 @=0

Substituting it in (2. 7), we get the following re-
cursion relation for c„'s:

v(v —1)+P„v —2/5
V+1

( I) Pt (2. 8)

To have physical meaning, the wave function P(r)
must be finite, so that the infinite series should
terminate somewhere —say, at v=n-to become a
polynomial; thus c„=0for v &n. This gives

n(n —1)+P„n —2/5=0

or

P„= 2/n5 —n+ 1 . (2. 9)

Using (2. 6), this gives

a„= 2(2/n6-n) . (2. 10)

( )
5(P„- 1)(P„+2n —1)

2(P„+n —1)

Coulomb

In conjunction with (2. 4), this gives the eigenvalue.
The normalized eigenfunction is found to be

(
h d

2m dr2 +e
1 —e-N~ +E g„r = 0,2 (2. 2)

where g„(r)=rlt„(r). Using atomic units (unit of
length ao = 8 /mes and unit of energy = - me~/5'},
Eq. (2. 2) can be written as

0.8
E
O
O

0.7

r 1 ~ e I ~ n
2 g~ Mr a2g2

2dr2 +
1 e Or 2 ((-n(r) (2. 3)

0.6

where 6= nao, a dimensionless quantity, and for
E we have substituted

0.5

E —-'a252 (2. 4}
0.4

0
I

2
r(atomic units)

For solving (2. 3) we make the transformation

g„(r) = e 'I'" P„(r), y = 1 —e " (2. 5)

FIG. 1. Product rV(r) as a function of r, for the
Coulomb potential, the Hulth6n potential, and the SSCP,
for &=0.2.
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TABLE I. Energy eigenvalues as a function of screening parameter for the 1s state.
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Screening
parameter Our results

Perturbation Variational
Smith (Ref. 6)
(perturbation)

Harris (Ref. 4)
(three-parameter

variational)
Rogers etal. (Ref. 14)

(numerical)

0.001
0.002
0.005
0.01
0.02
0.025
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.0
1.05
1.10
1.15
1.20

0.49900
0.498 00
0.49502
0.490 07
0.480 30
0.475 46
0.470 66
0.461 17
0.451 82
0.442 60
0.433 51
0.424 56
0.415 74
0.407 04
0.326 58
0.290 43
0.25674
0.19610
0.143 58
0.098 33
0.059 68
0.027 08
0.000 09

-0.02165

0.499 00
0.49800
0.495 02
0.490 07
0.480 30
0.475 46
0.470 66
0.461 17
0.451 82
0.442 60
0.433 52
0.424 57
0.41575
0.407 06
0.326 81
0.290 92
0.257 63
0.19836
0.14808
0.10608
0.07174
0.044 59
0.024 18
0.010 16
0.005 44
0.002 20
0.000 41
0.000 04

0.499 00
0.498 00
0.495 02
0.490 07
0.480 30
0.475 46
0.470 66
0.461 17
0.45181
0.442 60
0.433 51
0.424 56
0.415 73
0.407 03
0.326 45
0.290 12
0.256 14
0.19444
0.140 00
0.091 72
0.048 70
0.010 20

—0.024 38

0.451 82

0.290 92
0.257 64
0.19838
0.148 12
0.106 33
0.071 83
0.044 70
0.024 30
0.010 23
0.005 46
0.002 12
0

0.498 0
0.495 0
0.490 1
0.480 3
0.475 5

0.451 8

0.407 1
0.326 8
0.2909

0.1481

0.010 29

"Z (-1)"'( )( )(1-e ")"

(2. 11)

Oe~ e~ Oe'"
V(r)= e + (3. 1)

5r

-s +U(r) . (3 2)

III. PERTURBATION CALCULATION

The SSCP, Eq. (1. 1), can be written as a Hulthhn
potential plus a perturbation U(r):

Now U(r} is treated as a perturbing potential:
The eigenvalues for the unperturbed Hulthen po-
tential are known from Eq. (2. 4). In Fig. 1, we
show the SSCP, the Hulthen potential, and the
Coulomb potential. Note that the choice of the
Hulthen potential as the unperturbed potential is a
better one than that of a Coulomb potential for the
same.

The integrals involved in obtaining the perturba-
tion energy are somewhat complicated, but can be
analytically evaluated. The final expressions for
the energy eigenvalues of the 1s, 2s, 3s, and 4s
states, obtained from the perturbation calculation,
are

4-5 4 —5 1E»= — + ~ [2 ln(1+ ~5}—ln(1+ 5)] (5 & 2), (3. 3)

Es, =- + 8 [-(1—35) (2 —35) ln(1 —35)+6(1—35)(2 —35) ln(1- ~5)
4- 81/~ 4 2 2 2 3

72 196835

+ 2(4 —95 )(10—95 ) ln(1+ ~5) —3(2+35)(10+155 —165 ) ln(1+ 35)

+6(2+35) (1+35)In(1+~5) —(2+35} (1+35) ln(1+65)] (5 &0. 22), (3. 5)

4/2 1
Es, = —

6
+ 65~ [-(1—5) ln(1 —5) —2(3 —5 )ln(1+5) —4(1+ 5) ln(1+25) —(1+5) ln(1+35)] (5 & 0. 6),

(3 4)
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TABLE II. Energy eigenvalues as a function of screening parameter for the 2s state.

Screening
parameter Our results

Perturbation Variational
Smith (Ref. 6)
(perturbation)

Harris (Ref. 4)
(three-parameter

variational)
Rogers etal. (Ref. 14)

(numerical)

0.001
0.002
D. 005
0.01
0.02
0.025
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.20
0.25
0.30

0.12400
0.12301
0.120 07
0.11529
0.106 15
0.10177
0.097 53
0.08940
0.081 73
0.074 50
0.067 68
0.061 25
0.055 19
0.049 48
0.008 52

—0.003 06

0.12400
0.123 01
0.120 07
0.11529
0.10615
0.10178
0.097 53
0.089 41
0.08177
0.074 58
0.067 82
0.061 46
0.055 51
0.049 93
0.01208
0.003 36
0.000 08

0.124 00
0.123 01
0.120 07
0.11529
0.106 15
0.10177
0.097 52
0.089 39
0.081 70
0.07445
0.067 59
0.061 11
0.054 98
0.049 17
0.005 21

—0.009 80

0.081 77

0.049 93
0.01206
0.003 21
0

0.1230
0.1201
0.1153
0.1062
0.1018

0.081 75

0.049 93
0.01211
O. 003 39

E&, — + --~ [-(1—65)~(l —45) (1 —25) ln(1- 65)+8(1—65)(1—45) (1 —25) ln(1 —45)

—4(1 —45)(l —25) (7 —285 —365') 1n(l —I)—2(1 —25)(1+25) (35 —3805+ 5765 ) ln(l+ 25)

+ 8(1 —25)(l + 25)(1+45)(7+ 145 —65 ) ln(1+ 45) —4(1+25)3(1 + 45)(V+ 285 —365 ) ln(l + 65)

+ 8(1+25)2(1 + 45)2(1+65) ln(1+ 85) —(1+25)'(1 + 45}~(1+ 65}3In(1+ 105)] (5 (0. 125). (3. 6)

The calculated energy values from the above ex-
pressions are shown in Tables I-IV, and are com-
pared with several other calculations including
those of Smith, ~ who carried out a perturbation

calculation with the Coulomb potential as the un-
perturbed potential. We may add here a remark
about the calculations. When 6 is small, there
are large cancellations between the terms occur-

TABLE III. Energy eigenvalues as a function of screening parameter for the 3s state.

Screening
parameter Our results

Perturbation Variational
Smith (Ref. 6)
(perturbation)

Harris (Ref. 4)
(one-parameter

variational)
Rogers etal. (Ref. 14)

(numerical)

0.001
0.002
0.005
0.01
0.02
Q. 025
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12
0.14
0.30

0.05456
0.053 58
0.050 72
0.046 20
0.038 01
Q. 034 30
0.030 84
0.024 56
0.01907
0.01430
0.010 17
0.006 63
0.003 61
0.001 09

—0.000 97

0.054 56
0.053 58
0.050 72
0.046 20
0.038 02
0.034 33
0.030 89
0.02469
0.01935
0.01479
0.010 95
0.007 77
0.005 20
0.003 20
0.001 72
0.000 72
0.000 00

0.054 56
0.053 58
0.050 72
0.046 20
0.038 00
0.034 29
0.030 80
0.024 47
0.018 88
0.013 93
0.009 54
0.005 64
0.002 15

—0.000 96

0.038 02

0.024 74

0.014 99

0.008 29

0.004 25

0.00230
0.001 44

—0.000 01

0.053 6
0.0507
0.046 20
0.038 02
0.034 33

0.01935

0.003 21
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TABLE IV. Energy eigenvalues as a function of screening parameter for the 4s state.
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Screening
parameter Our results

Pe r turbation Va riational
Smith (Ref . 6)
(pe r turb ation)

Harris {Ref. 14)
(one-parameter

va ria tional)
Rogers et al. (Ref. 14)

{numerical)

0 ~ 001
0 ~ 002
0 ~ 0025
0 ~ 005
0 ~ 01
0 ~ 02
0 ~ 025
0 ~ 03
0 ~ 04
0 ~ 05
0 ~ 06
0 ~ 07
0.08
0 ' 10
0 ~ 12

0 ~ 030 26
0.029 30
0 ~ 028 82
0 ~ 026 54
0 ~ 022 35
0 ~ 015 33
0 ~ 012 40
0 ~ 009 80
0 ~ 005 50
0 ~ 002 23

—0.000 15

0 ~ 030 26
0 ~ 029 30
0 ~ 028 82
0 ~ 026 54
0 ~ 022 36
0 ~ 015 38
0 ~ 012 50
0 ~ 009 99
0 ~ 005 96
0 ~ 003 09
0 ~ 001 24
0.000 25
0 ~ 000 00

0 ~ 030 26
0 ~ 029 30
0 ~ 028 82
0 ~ 026 54
0 ~ 022 35
0 ~ 015 30
0 ~ 01233
0 ~ 009 67
0 ~ 005 14
0 ~ 001 46

—0 ~ 001 55

0 ~ 015 40

0 ~ 006 17

0 ~ 001 98

0 ~ 000 85
0.000 48
0 ~ 000 29

0 ~ 030 26
0 ~ 029 30
0 ~ 028 83
0 ~ 026 54
0 ~ 022 36
0 ~ 015 38
0 ~ 012 51

0 ~ 003 09

ring in Eqs. (3.3)-(3.6}, and an accuracy greater
than 16 significant figures is required. The com-
puter available to us (fBM 360/65) has only 16-fig-
ure accuracy in "double precision. " Energy ei-
genvalues for such values of 5 (more specifically,
when 5 & 0. 0045 for the 2s state, 5 & 0. 007 for the
3s state, and 5 & 0. 02 for the 4s state) were ob-
tained by expanding the logarithmic terms

IV. VARIATIONAL CALCULATION

Fisher and Krylovich have reported results on
the 1s, 2s, 2P, and 3d states from a variational
calculation. The wave functions were chosen such
that in the limiting cases they tended to the cor-
responding hydrogen functions, and had two param-
eters. The results of these authors are given only
in a figure and it is difficult to estimate the ac-
curacy of their results. Authors of Ref s . 3, 4,
and 12 have used hydrogenlike wave functions as
a basis set and the exponential nuclear charge as

a variational parameter. Of these, the best re-
sults are those of Harris with three variational
parameters. In view of the fact that the Hulthen
potential is a better approximation to the SSCP
than the Coulomb potential, one anticipates that
for the same number of parameters, the Hulthen
wave functions would be a better choice for trial
functions in our problem than the hydrogen like
wave functions .

The trial functions chosen were of the form
(2. 11}with p, a variational parameter, replacing
5. For example, for the 1s state, the trial wave
function was

(4/~2 1)1/2[e-(1 v/2&r e-(1+u/2)r
] {4

The expressions for the energies of the 1s, 2s, 3s,
and 4s states are

E»= (4/p —1)[- -', p —ln(2+5 —p}+2 ln(2+5)

—ln(2+5+ p)] (2p —5 &2), (4. 2)

Ez, = [(1—4p }/8@ ][-p —(p —1) ln(1+5 —2p}+4(1—p}ln(1+5 —g) —2(3 —p ) ln(1+5)

+4(1+p)ln(1+5+//, ) —(1+ p) 1n(1+5+2p)] (3p —5&1), (4. 3)

E~, = [(4- 81' )/787 32p ][- 2187ps/2 —(2 —6p) (2 —3p) ln(2+35 —9p)+ 12(2 —6i/, )(2 —3//, ) ln(2+35 —6//. )

12 (2 —3p ) (10 —15p. —18p z) ln (2 + 36 —3p ) + 8 (4 —9p z) (10 - 9p z) ln (2 + 35 )

—12(2+3')(10+15p —18//, )ln(2+35+3n) +12(2+3p) (2+6p) 1n(2+35+6p)

—(2+3'/) (2+6//) 1n(2+35+9//)] (12' -35 &2),

E4, = [(1—64//, )/689824i/, ] [—18432p —(1 —6p) (1 —4g) (1 —2p) in{1+25—8p)

(4. 4)

+8{1—6p)(1 —4p) (1 —2p) ln(1+25 —6i/, ) —4(1 —4p)(1 —2//, ) (7 —28' —36p ) ln(1+25 —4p)

+ 8(1 - 4p )(1 —4p }(7-14'—24//. ) ln(1+ 25 —2//. ) —2(1 —4//. 2}(36—380p~+ 576p4) in{i + 25)
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+8(1 —4p, )(1+4p)(7+14p, —24p )ln(1+26+2')-4(1+4')(1+2p) (7+28p —36p )ln(1+26+4')

+ 8 (I + 6p, )(I + 4p ) (1 + 2p ) In (I + 26 + 6p ) —(I + 6p ) (I + 4p ) (I + 2p ) In (I+ 26 + 8p )] (I op —26 & I),
(4. 6)

The energy of the 1s, 28, 3s, and 4s states were
found by minimizing each with respect to p sep-
arately. The values of p. thus obtained are re-
corded in Table V and the corresponding energies
are given in Tables I-IV. The wave functions for
the 2s, Ss, and 4s states with the given values of
p. are not exactly orthogonal to the eigenfunctions
of the corresponding lower states, but they are
close to it, except when 5 is large.

Y. COMPARISON OF NUMERICAL RESULTS

TABLE V. Best values of the parameter p.

Screening
parameter

6 1s
Parameter g

2s 3s

0.001
0.002
Q. 005
0.01
0.02
0.025
0.03
0.04
0.05
0.06
0.07
0.08
0.09
Q. 10
0.20
0.25
Q. 30
0.40
0.50
0.60
0.70
0.80
0.90
1.0
1.05
1.1
1.15
l. 2

0.0050
0.0056
0.01.22
0.0243
0.0482
Q. 0601
0.0719
0.0952
0.1182
0.1410
0.1636
0.1857
0.2077
0.2294
0.4357
Q. 5326
0.6262
0.8051
0.9750
1.1376
1.2943
1.4460
1.5935
1.7373
1.8080
1.8780
1.9472
2. Q158

0.0100
0.0100
0.0121
0.0240
0.0468
0.0579
0.0688
0.0900
0.1105
0.1304
0.1496
0.1684
0.1866
0.2044
0.3613
0.4283
Q. 4893

0.0151
0.0151
0.0151
0.0234
0.0448
0.0549
Q. Q647
0.0834
0.1011
Q. 1178
0.1336
0.1486
0.1628
0.1763

0.0171
0.0171
0.0181
0.0231
0.0424
0.0515
Q. Q6Q2

0.0763
0.0909

Tables I-IV also show the results obtained by
Smith' (perturbation calculation), Harris (varia-
tional calculation), and Rogers et al '(num. erical
integration). The values shown under "Smith"
were calculated by us from his expressions. Com-
parison of our perturbation results with those of
Smith shows that our results are better in all the
four cases, as anticipated.

If we round off our variational results to four

9-

lA 7

6-
Eo 5-

4-
V 3"

.OOI
a s ~ . ~ al a s I a saul

O.OI O. I

Screening parameter

~ ~ s ~ ~ a sl
I.O

FIG. 2. (r) as a function of screening parameter 5.

[

significant figures, these are practically identical
with those of Rogers et a$. except when 6 is very
close to 6,. Here 6„called the critical screening
parameter, is that value of 5 for which the binding

energy of the level in question becomes zero. The
accuracy of our results slowly decreases as 5 in-
creases from 0 to 6„consequently, our method
is not very suitable for a precise determination of

However, it is a small price to pay, consid-
ering that for most of the range of 5 it gives re-
sults of good accuracy with a single variational
parameter. For the 1s state, our results com-
pare very favorably with the three-parameter vari-
ational results of Harris. For 5=0. 05 and 0. 25,
our variational results are identical with those of
Harris to five significant figures; it appears to
indicate that our variational results have at least
five-figure accuracy below 6 = 0. 25. Above
5=0. 25, Harris's results are slightly better than
ours. However, for the 2s state, our results are
better than Harris's three-parameter variational
results. Similar is the case for the 3s and 4s
states: Harris's results in these cases were ob-
tained by a one-parameter variational treatment.

An obvious advantage of having the wave function
of a state of a system, in a compact analytical
form, is that one can conveniently calculate other
physical properties of the state, besides the ener-
gy. As an illustration, we have obtained the ex-
pectation value of the radius (r ) for the 1s state
from our variational wave function, with the result

(5. 1)

Figure 2 shows the variation of (r) with 6. In the
vicinity of 5„ the "size" of the system is seen to
increase rapidly vrith 5. Now, in plasma physics, 5
is proportional to (p/kT) ~', where pis the density of
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electrons. Clearly, beyond a certain value of 5,
the average radius would exceed one-half of the
average internuclear separation at a given density
and temperature. In this region, the approxima-
tion that the electron is bound to a single proton

(or an ionized impurity) is no longer valid and one
must take into account systems of the type (S. C. )2,
(S. C. )2, etc. Here S. C. represents a neutral
system (analogous to an H atom) in which the elec-
tron is bound in a SSCP.
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A new variational principle for multichannel scattering is derived which combines certain
simplifying features of both Kohn and minimum principles. The rigorous bound property of
the latter is relaxed slightly to gain simplifications and efficiency, especially for collisions
involving particle rearrangements. The approach is essentially equivalent to treating varia-
tionally the open-channel part of the wave function, rather than solving for it exactly as re-
quired by the minimum principle. However, variations of parameters for the open and closed
channels are carried out separately using a double functional.

I. INTRODUCTION AND SUMMARY

The variational principles for scattering problems
of Kohn, ' Hulthen, and Schwingers types do not
provide bounds on scattering parameters. Because
of this lack of bound property, scattering param-
eters calculated may fluctuate, often violently. '
Nevertheless, it has been demonstrated' that mean-
ingful stationary values can still be extracted by
performing an extensive numerical analysis with
large numbers of trial functions. The essential
advantage of these methods lies in their simplicity
of applications, as all the parameters introduced
are determined variationally in a uniform fashion.
There have also been several modifications of the
principles to avoid the violent fluctuations due to
spurious singularities. For example, the method
developed by Harris identifies the scattering energy
to be one of these spurious points. Another
approach' avoids the singularities altogether by
analytically continuing to the complex energy

values. These approaches still require a fair num-
ber of trial functions and their convergence is not
always uniform. However, their applicability for
simple scattering systems is reasonably well under-
stood by now. We do not distinguish different ver-
sions of the methods and denote them in the follow-
ing as the variational principles for scattering
(vps).

The minimum principles and their generaliza-
tions have been successfully applied to many of the
low-energy scattering problems, ' ' with the re-
sulting bounds on scattering parameters. The pro-
cedure involved is considerably more complicated
than that of the VPS, and gets rapidly worse as
more reaction channels open up. Specifically, the
complication arises from the requirement that the
open-channel part of the scattering equations should
be solved exactly numerically. Of course, this is
necessary if the rigorous bounds are to be main-
tained. A recent calculation'~ of the positron-hy-
drogen pickup collision using the generalized varia-


