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A quantum-mechanical study is made of reactive scattering in the (H, H2) system. The

problem is formulated in terms of a form of the distorted-wave Born approximation (DWBA)

suitable for collisions in which all particles have finite mass. For certain incident energies,
differential and total cross sections, as well as other attributes of the reactive collisions,
(e. g. , the reaction configuration) are determined. Two limiting models in the DWBA formula-
tion are compared; in one, the molecule is unperturbed by the incoming atom, and in the other,
the molecule adiabatically follows the incoming atom. For thermal incident energies and the

semiempirical interaction potential employed, the adiabatic model seems to be more appropri-
ate. Since the DWBA method is too complicated for a general study of the (H, H2) reaction,
a much simpler approximation method, the "linear model, " is developed. This model is very
different in concept from treatments in which the three atoms are constrained to move on a
line throughout the collision. The present model includes the full three-dimensional aspect of
the collision, and it is only the evaluation of the transition matrix element itself that is simpli-
fied. It is found that the linear model, when appropriately normalized, gives results in good

agreement with that of the DWBA method. By application of this model, the energy depen-
dence, rotational-state dependence, and other properties of the total and differentia) reaction
cross sections are determined. These results of the quantum-mechanical treatment are com-
pared with the classical calculation for the same potential surface. The most important re-
sult is that, in agreement with the classical treatment, the differential cross sections are
strongly backward peaked at low energies and shift toward the forward direction as the energy
increases. Finally, the implications of the present calculations for a theory of chemical
kinetics are discussed.

I. INTRODUCTION

The rearrangment scattering of hydrogen atoms
by hydrogen molecules (H+ H2- H2+ H) is the sim-
plest kind of gas-phase exchange reaction. It is
of fundamental importance, therefore, for the
development of a theory of chemical kinetics. '~ ~

From the exact quantum-mechanical solution, we
would be able to answer every question concerning
the dynamics of this reaction. Unfortunately, an
exact treatment is not possible at present, since
the reaction involves the motion of six particles:
three nuclei and three electrons. After the Born-
Oppenheimer separation3 of nuclear and electronic
motion is made, we are still left with a three-body
problem involving a complicated potential. While
many approximate studies exist, ' their accuracy
is not sufficient to answer the basic questions con-
cerning the importance of quantum corrections in
chemical kinetics.

To clarify the chemical problem it is useful to

consider its relation to nuclear and electron scat-
tering. In nuclear physics, the scattering data are
used primarily to investigate the nature of nuclear
forces. Hence, one usually assumes certain sim-
ple forms for the potential and often treats it as
an adjustable quantity by the introduction of suitable
parameters. In chemical kinetics, the questions
are reversed; that is, from a given potential, it
is necessary to determine the reaction cross sec-
tions. Although simplified phenomenological po-
tentials have been introduced, the true interaction
potential is known to be a complicated function of
the interparticle coordinates and to contain im-
portant nonadditive contributions. Furthermore,
methods like the Born and the impulse approxima-
tion, which give useful results in high-energy nu-
clear collisions, are not sufficiently accurate in
the energy range of chemical interest. In low-en-
ergy nuclear scattering, the short range of nuclear
forces can be used to advantage; only s and p waves
need to be considered, and cross sections can be
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correlated with the scattering length. In molecular
collisions, by contrast, much longer range forces
are involved, and a large number of partial waves
contribute to cross sections; this holds true even
at energies near the threshold of the reaction.
Electron scattering from a hydrogen atom" is a
three-body problem that has greater similarity to
chemical reactions. Considerable progress has
been made there, in part because the Coulomb in-
teraction between the particles is well defined and
has a relatively simple form, so that the entire po-
tential is expressible as a sum of two-body terms.
The reactive scattering of the (H, H2) system suf-
fers in comparison with the electron-hydrogen scat-
tering in that the potential is much more compli-
cated and that there is no scattering center of in-
finite mass. The latter point is very important
because the separable coordinate system suitable
for describing the initial state is not the same as
that suitable for describing the final state. Con-
sequently, a coordinate transformation is required
that renders the problem difficult to manipulate
analytically. In many nuclear problems (e.g. ,
stripping) this complication is avoided by the as-
sumption that the target is infinitely heavy. How-

ever, in three-body collisions between light nuclei
(e. g. , the neutron-deuteron reaction), the same
coordinate problem is present. It is, of course,
for these nuclear problems that the least progress
has been made. "

An alternative to the quantum-mechanical ap-
proach to chemical reactions is to assume that
classical mechanics is valid and to carry out an
exact determination of collision trajectories. '
The cross sections and reaction rates obtained by
this method appear to be in general agreement
with the data for the (H, H2) system. However, the
validity of classical mechanics needs to be es-
tablished. In the absence of a simple criterion for
the validity of classical mechanics, the ultimate
justification for its use must come from a compar-
ison of a quantum-mechanical calculation with the
classical results. If only an approximate solution
to the quantum-mechanical problem is possible,
the comparison is of particular importance since
both the validity of classical mechanics and the
approximations in quantum mechanics are subjected
to test. For the (H, Hg reaction system, this type
of study is of special interest because the available
experimental results are not completely unequivocal.
Furthermore, there is concern with the dependence
of the reaction cross section on the internal energy
of the reactant and product molecules. Since the
internal energy levels are a quantum-mechanical
concept, they have to be incorporated artificially
into classical mechanics. Since both the rotational
and vibrational energy levels in H& are widely
spaced, the adequacy of the classical approach can

be questioned. Finally, it has been held by many
that quantum-mechanical tunneling may often be an

important factor in the determination of reaction
rates. &' A study of the reactive scattering H+H2
is especially suitable for a determination of tun-
neling since quantum effects are expected to be
more pronounced than in most other systems.

The present work is an approximate quantum-
mechanical study of the three-body dynamics in the

(H, Hz) system with a realistic, though not exact,
potential energy surface"' ' which has already been
used in accurate classical calculations.

II FORMULATION

The energies of primary chemical interest for the
(H, H2) scattering correspond to the thermal range
below 1 eV. At such low energies, the nuclear
velocities are sufficiently small relative to those
of the electrons that the Born-Oppenheimer ap-
proximation is valid. &

' A further simplification
for this reaction is that electronic motion can be
treated as adiabatic. With these assumptions the
scattering process is reduced to the problem of
three structureless atoms (with nuclear spin)
moving on a potential energy surface that is a para-
metric function of the relative nuclear distances.
The semiempirical potential energy surface adopted
for the present work is complicated by the fact that
it includes a large three-body contribution. ' To
facilitate calculation, effective two-body interaction
potentials have been constructed by introducing as-
sumptions corresponding to limiting cases of phys-
ical interest. " In one, the molecule is unperturbed
by the incoming atom, and in the other, the molecule
adiabatically follows the incoming atom. Although
these two limits yield similar results for elastic
scattering, "the reactive cross sections are found
to be very different.

A system of three particles requires nine co-
ordinates to specify the wave function. Since the
linear momentum of the center of mass of the sys-
tem is a constant of motion, three coordinates de-
scribing the motion of the center of mass can be
separated. Thus, the total wave function can be
written as a product of two parts; the first is the
eigenfunction of a particle moving in free space,
which is simply a plane wave, and the second, in-
volving the remaining six coordinates, is the wave
function describing the internal motion relative to
the center of mass. In what follows, we assume
that the trivial plane-wave part has been separated
and are concerned only with the internal motion.
Since the total angular momentum of the system is
also a constant of motion, three additional coordi-
nates describing the rotation of the system as a
whole can, in principle, also be separated. This
has been done in some formulations of the three-
body problem. However, since the equations re-
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su 1ting from such a separation are time consuming
to solve, it is not evident that the evaluation of the

complete multidimensional integral required for the

cross -section calculation may not be simpler to do

in cer tain approximations . The latter procedure,
as described below, was followed in the present
paper .

To consider the rear range ment scattering A + BC-AB + C, we can write the total system Hamiltonian

H in terms of the quantities of the entrance channel

a (initial system}

H=H, (%, r)+V (R, r), (1)

or of the exit channel P (rearranged system)

H = HB (S, s ) + VB (S, s),

H (R, r}=—
2P A, Be

~, + VBc(r) (3)
2WB e

where R is the coordinate of A relative to the center
of mass BC, and r is the internal coordinate of
BC; S is the coordinate of C relative to the center
of mass of A B, and s is the internal coordinate of
AB (Fig. 1). The operators H, and HB are the non-
interacting Hamiltonians,

FIG. 1. Definition of coordinates and symbols . R
(Q 8 Q)' S (S 8 f)' s (S$ Hf Qf).

The superscripts n and m represent the quantum

numbers of the initial and final molecular state,
and &

" and & ~ are the bound -state rotation -vibra-
tion eigenenergies of mo lecules BC and AB, re-
spectively. Conservation of energy requires

2
2 2

H, (S, s) = — V, — V„+V»(s),
O'C, AB PAB

(4)
I

()ttl )B gtl

2/A Bc 2pe A
(uB )'+ ~, . (iO)

where VBc and V» are the isolated molecular po-
tentials of BC and AB, respectively, and the p,

's
are the appropriate reduced masses . The te rms
V and V~ are initial - and final-state interaction
potentials; that is, V is the part of the complete
three -body potential V~ that goes to zero as
8- 00, and V~ is correspondingly defined for the
final channe 1~ Thus,

Vr (gt, r }= Vr(S, s ) = VBc (r) + V (%, r )

= VAB(s) + Vs(S s ) ~

The plane -wave solutions of H and Hz with total
energy E are 4 and 4B, respectively (normalized
to unit density},

For the total Hami ltonian H, the initial -channel
eigenfunctions O'",I„with energy E and outgoing (+)
or incoming (-) spherical wave boundary condi-
tions satisfy the Lippmann-Schwinge r equations,

P' —H k2Ca

1
= 4I" + . V 4"

(1la)

(1lb)

the positive infinitesimal c introduces the appro-
priate asymptotic behavior . The final -channel
eigenfunctions 4 z" ' obey corresponding equations .

In terms of these functions, the differential scat-
tering cross section for rearrangement from the
entrance channel (c, n) to the exit channel (P, m)
can be written

tit" (0, r) =e'""'"q"(r ),
tftA (S, s ) = e'& '

qB (s ),

(6)

where g" and g~ are the bound -state rotation -vibra-
tion eigenfunctions of mole cules BC and AB, re-
spe ctive ly; that is,

an (kai I"A.BC P C.AB 8
Ba B) (3 gZ}2 yn I Ba I

where TB is the transition matrix (T matrix) de-
flned as

[-(I /3pBc) V„+VBc(r)] g",(r ) = c"rp (r ),

[ (I t 3PAB) &,' + VAB(B)]nA (s ) = eB nA (s ) (9)

T,." = (e, ( v,
~
4."„&= (4,'-.'~ V.

~
4 ".) .

Although the transition amplitude in EIl. (13) is
exact, it is only a formal expr es sion unless the
total wave function 4"'„or C ~

' is known. Since
its exact evaluation, which is equivalent to solving
the three -body Schrodinger equation with the ap-
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propriate boundary condition, is not feasible at
present, approximations have to be introduced to
proceed with the cross-section evaluation. In
most cases, the only approximation method that
can be applied with relative ease is to replace the
total wave function 4 '„or 4'~ ' by the plane wave
4 or C~, respectively; that is,

'U-" =- Ts."(»= &~s I Vsl c".& = &+s I V. I
~"-& (14)

which is the well-known first Born approximation.
Although it may be useful for some atomic rear-
rangement problems (e. g. , high-energy low-acti-
vation barrier), Ts (B) is expected not to give ac-
curate results for the (H+Hs) reaction in the
thermal region. ' ' This is a consequence of the
strong interaction between the atom and the mole-
cule, which distorts the incident wave appreciably,
so that the actual wave function differs considerably
from a plane wave. In particular, the potential
leading to the reaction is large just in the region
where the incident wave can hardly penetrate. If
the major effect of the distorting potential can be
taken into account, the accuracy of the approxi-
mate scattering amplitudes will be greatly improved.
This can be done by separating the interaction po-
tential into two parts. One part, which depends
only on the distance between the atom and the cen-
ter of mass of the molecule, modifies the incoming
plane wave and is thus responsible for the elastic
scattering. The other part, which contains the
rest of the potential, is responsible for the pro-
cesses of excitation and reaction. If one wants to
take the principle of detailed balance into account,
one must preserve the symmetry between the initial
and final states. This means that not only the
wave functions of entrance channel but also those of
the product channel must be modified by the dis-
torting potential.

It is convenient to write

V (R, r ) = V' (R) + V,'(0, r ),

V, (S, s) = Vs'(S)+ V,'(S, s),
where V (R) and Vs(S) are chosen to account for
the strong repulsive interaction between the ap-
proaching or receding atom and molecule, subject
to the condition that the solutions X"' and X~"' of
the Hamiltonians H + V and Hz+ V~ can be evalu-
ated exactly or, at least, to a high degree of ap-
proximation. The functions Xz" satisfy the integral
equation, analogous to Eq. (11),

(a) m 1 0 (a)
Xy, m=@'s + - — VgXg, mE Hg + l~

c 25 1
VO fft

E —(H, + V,') ~i&

the X"' satisfy a corresponding equation.
To simplify the writing in what follows, we drop

the super- or subscripts I and n, except in places
where confusion might arise from their omission.
It is understood that, when used in connection with
a wave function, P refers to the final state in the
exit channel (P, m) and o( refers to the initial state
in the entrance channel (o(, n).

Rewriting the transition matrix Ts [Eq. (13)]
in the form

Ts =&4's IVsl@ ") + &4'sl Vsl)I'"&

and using Eq. (17b) to relate Cs by Xs
' in the

second term, we have

Ts a = &~'s
I vs I

+a'
& + & x s

'
I vs I

@n'
&

11 0 & (e)—
E (H, V );~ V 4 V 4'.

= &~. l v;I ~."&.&xs 'I v,'I g."&

&Cs~vso „.V's(e')& . (IO)E —Hs+ Vs)+i&

The last term of Eq. (19) can be combined with the
first term to give

Vr, =(E t V', (1 —
~ . Vr (E' ')

E —(Hg+ Vq j+za

&x,''IV,'I+.") .

The first term on the right-hand side of Eq. (20)
can be transformed

(r) l
V' (1—,. V') ( V")

E —Hs+Vs +i@

=& c, (v,' E —(Hs+ Vs)+it

x (E —Hs —Vs + ie —Vs) ~ )Iv~" )

err V,', „.(E E ~ ia) V,")-~

~

E —(H~+ V~ j+iE

~
~H

E

~

~
~~

~
~ ~ I

V ~

0 ~ I

~
(I)1

VrEr (E — i )E1E —(Hg+ VB j —jE

=&(x.''-~, ) I«-H ')l~."&. (21)

Since 4" is an eigenfunction of the total Hamiltonian
H with energy E, it is evident that as e goes to zero
this term will vanish. This is well known in the
case that the scattering center is infinitely heavy.
Here we have explicitly demonstrated that this is
also true for collisions in which all particles have
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Rnite mass. Thus, we are left with the single
term

(22)

Fquations (13) and (22) for the transition matrix
are both exact. However, it must be emphasized
that they are identical only if the exact total wave
function 4" is used in evaluating T~ . In practice,
4' ' inevitably has to be approximated, and the two

expressions can give significantly different results.
Equation (22) guarantees that the transition matrix
is zero when there is no interaction other than that
between the incoming atom and the center of mass
of the molecule, while in the formulation of Eq. (13)
TI) vanishes necessarily only when the approxi-
mation of the total wave function is carried to in-
finite order. + This suggests that Eq. (22) is a
better starting point for an approximate theory.

To simplify Eq. (22) further, we make use of
the re 1.ation~~

A. Distorted-Wave Born Approximation

To determine the transition amplitude from the
DWBA, we need to evaluate Eq. (25). We outline
the method for the J=O and J'=0 exchange reaction
of the three-body system, where J refers to the
angular momentum of the initial molecule and J
to that of the product molecule. Although the higher
transitions require somewhat more complicated
formulas, the essence of the method can be brought
out by discussion of the simplest transition.

If the molecule is unperturbed by the incoming
atom, the wave function is approximated as

X') (R, r ) = F(%)q (r), (23)

where q (r) is the initial molecular wave function
in the absence of the incoming atom and F(%) is the
wave function for scattering by the central potential
V'„(R). If the molecule adiabatically follows the
incoming atom, the wave function is approximated
as

(+) (+) (+)+~ =X~ + .. . V~Xe1-H+iE (23) X"(R,r ) =- G(%}))} (5,, r ), (29)

which follows from the defining integral equations
for )|'") and X4). Substituting into Eq. (22) we ob-
tain

Ts =(Xs ') V)() ~ . V,')) x,"), (24)

which is still exact. If the second term on the
right-hand side is neglected, Eq. (24) reduces to
the distorted-wave Born approximation (DWBA)

T,.=- T,.(DwBA} =(x~-)
I v,'Ix.") . (25)

The calculations of reactive cross sections pre-
sented in this paper are based on Eq. (25).

HL METHOD OF CALCULATION

It is clear that the accuracy of the DWBA cal-
culation depends on how we approximate the total
wave function by a judicious choice of V and Vt).
The- construction of these two-body potentials and
the corresponding wave functions have been de-
scribed in detail in a previous paper. Two limit-
ing cases for Vo and Vt) are considered. When the
molecule is unperturbed by the incoming atom, the
spherically symmetric distorting potential is desig-
nated as V„; that is,

where q, (%, r ) is the perturbed molecular wave
functiont' which reduces to q, (r} as R- ~ and

G(K) is the wave function for scattering by the
adiabatic potential V, (R). Both F(%) and G(@ can
be written in the standard partial-wave form~'~

F(R) = Z (2n+ 1)i"e "L„(R)P„(cos8)
n=0

(30}

G(5) = 2 (2n+ 1)I"e "L„(R)P„(cos8),
n 0

(31)

where 8 is the angle between R and the initial wave
vector k . The phase shifts O„and the radial wave
functioms L„are obtained from the radial part of
the Schrodinger equation with potential V„„(R},and
5„and L„are obtained from that with potential
V, (R). The function L„(R) is the solution bounded
at the origin and is normalized so as to have the
asymptotic form

L„(R)- (k R) sin(k R —&nv + 5„); (32)

the function L„(R) has the corresponding limiting
behavior. For Xz

' we use the approximate function

V. =V' (R)+V' (R, r), (26a) x,'-'(s, s) =H(s) )},(s), (33)

V~ = V~, (R) + V~, (5, r ),
v, =v„'(s)+v„'(s, s) . (27b)

v, = v,'„(s)+ v~(s, s ) . (25b)

It is designated as V, when the molecule adiabatically
follows the incoming atom; that is,

where'~(s ) is the final molecular wave function in
the absence of the outgoing atom and H(S) is the
wave function for scattering by the central poten. —

tial Vz„(S). We use Eq. (33) with q~(s) obtained
from Eq. (9} in both the unperturbed and the adia-
batic approximations to retain the simple form given
in Eq. (25) for T6 . For the adiabatic distortion
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potential, this introduces an additional approxima-
tion into the treatment, which could be avoided by
using an alternative, somewhat more complicated,
expression for TR„(DWBA). R The function H(S) can
be written in the standard partial-wave form 5&

H(S) =g (2l +1)i' e ' L, (S) P, (cos(w —8 }), (34)
l

L, (S)-(kRS) 'sin(kRS —Rim+5, ) . (36)

The wave numbers k and, 'z& must satisfy the en-
ergy relation of Eq. (10) therefore the phase shifts
of the initial and final channels are generally dif-
ferent. This is understood whenever they are dis-
played together.

Substitution of Eqs. (26) or (29) and (33) into the
expression for the transition matrix TR (DWBA)
yields the desired formula. To illustrate the pro-
cedure involved, we consider the unperturbed case
[Eq. (26)]

TR~(DWBA)

CO

Q (al+1)i' e 'L, (S)P,(cos(v —8 ))
1=0

x7}R(s) Vt„(S,s) 2 (an+1)i" e "L„(R)P„(cos8)

x q (r) ds dS . (36)

where 8 is the angle between S and the final wave
vector kR, and L, (S) is the solution of the Schrodinger
equation with the potential VR„(S), subject to the
condition tha, t L, (S) is bounded at the origin and be-
haves asymptotically as

Making use of the relation

cos8'= cosRR cos8+sinRR sin8cos(4 —P),

where and 4 are the polar angles of kz, and of
the addition theorem for Legendre polynomials

P, (cos8') = P, (cose) P, (cosII)

+2 E (-1)
l

Pp(cosS)(l -m}l
m 1 l+m l

xP) (cos8)cos[m(4 —p)], (39)

TR~ (DWBA) = Z (2l +1 )A, P, (cose)
1=0

(40)

with the partial-wave amplitude A, given by

A, = f"f"f'f" f(S, ~}q.(r)

xs is)nSsin8dxdgd8dsdS, (41)

where

f(S, s ) = —aw e "~'"~ I., (S) P, (cos 8 ) g,(s)

x VB„(S,s) E [(2n+1) i"e"~L„(R)P„cos8] .
n~O

we see that the fgI} integration can be done immedi-
ately since the integrand depends on it only through

Eq. (39). This is expected because the problem is
symmetric about the z axis. Substitution of Eq.
(39) into Eq. (36) and performance of the 4 inte-
gration permit the scattering amplitude to be ex-
pressed as a series of five-dimensional integrals

It is convenient to choose the volume element of
this six-dimensional integral to be

dsdS=s sin)S sin8dgdxd8dgdsdS, (37}

r= (S + —,'s +Ss cosf) ~R,

R = (-,'S + IR s R ——,'Ss cosg)' ~

(36)

cosy=(~R -Ss cosg ——,s )/Rr,

cos8 = [—,'S cos8 — s(cos8 cosg —sinl} sing sin}t)]/R.

where 8 and Q are the angular coordinates of S, g

is the angle between s and S, and X is the azimuthal
angle of s with respect to S (see Fig. 1). To per-
form the integration, we must express the angle
8 and the coordinates R and r in terms of the six
variables in Eq. (37). With some algebraic manip-
ulation, it can be shown that for the HR system (in
which the center of mass of each diatomic molecule
is at its midpoint)

(42)

Equation (40) has a form that is similar to that ob-
tained in direct scattering, though the amplitude
integral [Eq. (41)] is much more complicated. It
should be noted also that the sum in Eq. (40) is
over final-channel partial waves, which for the
present case is equivalent to the expansion over
initial-channel partial waves.

The differential cross sections are obtained by
introducing Eq. (40) into Eq. (12). Integration
over the solid angle dA= sin+ dU d4 yields the total
cross section

A. scarc AB ~ Q .(al ~1)~A ~R (43)
(ave ')' 2

From the perturbed molecular approximation
[Eg. (29)] the same formula, s are obtained except
that the scatteri~ potential V„ is replaced by VR

and Rl (r) and V„(S,s) are replaced by q, (R, r} and
V,'(S, s), respectively.
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T..(DWBL) =«X,' '~ V,'5(t -w) IX."), (44)

where A is the 5-function "strength" parameter.

B. Linear Approximation

Although the determination of the Tz (DWBA)
matrix elements by the method outlined in Sec. III A

is possible, the required integral evaluation is so
time consuming that only a small number of such
calculations were carried out. To permit a more
general exploration of the nature of the reaction
cross section, it is desirable to use a simpler, but
approximately valid, model. The simplifying as-
sumption that we introduce here is that the reaction
occurs only in the neighborhood of the linear con-
figuration. Since the potential energy has a mini-
mum for the linear configuration, the initial
molecule tends to turn toward the incoming atom.
Moreover, the results of the complete DWBA cal-
culation show (see Sec. IV} that the configurations
contributing to reaction subtend a cone which is
only about 10% of the total sphere

The matrix element T~ in the distorted-wave
Born linear (DWBL) approximation is given by

Although A would be expected to vary as a function
of the energy and of the initial and final states, a
fixed value of A was chosen by comparison with a
single Tz (DWBA) result. Because of the ar-
bitrariness in A, all of the work with the DWBL
model was based on the simpler unperturbed mo-
lecular approximation for the distorted waves as-
sociated with the relative motion.

To write out the explicit expression for the ma-
trix element appearing in Eq. (44) we make use of
Eq. (36). The linear assumption consists of re-
placing the surface element sinfdfdX by A5(f —w)df.
If the initial molecule is in its ground state char-
acterized by the vibration-rotation quantum num-
ber (0, 0) and the final rearranged molecule is in
the (0, k)th vibration-rotation state, we have

!7 (r)=!t!O(r), rt, (s)=!t!0(s)p!,(cos8))e' 4!,

where Q0 is the radial part of the diatomic mole-
cule wave function, and P, is the (km) associated
Legendre polynomial with 8, and Q& the polar
angles of the molecule. Substituting into Eq. (36),
we obtain

Ts (DWBL) = —A 2 (2l+1)i' e 'L, (S)(-1)'P, (cos8 ) I/0(s) P~(cos8~) e ]IV&„(S,s)
„l n0

OO

Z (2n+1)i"e "L„(R)P„(cos8) Q, (r)5(t' —w)S s sin8drd8d!t!dSds . (45)
ftn0

If we expand P, (cos8') according to Eq. (39), there
are (2l +1) terms in the expansion. However, since
5(t w) is equiv-alent to 5(8, + 8 —w)5(g, -Q —w),
the Q integration makes all of the terms vanish ex-
cept the one which has the same m value as the
final state of the molecule. To illustrate the cal-
culation with Eq. (45), we write down the expres-
sion for the reaction between the ground rotational
state of the initial molecule and the 0=1, m=0
rotational state of the final molecule. For this
case, after the g and Q integrations, we find

Tz, (DWBL) =Z (2l+I) e !B, P, (cose), (46)
i~0

where

B, = —2wA f f f '
L, (S)P (cos8)P (cos8)

0 0 0

yQ 1

xylo(s)V!!„(S,s) E (2n+1)i"e "L„(R)P„(cos8)
i. n0

x Qo(r)s S sin8d8dSds, (47)

with r =S —&s and 8 = —,'S+-,'s. To reduce this in-

I

tegral further, we make use of the following rela-
tion

j+f
P, (w)P,"(w)= Z D(k, i, m, j,n)P,'-"'(x) .

a I j-yl
(46}

The nonvanishing D have the form

D(k, i, m, ,j,m, )

( ~„.„.
( )

(k —Imp-msl) I

(k+ Imp —msl}l

gl(@—2l')l(l' -m')l(t+m)l g ( I)'
(g -I)!(g -& ) l(g I")I(2g+ I)(f -m) I !-

(I"+m" t) I(+i+I' - mt) I

'(I -m —t) I(l —m —t)1(l —I +m +t) ltl

(49)

where i,j &0; g=-,'(i+j+k) and an integer, and
li -jl - k' Ii+ji. The quantities m", m', m are
such that I is the largest of the triplet
(Impel, Im2I, and Imq -mal), m' is the next largest,
and m is the smallest; and l ', l', and l are the
corresponding members of the triplet (i,j,k); the
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TABLE I. Total cross section (J= 0, J' = 0) by DWBA.

Relative energy
(eV)

0. 5
0. 33
0. 21

Unperturbed model
(a.u. )

0. 009

Adiabatic model
(a.u. )

0. 20
0. 027
0. 0001

IV. CALCULATIONS AND RESULTS

Numerical evaluations of the partial-wave am-
plitudes and cross sections have been carried out

by means of computer programs, which are de-

15— E = 0. 5eV.

QUANTUM

12

I I I

30 60 90 l20 i50 I80

8(dcg)

FIG. 2. Differential cross sections of the reactive
scattering of H+H2 system: solid line, D%'BA for J=O
to J'= 0 reaction; dashed line, classical trajectory cal-
culation for J=O to all J' states.

sum over t is to be taken over all terms involving
non-negative factorials. Substituting from Eq.
(48) into Eq. (47) and performing the g integration,
we obtain

I+1

B& = — Z (2j+1)D(l,j, 0, 1, 0}i~e ~bU,
+ 9= l1-11

(50)
where

bg J f f Z. g(S) yo (s) V,'„(S,s)I.,(R) Po (r)s S ds dS
0 0

Thus, the evaluation of Ts, (DWBL) has been re-
duced to a sum over the two-dimensional integrals
b». Corresponding expressions result for molecules
in other initial and final states.

scribed briefly in the Appendix. Here we report
some of the results obtained for the (H+H, } reaction
with the initial and final molecule in the ground
vibrational state. The initial rotational state of the
reactant molecule is denoted by J and the final
state of the product molecule by J . We consider
first the DWBA and then turn to the more extensive
studies by the DWBL model.

A. Distorted-Wave Born Approximation

(51)Ts (DWBA, v) = (Xs
'

~
V H(v —y)

~

X~' ),
where H(x) is the Heaviside function [H(x) = 0, g & 0;
H(x)=1, x&0] and 0& v'&v; thus, Ts, (DWBA, v)
= Ts„(DWBA). From Eqs. (40) and (51),

Both the unperturbed- and the adiabatic-molecule
approximations were used. Some total cross sec-
tions obtained as a function of energy for the J= 0
to J = 0 reaction with the two limiting approxima-
tions are shown in Table I. The first incoming en-
ergy (0.5 eV) is well above the classical threshold
(0. 25 eV) energy, ' the second (0. 33 eV} is near
the classical threshold energy, and the third
(0. 21 eV) is well below the classical threshold. As

can be seen from Table I, the adiabatic model
yields a total cross section which is about 20 times
larger than that of the undistorted model. From
the magnitude of the rotational coupling and the as-
sociated characteristic times, "we believe that the
adiabatic model is a considerably better approxima-
tion for the energies under consideration.

The differential cross section (in arbitrary
units) obtained from the adiabatic model at an en-
ergy of 0.5 eV is shown by the solid line in Fig. 2.
It corresponds predominantly to "backward scat-
tering" in the center-of-mass system; that is, the
incoming atom strikes the molecule, and a new

molecule is formed which recedes in the direction
from which the atom came. The differential cross
section obtained for the undistorted-molecule model
is very similar in shape to that from the adiabatic
model, although the magnitude is, of course, much
smaller.

From Eq. (40), it is evident that lA, I
s represents

the contribution of the 1th partial wave to the total
cross section. A plot of !A, I

~ against l is given in
Fig. 3 for an energy of 0. 5 eV. The relationship
between lA, I and l corresponds to that between the
reaction probability and the impact parameter in
the classical picture. It is found that lA, l de-
creases smoothly with increasing l and approaches
zero for l =10. Thus, the magnitude of IA, I as a
function of l provides information on the size of the
reactive region.

In order to obtain some idea of the configurations
of the three nuclei that lead to reaction, we use the
unperturbed molecule model and consider a quantity
Ts (DWBA, r) defined as
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Tq (DWBA, r)= 2 (2l+1)A, (v)P, (cosa), (52)
l ~0

where

A, (&)= f ff ff f(y, r)n. (r)

x s'S' sing sine dIIdgd8dsdS . (53)

The function I(y, r) is defined by

IO—

08—

b 06
I

b

04-

02—
0 when y &r
I(8, s) when y«v, (54)

I I I I I I I I I I I I I

0 30 60 cl0 I 20 I 50 I80
v (dcg)

B. Linear Approximation

For the linear calculation, the 5-function strength
parameter A was chosen so that the total cross
section obtained by this method at incident energy
of 0.5 eV is the same as the value obtained from
the complete DWBA. The differential cross sec-
tion at an incident energy of 0.5 eV for the reac-

LLI

O

«f

4J
CL'

N
«f

IO-

8—

6-

4-

2—

I I I I I I I I

0 2 4 6 8 IO

FIG. 3. Contribution lA~ l of each orbital angular
momentum l to the reactive cross section at incident en-
ergy of 0. 5 eV [see Eq. (43)] .

with f(S, s ) given in Eq. (42); the angle y depends
on the five integration variables through Eq. (38).
The cross section o,~(&), which is obtained from
Eq. (43) by replacing IA, I

' with lA, (r) I ~, provides
a semiclassical measure of the contribution to
reaction for atom, molecule orientations with y in
the range between 0 and 7. The quantity o ~(&)/o ~

for the J= 0 to J = 0 reaction at an initial energy of
0.5 eV is plotted as a function of v in Fig. 4. The
figure demonstrates that the dominant contribution
to the reaction cross section comes from small-
angle configurations; i. e. , 80% of the cross section

is obtained with y &40' which subtends a cone of only
10%of the total sphere. These results coupled with
the fact that the molecule turns toward the incoming
atom'6 suggest that the linear model should be a
satisfactory approximation.

FIG. 4. Fractional contribution of different configura-
tions of H3 system to the total reactive cross section.

tions J= 0 to J = 0, 1, 2 (summed over all possible
m values) are presented in Fig. 5. In all cases,
the initial and final molecule are in the ground vi-
brational state. We see that the various curves
are similar, with a strong backward peak being
the dominant feature. Since the complete DWBA
treatment had a corresponding formfor the J=O to
J =0 case (solid line in Fig. 2), the comparison

.I8—

w .l2
C)

O
4JI-
V)

~ .09
a

CD

Cg

.06

E s0.5ev.J=O

( ) a'=0
(~~~~) J
(—-—) J'=2

/
/I

I
I
I

I

I'/

i

.03—

I I I I I I

30 60' 90 I 20 I 50 I 80
8(&eg)

FIG. 5. Differential reaction cross section as a func-
tion of the scattering angle from the linear model at an
incident energy of 0. 5 eV: solid line corresponds to J=O,
J' = 0; dashed line corresponds to J =0, J' =1; dashed-
dot line corresponds to J=O, J'=2.
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FIG. 6. Differential reaction cross section as a func-
tion of the scattering angle 8 for J= 0, J' = 0 at a series
of incident energies from the linear model.

provides additional evidence for the validity of the
linear model. Moreover, it should be clear that
the present linear model is very different in con-
cept from treatments in which the three atoms are
constrained to move on a line throughout the col-
lision; such an approach, of which the accurate
H+ Hz calculation of Truhlar and Kuppermann is
a recent example, provides only reaction prob-
abilities and does not permit the evaluation of dif-
ferential cross sections. In the present linear
approximation, the full three-dimensional aspect
of the collision is included, and it is only the
evaluation of the transition matrix element itself
that is simplified.

The shape of the differential cross section as a
function of incident energy for the J=0 to J'=0
reaction is shown in Fig. 6. As the incident energy
increases, the peak in the cross section gradually
shifts in the forward direction. This type of be-
havior, in which the incoming atom "remembers"
where it came from as its energy becomes con-
siderably larger than the barrier energy is familiar
from nuclear physics. For the (d, p) stripping reac-
tion in a Coulomb field, the differential cross sec-
tion is peaked backward for an incident energy of
a few MeV but the peak is drastically shifted
toward the forward direction when the energy is
increased to a few hundred MeV. In the atom-
molecule case, the shift in the peak direction oc-
curs over an energy range on the order of 2 eV.
It would be extremely interesting to have data on
the energy dependence of the differential cross
section for a better understanding of the reaction
mechanism.

The energy dependence of the total cross section
for J=O to J =0, 1, 2 reactions is shown in Fig. 7.
The solid triangles are the values obtained by the
DWBA for the J= 0 to J = 0 case. Since the pres-
ently available reaction-rate data emphasize the

l.4

1.2-

i.0-

o.e—
O

b
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E= Q.5eV.
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I
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low-energy range (E& 0.6 eV), an expanded plot
is given in Fig. 7(a), while the more general en-
ergy dependence is shown in Fig. 7(b). The domi-
nant feature of the curves for all J' is the steep
increase in o with incident energy, up to a maxi-
mum at about 0.8 to 0.9 eV, and a subsequent drop
off for higher energies. It is expected that the
reaction cross section will continue to decrease as
the incident energy is increased; further, for very
high energies, the process H+H2- 3H becomes
important. For all of the energies studied (except
in the neighborhood of the threshold), it can be
seen that the J=O to J'=1 reaction has the largest

I I

03 0.4 05 0.6 0.7 Q8 0.9 I.O I.I

E (ev.)

FIG. 7. Total reaction cross section as a function of
incident energy from the linear model: solid line corre-
sponds to J=O, J' =0; dashed line corresponds to J =0,
J' = 1; dashed-dot line corresponds to J=0, J' = 2. (a)
Threshold-energy region; {b) intermediate-energy region.
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cross section, J=O to J'=2 is next, and that the
Z= 0 to J = 0 actually has the lowest cross section.
However, quantitatively the difference between the
various cross sections is not great, being less than
a factor of 2 over the entire energy range. The
threshold results with J=0 to J'=0 becoming
largest are understandable in terms of the avail-
able energy.

V. DISCUSSION

In this section we compare the results of the
quantum treatment with the classical calculation
for the same potential surface, consider some al-
ternative approximations for a quantum-mechanical
approach to reactive scattering, and comment on
some of the implications of the present calculations
for a theory of chemical kinetics.

A, Comparison with Classical Theory

Although the question of whether classical me-
chanics is adequate for chemical-reaction-rate
calculations is a fundamental one, no unequivocal
answer is available. Since a detailed classical
treatment exists for the (H, H3) reaction, ' we hope
to provide some information on this point by com-
paring the present quantum calculation with the
classical results. The fact that the classical and
the quantum calculation used the identical potential
energy surface makes the agreement or disagree-
ment particularly significant, independent of the
availability of experimental data. However, it
should be noted that differences between the clas-
sical and the quantum results could be due to the
approximations in the quantum treatment, as well
as to "real" quantum effects.

The most important result is that the differential
cross sections obtained from the classical calcula-
tion is almost identical in form with that from the
quantum-mechanical calculation (see Fig. 2). Both
are highly anisotropic with a broad backward peak
and essentially no scattering for 8 & 90'.

At a relative translational energy of 0.5 eV, for
which the most detailed classical and quantum-
mechanical calculations were done, the total quan-
turn-mechanical cross section is less than the clas-
sical cross section by about a factor of 2. The
comparison is not completely unequivocal since in
the quantum-mechanical treatment, only the transi-
tion from J= 0 to J = 0 was calculated by the DWBA,
while the other transitions were estimated by the
DWBL-model approximation. At lower energies, the
linear quantum model gives results that drop more
rapidly to zero than the classical values, while at
higher energies the quantum cross section rises
rapidly above the classical result. The high-energy
quantum values suffer from the breakdown of the
adiabatic model approximation which would re-
quire a variation in the strength parameter in the

linear approximation. Also, the linear model is
expected from classical calculations to be less
accurate at higher energies. Finally, the DWBA
method itself becomes less valid as the magnitude
of the total cross section increases. Thus, signif-
icance of the comparison of the energy dependence
between the classical and quantum calculations is
somewhat uncertain.

A possible explanation for the larger cross sec-
tion obtained in the classical calculation in the low-
energy range is the zero-point molecular vi-
bration (equal to the quantum-mechanical zero-
point energy) incorporated into the classical
calculation. More of this energy may be available
for crossing the barrier in the classical than in the
quantum treatment. Another difference is that the
equilibrium distance of the molecule is the most
probable position for the two atoms in quantum
mechanics, while in classical mechanics, vibra-
tional motion makes the two atoms spend most of
the time at the extremal positions. Since it has
been found that reaction occurs most easily when
the molecule is stretched, "an effect on the clas-
sical cross section is expected.

If we interpret lA, I as the contribution of the
lth partial wave to the reaction cross section
[Eq. (43)], a plot of I A, I

' against l corresponds to
the plot of reaction probability against impact pa-
rameter b in classical mechanics. ' Figure 3 shows
the quantum-mechanical results. In both cases,
the reaction probability decreases smoothly with
increasing angular momentum and approaches
zero for l =-10, which corresponds to a value of
b=2. 0 a. u.

For the reactive configuration, the classical cal-
culations show at an incident energy of 0. 5 eV that
in the transition region the H-H-H system deviates
from linearity by angles that average to y = 25'.
Since particles have no definite path and waves in-
terfere in quantum mechanics, a direct comparison
with the classical configuration is not possible.
However, from Fig. 4 we see that most of the reac-
tion comes from configurations with H-H-H angle
less than 40'. This information, compounded with
the fact that the initial molecule rotates in order
to line up with the incoming atom (see Fig. 6 in
Ref. 16), suggests the same picture as was ob-
tained by classical mechanics.

It was found in the adiabatic quantum-mechanical
treatment that a stretching of the initial molecule
was important for reaction. Such a stretching is
found also in classical calculation.

In both the classical and the quantum-mechanical
treatment, for a reactant molecule in the state
J= 0, the product molecules are found to be dis-
tributed in a series of rotational states. For an
incoming energy of 0. 5 eV, the classical angular
momentum corresponds to rotational states with
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J' ranging from 0 to 5, with the most populated
state being J = 2. According to the quantum cal-
culation, the results are similar although the most
probable state is J =1. However, this comparison
should not be taken too seriously. Since discrete
rotational states are a purely quantum-mechanical
concept, the classical results were obtained by a
somewhat artificial grouping of the reactive trajec-
tories in terms of final angular momentum ranges.
Also, because the quantum-mechanical information
is obtained from the linear approximation, its
angular momentum distribution could be biased.

The above comparison suggests that the quantum
and classical results are similar in many, though
not all, respects. This is somewhat surprising
since the choice of the (H, H2) was suggested by
the fact that, since it is the lightest element, it has
the longest deBroglie wavelength for a given energy.
Thus, many authors have assumed that quantum
effects should be very pronounced for the (H, H2)

system. Considering a one -dimensional barrier
approximation for a reaction, Kondratevs~ gives a
condition for the validity of the classical limit as

( IF/p' 'v)«1, (55)

where F is the effective force (F = —d'U /dx, where
is the potential and x is the distance), p, is the

mass, and v is the velocity of the particle. Since
for a (H, H2) collision at 300 'K, the most probable
velocity gives ffF/lJ. v' = l5, it might be concluded
that classical mechanics is not applicable. Also,
Mazur and Rubin3~ in a quantum-mechanical calcu-
lation for a linear system with an idealized poten-
tial found that the reaction rate computed by solving
the Schrodinger equation differed by at least a fac-
tor of 5 from the classical value. More recently,
Mortensen'0 studied the (H, Hz) system with the
atoms constrained to move on a line and found that
there is a large discrepancy between classical and
quantum results. This contrasts somewhat with
the exact results for certain idealized potentials. ~

We must consider why there are no significant
quantum effects in certain features of the (H, H3)
reaction when the condition for the validity of clas-
sical mechanics appears to be violated. One point
is that the condition established for one-dimen-
sional motion may not be correct for the three-di-
mensional case. Also, it is likely that the linear
calculations which constrain the atoms to move on
a line show larger quantum effects than the complete
three-dimensional calculation in which the greater
number of degrees of freedom may lead to some
blurring of quantum effects. Finally, the particles
with energies that violate the validity condition
[Eq. (55)] have a very small reactive cross section
and do not contribute to the general behavior. For
example, at 300 'K, most of the particles do not
react at all. Only the collisions corresponding to

the high-energy tail of the distribution make an
important contribution to the cross section and those
satisfy Eq. (55); e.g. , for an incident energy of
0.5 eV, IF/p'v . = 1-0

B. Alternative Approximations

The DWBA is obtained when we replace 4,"
with the elastically scattered wave X,"in Eq. (22).
The results reported in the paper were based on
this approximation. If the substitution of X,

"for
4"' is made in Eq. (13), we obtain an alternative
approximation. We have carried out this approx-
imation. The results have the general features of
the DWBA except that the differential cross section
has a sharp forward peak in addition to the broad
backward peak. Although the forward peak might
be thought to be due to the diffraction effect of wave
mechanics, an examination of the polar intensity
of the incoming particle near the reactive region
shows that this interpretation is incorrect. The
forward peak is spurious and is caused by the use
of an inconsistent approximation; that is, the dis-
tortion of both the initial and the final wave is re-
quired in calculating the transition amplitude.

A calculation with the Born transition amplitude
[Eq. (14)] yielded a differential cross section that
oscillates violently as a function of angle and is
large in the forward direction. This result con-
firms the inapplicability of Born approximation to
a process in which the repulsive distortion of the
wave function is very important.

The DWBA has been successfully applied to a
large class of nuclear scattering problems. ' In
these treatments, the usual approach has been to
utilize a potential that includes some adjustable
parameters. Thus, it is not always certain whether
the agreement with experiment justifies the method
or whether errors in the method are compensated
by the suitable altered potential. In the present
calculation, the potential used was completely in-
dependent of the scattering data and no adjustable
parameter was introduced. Thus, the comparison
with the classical results is of greater significance.
It appears from the present calculations that the
DWBA is a valid first step in the study of chemical
reactions with activation energy; that is, many
reaction attributes (e.g. , the form of the differential
cross section) are obtained with sufficient accuracy
in this approximation. However, for some proper-
ties (e. g. , the energy dependence of the total cross
section) a more detailed treatment is required. In
particular, although the adiabatic approximation
used here is probably satisfactory for the vibra, —

tional degree of freedom of the molecule, it may
be less appropriate for rotation. To examine this
question, a coupled equation approach is now being
employed for the study of the (H, H, ) reaction. ~'
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C. Implications for Chemical Kinetics

In absolute rate theory, the reaction is considered
to proceed through some intermediate region
whose properties can be formulated in terms of an
"activated complex. " Collisions in which the
reactive system passes through this region are
characterized by assuming that there is an equi-
librium phase-space distribution among the degrees
of freedom of the complex. Some difficulties with
this assumption in the purely classical treatment
have been described previously ~ For the quan-
tum-mechanical problem, there is the added com-
plication that the time spent in the transition region
determines the widths of the "energy levels" of the
activated complex, so that, if the complex "life-
time" is too short, a simple evaluation of its par-
tition function may not be valid.

In the present calculation we assume that, given
the potential surface, the dynamical problem can
be solved in sufficient detail to obtain the reaction
attributes from first principles. A direct interac-
tion approach is used, and no intermediate state is
introduced into the theory. From a complete set
of scattering cross sections and their energy de-
pendences, the macroscopic rate coefficient and
its temperature dependence can be determined
in a simple fashion for comparison with the kinetic
measurements. With the classical cross sections,
such a rate-constant calculation has been made,
and surprisingly good agreement with the measured
values was obtained. ' The results of the quantum-
mechanical treatment that were obtained here are
too limited to permit a corresponding rate-constant
evaluation.

From the classical treatment and its comparison
with the quantum-mechanical calculation, there is
no evidence for a collision complex with an ex-
tended lifetime. Thus, quantization of certain de-
grees of freedom (e.g. , the bending vibrations)
may not occur in this reaction.

However, a number of the concepts associated
with the usual chemical-reaction-rate theory are
supported by the quantum-mechanical treatment.
Certainly the concept of an activation energy is
valid. We have found that for initial translational
energies less than a "threshold" value, the reaction
cross section is negligibly small. Such an energy
dependence for the cross section will evidently give
rise to an activation energy. The "threshold" is
related to the energy required for the system to
reach a "reactive region", that is, for the atom
and molecule to get sufficiently close so that the
transition matrix element has an appreciable am-
plitude and reaction occurs with a significant
probability.

Another assumption that is often used in reac-
tion-rate theory is that for a system in which the

potential energy is a minimum for the three atoms
along a line, the reaction proceeds through a linear
configuration. While it is impossible that a reac-
tion occurs only in an exactly linear configuration,
near linear configurations do seem to be dominant
in the (H, H2) system, particularly at energies near
threshold. Evidence presented in the quantum-
mechanical calculation shows that most of the reac-
tion comes from a cone with less than 40' deviation
from linearity, and the adiabatic molecular wave
function shows that the molecule tends to line up
with the incoming atom. ' Furthermore, the
quantum-mechanical linear model results are in
very good agreement with the complete distorted-
wave calculation.

A point that plays an important role in the direct
interaction theory is the effective two-body poten-
tial (optical potential) for the collision between
atom and the molecule. For a given energy, the
nature of the potential determines how close the
particles can come together. As we have seen, "
the two-body potential is difficult to evaluate
uniquely, and different alternatives are possible
according to how much translational energy is
transferred to and from the energy of vibration and
rotation. The exact answer can come only from
the complete solution of the three-body problem.
However, the calculations that we have done rep-
resent two extremes of a real approximation to the
optical potential. In one case, we have assumed
that the initial molecule is unaffected by the in-
coming atom and in the other, that the initial mole-
cule adiabatically follows the incoming atom. It
is the latter calculation that appears more reason-
able in terms of the characteristic times involved.
However, the adiabaticity and resulting energy
transfer depends on incident velocity and, there-
fore, on the total energy of the system. This sug-
gests that the concept of an energy-dependent po-
tential may be useful for molecular collisions.
Ãe have found that not only the spherical part of
the potential can change, but the higher harmonics
may do so as well. Since the latter are responsible
for molecular excitation, it appears that such an
energy-dependent potential should play a part in the
study of inelastic molecular collisions as well.

D. Antisymmetrization Process

In all of the preceding discussion, we have as-
sumed that three particles are distinguishable and
that only the reaction A+BC-AB+C has to be con-
sidered. Since the reaction A +BC-AC+8 yields
exactly equivalent results for the (H+H~) system,
the reported total cross-section values include this
factor of 2. However, the Pauli exclusion prin-
ciple has not been explicitly introduced into the cal-
culation. This is permissible because the necessary
antisymmetrization can be applied to the T matrix
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elements obtained from the unsymmetrized calcula-
tion. It is well known that such a process will mix
the amplitudes of the direct and the exchange scat-
tering. Thus, even the experimental measure-
ments of elastic scattering include contributions
from the reactive process, though this term is
relatively small for the present case. Also, a
consideration of the nuclear spin statistics is re-
quired to relate the quantum-mechanical cross sec-
tions to the measured para- ortho conversion-
rate constants. '

ACKNOWLEDGMENTS

We wish to thank Dr. J. Cooley for assistance
in using his Schrodinger-equation program;
Dr. R. D. Sharma for discussion on the classical
calculation; Dr. Q. Sovers for use of his D co-
efficient program; Dr. I Shavitt for advice on pro-
gram efficiency; Dr. B. Kleinman and Dr. K.
Morokuma for assistance with the calculations.
One of us (K. T. T. ) wishes to thank Professor
T. Y. Wu for illuminating discussion on the reaction
mechanism. We are grateful to the Columbia
University Computing Center for their cooperation
in making available machine time for the project.

APPENDIX: BRIEF DESCRIPTION OF COMPUTATION

Because five-dimensional integrals must be
evaluated in the present formulation of the DWBA
and the number of machine operations required
goes as the fifth power of the number of points used
in each dimension, much effort was expended in
preparing an efficient program. As an illustration,
we give a brief description of the program used to
calculate the reactive scattering amplitude A, .

The total wave function, which is approximated
by the elastically scattered waves, is summed up
according to Eq. (30). The radial part L, (r) is
normalized to

L, (r) =cos5, j, (kr) —sin5, N, (kr) (Al)

in the region where V(r) = 0, with the phase shifts
6, calculated by the method reported previously. '
Legendre polynomials, spherical Bessel (J,) and

Neumann (N, ) functions are computed with their
standard recursion formulas. The real and imagi-
nary parts of the total wave function are stored sepa-
rately in two three-dimensional tables with 3360
entries each. A table-look-up routine is used to
interpolate when the required value is not at an

entry point.
The numerical integration is done by the method

of Gaussian quadrature. The five-dimensional
integration is programmed into a loop of five in-
ter locked one -dimensional integration routines.
The program is so written that the most time-con-
suming part, namely the potential evaluation, is
carried out a minimum number of times.

The radial part of the molecular wave function
is obtained with a one-dimensional Schrodinger
equation solution routine provided by Cooley. " The
angular part of the adiabatic molecule is calculated
as described previously. ' The resulting values are
entered in two-dimensional arrays in preparation
for the numerical integration.

Because the IBM 7094, which was used for the
calculation, is too small for the entire program,
the program is written as a chain job with three
links. In the first link, the tables of total wave
functions are prepared, and the Gaussian points and
weights are determined. In the second link, all
quantities depending on l [see Eq. (42)] are calcu-
lated. In the third link, the numerical integration
is performed. After one A, is obtained, it is stored.
Link 2 is then called in again and l is increased
by 1. The process is repeated until A, is negligibly
small. Then all A, 's are summed up according to
Eq. (40), which yields the desired scattering am-
plitude.
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The charge-exchange process has been studied at much higher energies than previously
examined. Equilibrium charge distributions have been measured in foils of Mylar, Al, Ni,
and Ta for protons of 155 and 600 MeV, and deuterons of 80 MeV. Estimates have been made
for the loss cross sections o&, and the resulting capture cross sections o, are compared with
theoretical expectations. Up to 155 MeV, 0~ can be reasonably well accounted for by the non-
radiative capture process. Above this energy there are significant departures from this sim-
ple behavior which are consistent with the predicted onset of radiative capture. However,
because of possible relativistic effects, such an interpretation is not certain. The present
data suggest several interesting areas for future theoretical and experimental study.

INTRODUCTION

There have been many studies made on the
equilibrium charge distributions of ions at low en-
ergies. By low energies, we mean here energies
where there are significant amounts of more than

one charge state (this means a range of less than
1 MeV for protons to several MeV/nucleon for
heavy ions). Reviews of the experimental results
are given by Allison' for protons and QI, particles,
and by Northcliffe and Nikolaev3 for heavier ions.

Although there is no completely satisfactory


