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The method of extrapolation from complex energies is used to calculated s-wave electron-
hydrogen-atom elastic scattering from the ground state at energies in the region ranging from

1.21 to 2. 25 3y.

I. INTRODUCTION

This paper gives the results of some further cal-
culations of s-wave electron-hydrogen-atom elastic
scattering in the energy region above the ionization
threshold, using the method of extrapolation from
complex energies proposed previously. ' We have
increased the number of trial functions and calcu-
lated at five energies from 1.21 to 2. 25 Ry. The
results agree well with other calculations for the
triplet state, but differ from some previous esti-
mates in the singlet case.

II. METHOD OF CALCULATION

We briefly recapitulate the idea of the method
using the notation of Ref. 1. In order to determine
the s-wave elastic scattering amplitude for an
electron of momentum k incident on the ground
state of the hydrogen atom, we first calculate the
function T(p) for several values of the complex
momentum p (with positive imaginary part) and then
extrapolate these results to p=k. The amplitude
T(P) is defined as

T(p) = (qpol qv4 o)+(qv(e'ol(E-H) &I qv@o&, (1)

where
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with E=P —1 and the Hamiltonian H given by

H = —Vo& —Voo—2/r, —2//ra+ 2/ro .

We obtain T(p) by characterizing it as the station-
ary value of [T],

[T]= (Q&, lq v(to&+ (x,'l qv&, &+ (Q viol x )

falls off rapidly enough at large distances to be
square-integrable. Thus we expand y, as a linear
combination of Hylleraas functions
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Although it has not been proved, we believe that the
estimates of T derived by varying the coefficients
C, „ in (4) converge to T(p) as M-~. [A proof
would follow if it could be shown that the set of
functions {(E—H) u&„„] was dense for E complex. ]

A theory of the rate of convergence of such a
procedure is slowly being developed, and, while
we are not yet able to treat the present case on a
rigorous basis, it seems likely that it is those
parts of y which fall off slowest at infinity that
dominate the asymptotic convergence rate. For
each two-body channel y will contain a term that,
for large distances, has the form

qf„&(r&)(s"""'/r&) 4'„&(ri),

where 4'„, is a hydrogen bound-state wave function
for binding energy B„, and p„=E+B„. Those chan-
nels with largest B„have smallest Imp„, and are
expected to have most effect on the convergence
rate. Consequently, to accommodate this behavior,
we have added to (4) three trial functions corre-
sponding to ls, 2s, and 2p states. They are

si.= Qs "(s"i"'/ri) g,
e» = Q (2- ro) s "o"(e"'"'/r, )Z,

e&&2"j, g
6) =Qr e "2/2 1 ~ 2
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as the trial functions y, and g, = g,* are varied.
The fundamental advantage in using complex P is
that the exact (X)= (E —H) '(QV(po) is a function that

withg= 1-e ""~ . It is found that the inclusion of
these functions, especially e~, markedly improves
the apparent rate of convergence of the method.

A study~ of the close-coupling equations indicates
that, in addition to (5), there may be terms in X
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T (p) = T (k)+ (p —k) x I (function analytic at p= k)

+a(p -k)'ln(p —k)]+ ~ ~ ~,

so that the first two derivatives of T(p) exist at
p=k. In the present work, we have made no use of

this information, but it is possible to envisage a
more sophisticated technique which would adjust
parameters in a function with a singularity of this
nature, until the function passed through or near
the points we have calculated.

III. RESULTS
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FIG. 1. Dependence of Ref~(p)[where f,(p) =- k&(p) for
the singlet spin stateJ on the nonlinear parameter K, for
M = 7 (circles) and M = 8 (crosses), and k = 1.1. (a)

p = 1.1 + 0. 1 i; (b) p = 1.1 + 0. 25 i.

that do not fall off exponentially, even for complex
E, but behave like

qy, e"~"z4„(r2)

These terms are present as a result of the long-
range character of the interactions. However
since the value of m is at least 3, these terms
may not be too important. It would be interesting
to include trial functions of this sort in the calcula-
tion and see what the effect is.

For each value of P and M, we carried out the
calculation for a range of values of K. The results
always oscillated with varying K with an amplitude
that decreased with increasing M. There appeared
to be a value of K Kp near which the relative am-
plitude of the oscillations was smaller than else-
where, suggesting better convergence. The value
of Kp increased as Imp increased, roughly following
the formula Ko= 1.1+4Imp at k=1. 1, with Rep=1. l.
This type of behavior is to be expected, since gen-
erally speaking y falls off faster for larger ImP,
requiring a larger decrease in the trial functions
u, „. The above statements are illustrated by the
results shown in Fig. l.

From all the results for a given p, we estimated
the value of T(p). These estimates for values of

p given by ReP=k, ImP=0. 05-0. 55 in steps of 0. 05
were plotted, and the value of T(k) obtained by ex-
trapolation of smooth curves through the points.

It should be pointed out that T(p) is singular at
p=k, which raises questions about the meaning of
the extrapolation described above. However, from
the close-coupling equations we deduce that for ls
elastic scattering, in the s state, the singularity
is quite weak since an expansion of T(p) about p=k
has the form

Physically, there is a great deal of difference
between s-wave elastic scattering in the triplet and

singlet spin states. The space part of the triplet
wave function must be antisymmetric, which keeps
the incident electron away from the atom. There
is therefore little chance that the atom will be ex-
cited from its ground state, and the scattering is
well described by a model in which the incident
electron moves in the average potential of the atom.

This picture of the triplet state is borne out by
our results, given in Table I. Even when ImP=0
our calculations with M= 8 appear to converge to
better than 2% accuracy for the range of k con-
sidered, k= 1. 1 (0. 1) 1.5. The results for ImP = 0
always lie within a few percent of smooth curves
passing through other values of Imp, and thus seem
fairly reliable. If there was a difference between
the extrapolated value and the value at ImP=O, we

have given the extrapolated value. Applying the

optical theorem to these results, we deduce that

probably at least 98% of the total cross section at
all k considered comes from elastic scattering,
which fits in with our picture. It seems most
likely that the reason for the apparent convergence
of our calculations at Imp = 0 is the smallness of
the coefficients of terms such as (5), which should
be included for all n at Imp =O.

Our results at k =1.1 are close to the results of
various close-coupling calculations, one involving
correlations. ' Even a three-state close-coupling
calculation gives a result for the partial cross
section only 1% smaller than ours. A plot using
our results and those of others'~(Fig. 2) shows
that k cot(Re5) is close to a linear function of k' as

1.1
1.2
1.3
1.4
1.5

Ref~

0.232
0. 298
0.350
0.386
0.422

Imft

0.939
0.893
0.845
0.795
0.749

Refs

0.37
0.35
0.34
0.33
0.33

Imfs

0.47
0.45
0.43
0.42
0.41

TABLE I. Estimates from this calculation of the triplet
and singlet s-wave elastic e-H scattering amplitudes f
=-kT(k).
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I 0 cross section at k = 1.0, which compares to a value
of 0.47 obtained with the polarized orbital method

by Temkin and Lamkin. However, the meaning of
their result is a little unclear, since their method
does not seem to allow for inelastic scattering.

IV. DISCUSSION
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FIG. 2. Calculated values of kcot(Re&) for triplet s-
wave elastic e-H scattering.

far as k= l. 5. The situation is very similar to that
occurring in the quartet s-wave state of neutron-
deuteron scattering. " The conclusion is that the
triplet s-wave elastic scattering is easy to calcu-
late, and that it is indeed a poor method which does
not give good results for this case.

The singlet state is another matter. There is no
sign of convergence at ImP=O. At ImP=O. 05, with
M=8, errors range from 2% at k=1. 1 to 10% at k
= 1.5. By the time ImP has increased to 0. 15,
these errors have decreased by a factor of 10. The
values of T(P) that can be calculated with reason-
able precision lie on smooth curves as ImP is
varied. Examples of the curves, with their extrap-
olation to Imp=0, are shown in Fig. 3.

At k= 1.1, the present calculation predicts a value
of 0. 30 (in units of s) for the singlet pa.rtial cross
section. This compares with values of 0. 17 and
0. 19 for close-coupling calculations in the ls- 2s
—2p and ls —2s —2p —3s —3p approximations,
respectively. Burke and Taylor' have carried out
a ls —2s —2P close-coupling calculation with 16
correlation functions added, and have obtained a
result of 0. 23 for the singlet partial cross section.
However, their result varies rapidly with v, as do
our results for real P, and it is hard to know what
weight to place on their calculation.

It will be seen from Table I that our predictions
for the singlet amplitude do not vary rapidly with
energy over the range considered. The elastic
cross section is roughly —,'of the total s-wave cross
section. Following the trend of our results, we
would estimate a value of 0. 40 for the singlet s
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FIG. 3. Extrapolations of Ref, from the values cal-
culated at p = k + i Imp, shown by the solid circles. Note
that the size of these circles does not indicate the expected
error (see text).

The principle of the method used in this paper
may be extended to processes other than elastic
scattering, such as excitation and ionization. '
We do not know if such calculations are feasible at
the present time.

The extrapolation procedure introduces errors of
unknown size. It would be very helpful if our results
could be compared with those of another method,
however cumbersome, that did not involve extrap-
olation. The Kohn variational method would be
one such method, but this is likely to require some
very lengthy computations.
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Total cross sections have been measured for electron transfer from O to Na', resulting
in optically allowed transitions to Na(2S) ground state. A merged-beam technique was used
to study the collisions in the energy range 0. 1-7 eV. Structure in the curves of cross sec-
tions vs relative energy indicates that the excitation of oxygen plays an important role in the
charge-transfer process. Cross sections for an endoergic process, giving Na(4p), are of
order 10 cm; cross sections for the exoergic processes leading to production of Na(3d)
and Na(3p) are of order 10 cm . Production of Na(3d) is nearly a resonant process; pro-
duction of Na(3p) is apparently due to a cascade from Na(3d).

I. INTRODUCTION

The study of ion-ion mutual neutralization pro-
cesses in the collision energy range between 0
and 10 eV is of particular interest because this
range encompasses those internal states of the
neutralized atoms most frequently observed in
optical spectra. If the end result of a charge-
transfer collision is to leave one or both atoms in
excited states, and if the excitation energy arises
from the collisional interaction, then the intensity
of photon emission from the excited atoms should
show a dependence upon the relative translational
energy of the ions. The nature and significance
of that dependence will be reflected in the individual
cross sections associated with specific final states
of the neutralized atoms.

The experimental difficulties inherent in work-
ing in this range of energies are well known. '
Crossed-beam techniques (intersecting beam angle,
greater than, say, 10') are difficu)t to apply at
relative energies less than about 50 eV. Low-
energy beams of ionized gases suffer in particular
from spreading due to space charge.

A means of obtaining well-collimated beams with
useable intensities and low relative energies is to
merge two high-energy ion beams which have a low
relative energy. Space-charge problems are

largely overcome and standard beam techniques
developed for crossed-beam studies can be em-
ployed. Thus, for example, ' for two beams of
equal masses and laboratory energies of 1250 and
1350 eV, the relative energy is only 1 eV. In ad-
dition, the merged-beam approach has the asset
that, in converting from laboratory coordinates to
relative coordinates, there is a reduction of the
dispersion of kinetic energies, which increases
the relative energy resolution of the experiments.
Suppose, in the example just given, the ion-source
energy spread is about 5 eV in the laboratory
frame. This corresponds to an energy uncertainty
of about 0. 1 eV in the center-of-mass system.

To date, merged beams have been used to study
charge transfer and charge rearrangement in ion-
neutral reactions, ~ charge transfer and rearrange-
ment in neutral-neutral collisions, and total mutual
neutralization cross section in ion-ion collisions.
The experiment described here is apparently the
first to combine the high collision-energy resolu-
tion of the merged-beam technique with the high
photon- energy resolution of spectroscopy. With
this arrangement it is possible to measure individ-
ual charge-transfer cross sections leading to
specific final states as functions of energy for those
channels which result in optically allowed transi-
tions. The object of this experiment, then, is to


