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We utilize the analytic atomic independent-particle model (IPM) of Green, Sellin, and
Zachor as a basis for calculating generalized oscillator strengths for the single-particle ex-
citations of Ne, Ar, Kr, and Xe. First, we establish averages of the experimental energy
levels to arrive at single-particle states. We then adjust the two parameters so that the IPM
potentials accurately characterize these excited-state energies. Using the wave functions
associated with these potentials and the Born approximation, we calculate the generalized os-
cillator strengths for excitations to p ns states. A very complex nodal structure is apparent
at large values of momentum transfer and a rapid decline in magnitude occurs after the second
node. We may accurately characterize the results up to the second node with a convenient
analytic form which leads to analytic total excitation cross sections. We use available optical
oscillator strengths to normalize our results. The systematics and regularities of the param-
eters for various Rydberg series are discussed and approximate scaling laws are given.

I. INTRODUCTION

In a series of studies, ' ' simple two-parameter
analytic independent-particle-model (IPM) potential
has been found to provide a good representation
of electron-atom interactions. The data used in
adjusting these two parameters have been deter-
mined by experiment or by using the results of
Hartree-Fockv (HF) or Hartree-Fock-Slater' (HFS)
descriptions of the atom. In this work we explore
further consequences of this simple realistic model
by carrying out calculation of inelastic excitation
cross sections for rare-gas atoms, giving partic-
ular concentration to systematic properties which

are needed for applied problems.
We deal primarily with the rare gases Ne, Ar,

Kr, and Xe despite the fact that there is a scarcity
of experimental data with which to test our results
or to readjust our parameters in the potential.
However, our work is approximately consistent with
the available experiment and the attempts to utilize
the few available HF excited-state wave functions.
It is hoped, therefore, that this work, which covers
a greater number of cases and a far more extended
range of momentum transfer, might provide a
guideline which will stimulate further measure-
ments on rare-gas excitation cross sections and
more rigorous calculations. These are needed not
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only to test this approach, which uses plane waves
for the incident and outgoing electrons, but also to
test calculations which me have underway at lomer
energies using distorted waves.

II. EXPERIMENTAL LEVELS

The ground state of each rare-gas atom is a P
configuration with all lower-energy shells filled.
The knomn excited states of these atoms have p'
cores; i.e. , they correspond to configurations like
P ns, P'np, P'nd, .. . , where one electron is ex-
cited. The spectra of the rare-gas atoms exhibit
considerable fine structure as shown in the tables
of Moore. This arises from the variety of pos-
sibilities which occur when the angular momentum
of the core J, is coupled to the angular momentum
of the excited electron j to give a total angular mo-
mentum J. The core angular momentum J, takes
the values —,

' and —,'. When J,= 2, the orbital angular
momentum of the excited electron is designated by
s, p, d, f, and when/, = ~, by s', p, d', and f .

To simplify the analysis of the rare-gas spectra
we replace each multiplet by a center of gravity by
averaging over J:

&nr =+z (2~+ I)&.i~!Z~ (2~+1),
where all energies are converted to atomic units
(8 = 1 Ry). Here, n and I are the principal quantum
number and orbital angular momentum, respec-
tively, of the excited state and E„,& is the energy
of the configuration p'el when the total angular mo-
mentum is equal to J. %'e treat configurations as-
sociated with J,= & separately from configurations
associated mith J,= —,'. In other words, for each
configuration p'nl me perform two separate aver-
ages; one corresponds to J,= —,

' and the other to
J,= &. To illustrate with an example, let us con-
sider the Sp 48 configuration in Ar. Corresponding
to J,= —,', there is a J=1 level at -0.3040 Ry and
a J= 2 level at —0. 3095 Hy; the center of gravity,
calculated from Eq. (1), is a 4s state lying at
—0.30V4 Ry. On the other hand, when Jc= —,', there
is a J=0 level at —0.2967 Ry and a J=1 at
—0.2890 Ry; the center of gravity is a 4s state
lying at —0. 2909 Ry. In this manner me reduce
Moore's tabulated spectra to two sets of single-
particle states for each gas. These results are
displayed as solid lines in Figs. 1-4.

The s, p, d, f states tend to a different ionization
limit from the s', p', d', f states. However, we
have found that to a good approximation any state
nl differs from the corresponding state nl by a
constant energy 4I, where LQ is the difference be-
tween the two ionization limits. This has the useful
consequence that the wave functions for correspond-
ing states nl and nk are very nearly equal. Be-
cause of the close relationships between the s, P,
d, f and s, p, d, f systems just noted, we have

combined the tmo systems into a final average mhich
me obtain thus: We subtract 4I from all of the en-
ergies of the s', p', d', f system and then combine
these energies with the corresponding ones from
s, P, d, f system in the ratio —,':—,'. These final
averages serve as our experimental single-particle
energy levels. These levels conform quite mell to
a Rydberg-series formula. In Table I, we present
the quantum defects for the rare gases as deduced
from these experimental single-particle energies.
The quantum defect 6 is defined by

E„,= —(n —5) ' (in Hy) .
Thus to generate the higher s, p, d, f single-par-
ticle energy levels, we may use Eq. (2). To gen-
erate the s', P, d, f single-particle energy levels
we add 4I.

III. IPM POTENTIAL

The potential for an electron in a neutral atom
may be written as (in a.u. )

V(r) = —2r '[(Z-1)Q(r)+ I],
where A(r) is a screening function. In the present
work Q(r) is chosen to have the form used by Green,
Sellin, and Zachor' (GSZ):

II (r) = [&(s""—I) + 1I ' .
Here d and H are phenomenological parameters.
We insert the potential into the radial Schrodinger
equation

( . - v(,),z.,)~., (,)=0d I (I+ 1)

and obtain the energy eigenvalues and wave func-
tions using a subprogram of the Herman and Skill-
man HFS computer code. In practice we couple
this subprogram to a nonlinear least-squares
automatic search subroutine; this enables us to
vary the parametex d and 8 so as to obtain good fits
to the experimental single-particle energies. We
performed two kinds of searches. (a) For each gas
me searched over the bound plus the excited states.
The best fits in this case are denoted by the symbol
H in Figs. 1-4, and the best-fit parameters are
given in Table II. (b) For each gas we also
searched over the excited states only, including the
ground state but not the inner states. The best
fits in this case are denoted by the symbol 8 in
Figs. 1-4, and the best-fit parameters are given
in Table II. In all our searches, the data points
mere weighted as the inverse of the experimental
values. Also included in Table II are the values
obtained by GSZ, who searched over the bound
states only. It is evident that the best parameters
from the three kinds of search vary somewhat.

In the mork which follows we calculate generalized
oscillator strengths and total cross sections for
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Pe, (Ne )LIMIT~ PIre (Ne )LIMIT~
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TABLE II. IPM potential parameters.
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s p d

n
n n n A n 5

0.715
2. 219

0.465
1.130

0.500
1.204
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n n
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n n

=5

n
n n 3

n n Ar 0.997
3.469

1.055
5.507

0.776
2.462

0.617
2. 532

0.862
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0.689
2. 857
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LLI
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-3
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Xe 1.175
6.805

0.684
3.109

0.940
4. 600

e

P„ee' '~ gedr, ~ drN .

energy. We shall also make considerable use of
the reduced or scaled quantity

t" = x/x, =fc'a', z/w.
Our primary results depend upon the evaluation

of matrix elements given by'

3
p,

FIG. 1. Excited-state energies of neon. The lines
denote average of experimental levels. The position of
the ground state is indicated by numerical values. The
symbols 0 and H denote theoretical IPM energy levels
based upon corresponding parameters in Table II.

Here r, is the position of the jth electron, and ((IN

and ge are the excited-state and ground-state wave
functions, respectively, of the atom. I et us sup-
pose that only one electron is involved in the tran-
sition, the core remaining undisturbed. Suppose
the electron is promoted from its ground state with
quantum numbers np lp and ma to an excited state
with qua, ntum numbers n, l, and rn. Here no and

transitions from the ground state to the excited
states. We use the parameters from search (b)
above, since this search yields somewhat more
precise fits to the excited states than do the other
searches. 0—

PIre {Ar )LIMIT~

d' f'

P (Ar )I IMIT

S p' —0

IV. MATHEMATICAL DESCRIPTION
p d f ==8

vl 7
7

6
=5

We consider the transition of an N-electron atom
from its ground state to the nth excited state with
momentum transfer K. We define

x=K ao,2 2

where ao is the Bohr radius, and

x, =(z„-E,)/f~= w/ft,

(6)

where E„ is the excitation energy of the nth state,
Eo is the ground-state energy, and A is the Rydberg

n

V)
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Xl
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-0.2—
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Ae

-4

4
H

p.
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C9
K
LIJ

LLI

TABI E I. Quantum defects and ionization-limit
differences (units of M are rydbergs).

-0.3— ~4

EXP = -I.I58R
5P e =-I.I59R

= -l.024R

4

Ne
Ar
Kr
Xe

1.33
2. 19
3.16
4.11

0.86
1.73
2. 68
3.61

0.014
0.212
1.27
2.42

0.000
0.010
0.008
0.025

0.0071
0.0130
0.0489
0.0960 PIG. 2. Excited-state energies of argon (see caption to

Fig. 1).
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these conditions the matrix element I simplifies
to I= Cs, where

= f III„*, (r) e'"'(II„,„(r)dr .
Here C is a normalization constant which, in the
present treatment, will be determined phenomeno-
logically. A full physical and mathematical treat-
ment of the problem would entail considerable use of
the algebra of angular momentum couplings. Fur-
thermore, it is known that the results depend on
what kind of an angular momentum coupling scheme
is used; it is also known that light, intermediate,
and heavy atoms are subject to different coupling
schemes. The introduction of a phenomenological
normalization constant circumvents these com-
plications and simplifies the formal treatment of
the problem without losing the essential features
which involve the determination of radial matrix
elements.

In order to evaluate the integral in Eq. (10), we
first separate the wave functions into their radial
and angular parts:

FIG. 3. Excited-state energies of krypton (see caption to
Fig. 1).

(11a)

(11b)

n are the principal quantum numbers for the ground
and excited states, respectively, /o and 1 are the
angular momentum quantum numbers, and ma and
rn are the magnetic quantum numbers. Then, under

0.1---

Then, making use of the Rayleigh expansion

where

f3 =i'(47()' '(2l+1)

(12)

9 oi9

P (Xe )LIMIT
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o7 eo5

0OS 0
0 PS p 0o4
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p d f 0
n 9 n5

pi

El 8 v
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andj, (Kr) is a spherical Bessel function, and using
the spherical harmonic property

(2a+1)(2b+1)(2c+1) ' a b c a b c
4m ~Ps 000

n o'8

Ul

Q)
J3

o
7

C9
CL
UJ

LIJ

-0.2—

oo 7"-

EI 5

6

o "- =-4
0 6

0

CL
LLI

L)J
-2

I p- s transitions
np, 1, 0-n, o, o

II p p transitions

zVF j,(Kr)

(a) np, 1, 0 n, 1, 0 jp(Kl) 2j2(Kr)
(b) np, 1, +1-n, 1, +1 jp(Kr)+j2(Kr)

TABLE III. Angular factors &(~) given by Eq. (15) for
various transitions in the rare gases.

0 5p
-6

EXP = -0.892R

o = -0.898R

Xe III p d transitions
(a) sp, 1, 0 tl, 2, 0 (&~/5)[2j~(Kr) —3j3(Kr)]
(b) +p, 1, +1, 2, +1 ( ~5/5)t3j~(K ) 3j~(Kr)]

"0.3
p ~ -0.606R

FIG. 4. Excited-state energies of xenon (see caption to
Fig. 1).

IV p f transitions
(a) np, 1, 0 n, 3, 0 (-~/7) [3j2(Kr)-4j4(Kr)]
(b) np, 1, +1 n, 3, +1 (-3')/7[j2(Kr)+ j4(Kr)]



P. S. GANAS AND A. E. S. GREEN

10 . I l l I Ill( I I III) I I s i I li) I I g t I II)
0

I 'I I SC'

10-

IO IO IO 10

10

10

IO

10

FIG. 5. Curves indicating re-
duced oscillator amplitude cleft
scale) Rnd osclllRtox' strengths
(rigllt scale) fox' neon vex'sus x'8-
duced square of momentum trans-
fex'. The solid dots give R x'epx'8-
sentative analytic fit using three
adjustable parameters. The open
circles give a representative fit
using only one Rdjus'tRM8 param-
eter.

where the arrays in brackets are 3j symbols, it
is easy to show that

s= 1,
"It„, (r)A(r)R„, (r) r'dr,

A(r} = (-)"'[(24+l)(2l+ I)]'"Z ~"(2l'+ l.)

The summation index l runs from Il-loI to l+lo
in steps of two units. Fro1I1 a propertii of 'the 3J
symbol it follows that the magnetic quantum number
is conserved: m = mo. The expression (l5) for the
angular factor A(r) holds for a general transition

(noloms) - (elm). In Table III we evaluate the an-
gular factor for various transitions in the rare
gases, It may be noted that our r8sults ln TRble
III are consistent with those of Bonham. '3

To apply our results we make use of the so-called
generalized oscillator strength which is defined by

f(x)= Z
111a

(ls)
gff05k

This quantity, which goes over to the usual optical
oscillator strength as x-O, may be used to give
the dlfferentiRl Rnd totRl excitation cross sections.

For allowed transitions such as p-8 and p-d it
is also convenient to introduce the reduced radial
matrix element defined by

&, (h)=h-'" J,"It„...( )q, .(Zr)It„,(r)r'dr .

IO I 0 l l lit) I I I l 5 lllt I I I I I IIII
0

I I I I I IEW~

IQ =

10 FIG. 6. Curves for argon (see
caption to Fig. 5).
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I

4 7 8

FIG. 9. Functions Yo„vs n for np-ns transitions,
illustrating validity of Eq. (19).

tions for argon shown in Fig. 6, particularly with
respect to the region $ & 20. At large $ values the
nodal structure becomes more complex and the (
values of the nodes separate in a fashion which
shows some systematic behavior.

Similar regularities and systematics occur in
krypton (Fig. 7), which has a still more complicated
nodal structure beyond $ &15. For xenon (Fig. 8)
the second node moves further inward to ( -10 and
separation again occurs. The results at still larger
values of ( are even more complex, although sys-
tematic behavior is again apparent.

VI. PHENOMENOLOGICAL REPRESENTATION OF RESULTS

Y ($) = Yo(e 'o' —x$ e "i') (20)

The dots show n on the 2p-3s curve for Ne, 3p-4s
for Ar, 4p-Ss for Kr, and Bp-Gs for Xe in Figs.
5-8 are examples of the fits within 4 which can
be achieved by fitting pp & and y, to the results
of our calculations. The values of the parameters
for various Rydberg series obtained by use of a non-
linear least-square program are given in successive
rows in Table V. Also given are 100X~ obtained
when the weight 1/Y is used for each point. The
columns are headed by the gas, the ground-state
designation, and the ground-state energy according

and Dutta, based upon their helium studies, pro-
posed the rule

f.=f 'l(~ —5)'

A similar rule has been suggested by Fano and
Cooper. " Equation (19) suggests, of course, that
Yo„=Yo*(n —5) '~'. In Fig. 9, we show the values
of Y p vs s, These follow straight lines rather
well, thus confirming Eq. (19). The values of
Yp~ and & for the & for the various gases as deter-
mined by least-squares fits are given in Table IV.
Note that the quantum defects obtained differ from
those used to characterize the energies of the s
states in the transition as given in Table I. This
might have been expected since, of course, the
quantum defects of the ground states are also in-
volved.

While the behavior of Y in Figs. 5-8 beyond ta
is quite complicated, the behavior for $ & $~ is
fairly simple. Since there is a rapid falloff in each
case beyond (~, we shall tentatively ignore this
domain and simply seek a convenient quantitative
representation of Y($) and hence f($) within $a. We
have had good success with the representation

Clearly the diagrams in the previous section il-
lustrate the massive quantity of information which
is potentially available from our calculations. Let
us consider now how we may compact this informa-
tion and present it in quantitative form which may
be useful in applications.

I et us first consider the values of Y (0), since
T (0) should measure the relative optical oscillator
strengths in Rydberg series. Previously Green

10—

10—

10—

I I I I I I I I I I I I I I[

TABLE IV. Quantum defects andrelative optical oscillator
strength constants for nfJp-ns transitions.

100 1000

Ne

Ar
Kr
Xe

l. 62
2. 57
3.63
4. 57

0

0.453
0.630
0.716
0.804

0

0.205
0.396
0.512
0.647

E(ev)

FIG. 10. Reduced cross sections for neon. The solid
curve is based upon our representation of Born generalized
oscillator strength. The dashed curves illustrates dis-
tortion effects based upon Eq. (27).
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TABLE V. Parameters for analytic amplitudes.

38
0.360
1.225
0.303

(3)
1.22
0.063
0.190
0.98

(1)
1.25
0.063
0.210
1.74

Xe (2P1.585)

(0)
1.25
0.065
0.20
1.94

Ar (3p 1.158)

(3) (1)
4s 1.35 1.25
0.306 0.137 0.182
0.852 D. 346 0.400
0.400 0.80 1.47

(0)
1.25
0.182
0.400
2.00

Kr (4p1. 029)

(3) (&) (0)
5s l.35 1.25 1.25
0.297 0.152 0.173 0.180
0.732 0.408 0.42 0.436
0.476 1.30 1.56 1.59

Xe (5p 0.891)

(3) (1) (0)
6s 1.42 1.25 1.25
0.280 0.253 0.417 0.40
0.611 0.553 0.725 0.725
0.507 1.62 3.51 3.58

4s 1.16
0.139 0.100
1.446 2.32
0.125 0.90

0.082

1.09 1.71

5s 1.18
0.124 0.240 0.204
1.035 0.429
0.166 0.82 0.89 0.91

6s 1.12
0.120 0.310 0.186
0.909 0.530
0.190 0.98 2.01 i.90

7s 0.849
0.121 0.735 0.459
0.771 0.765
0.210 1.89 1.86 2.51

5s 1.14
0.074 0.114
1.512 0, 245
0.074 0.78

6s 1.13
0.045 0.120
1.540 0.251
0.051 0.69

78 1,13
0.031 0.124
1.554 0.254
0.038 0.61

0.086

1.00 1.74

0.089

0.89 l.68

0.090

0.80 1.61

6s 1.13
0.067 0.277
1.091 0.453
0.100 0.71

Vs 1,11
0.042 0.295
1.116 0.463
0.069 0.63

8s 1.10
0.029 0.306
1.129 0.469
0.052 0.56

0.209

0.89 0.94

0.210

0.85 0.88

0.212

0.90 0.80

Vs 1.02
0.066 0.398
0.963 0.575
0.115 0.84

8s 0.954
0.042 0.454
0.987 0.598
0.079 0.74

9s 0.655
0.029 0.738
1.000 0.652
0.060 0.95

0.186

2.01 1.89

0.185

1.85 1.80

0.178

3.45 3.45

8s 0.420
0.064 1.17
0.828 0.684
0.129 1.00

9s 0.823
0.040 0.791
0.851 0.781
0.091 1.89

10s 0.411
0.029 1.23
0.863 0.687
0.067 0.83

0.393

4. 83 4.83

0.479

l.70 2.32

0.508

1.41 V. 50

to the IpM potential characterized by the param-
eters in the second column of Table II. The four
rows of the first column in each block give the ex-
cited-state designation, its energy value, the tran-
sition energy, and the optical amplitude Yo. The
values of yo, e, y„and 1QOg for three-parameter
searches are given in the second set of columns.
After making these searches we noted that yo-1. 25
in almost all cases. Furthermore, for each rare
gas y, did not vary very greatly. Accordingly,
since there is usually ambiguity in three-parameter
fitting, we conducted a restricted search on v alone
using the fixed decay lengths yo, y&, and the &,
previously obtained. The results are given in the
third set of columns in Table V with the fixed pa-
rameters yo and y, given only in the upper block.
In the fourth sets of columns we give the results
for all parameters fixed. In effect this case im-
plies fixed shapes for the generalized oscillator
strengths of a Rydberg series when using the re-
duced variable $ =

aors

R/2W. From the increases
in y~ one sees that these results are not quite as
good as the three-parameter results. However,
they are still quite good. The dots in relation to
the curves for second excited states in Figs. 5-8
are illustrative of fixed shape fits.

VII. CROSS SECTIONS

The practical aspects of our study of generalized
oscillator strengths arise from its usefulness in
providing cross sections. Thus the differential

12cross section can be expressed as

do q, W '~2 f($)
dA gW E (21)

where q0=4va~B~ We may. translate $ into angles
using

1-cos8 1-— (22)

The total cross section is given by

qo
'" f(0 dt.

WE (23)

where for $„ forward scattering, cos8= 1, and for
backward scattering, cos&= —1. When express-M7

~ ~ ~ 2ing 5' and E in eV and cross sections in cm,
q, = 6. 614 &&10 "cm' eV'. For E» W, $„=4E/W
and t', = W/4E. Thus for typical bombarding ener-
gies for which the Born approximation is valid we
make use of a large part of the range of $ given in
Figs. 5-8.

The rapid decline of f ($) after the second node
together with the weighting by $

' in Eqs. (21) and

(23) minimizes the errors associated with our ap-
proximate analytic representation [Eq. (20)]. Now

we see the main advantage of this approximate
analytic representation for Y in that it gives an ap-
proximate representation of f in the form of Green
and Dutta,

f(h) =L f,$'e (24)

The total cross section corresponding to this equa-
tion is analytically integrable and is given by
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0p-ns

-(7
IQ

where E, is the first exponential integral and

y(s, y) is the incomplete y function. " The first
term in this series which is dominant at high ener-
gies leads to the familiar E 'lnE dependence usually
associated with the Born approximation.

Because of our success in Sec. VI in fitting T(()
with Eq. (20), we may use Eq. (24) simply by
identifying

f0= C Yo, f, = —2C Xog, f~= C Yo(P,
(26)

&0= 2'Yo &g = 'Yo+ 'Yy and &p = 2'Yy

The resu]ts of relative (C = 1) total cross sections
for Rydberg series generated by this approach are
shown in Figs. 10-13.

The dotted curves in Figs. 10-13 are based upon

a distorted generalized oscillator strength (DGOS)
of Green and Dutta given by

where fs is the Born oscillator strength given by

Eq. (24) and r, m, 6, v, y, and f, are parameters.
On the basis of several phenomenological studies, '

we have chosen r=2, m=2, &=0. 5, v=1, @=0.17,
and f,=0. 1fo. These are not to be taken very se-
riously but simply as representative of the types of
departures from Born approximation that might be
expected. We note that this form of the DGOS

preserves the analytic nature of the total cross sec-
tion which goes over at high energies (e. g. , above
500 eV) to the Born cross section.

108

-l9
Io

100
E(eV)

1000

FIG. 12. Reduced cross sections for krypton {see caption
to Fig. 10).

A compilation of reported experimental and the-
oretical optical oscillator strengths for the np p-
(no+ 1)s transition in rare gases adapted from Dow
and Knox'" is given in Table VI. The sources of
data ' 3' are indicated in column 2 and the refer-
ences, It should be clear from the reported re-
sults that at this time theory and experiment still
differ markedly. Since we do not attempt here to
predict the relative strengths of the states within

Figures 10—13 now define various noP-ns rare-
gas cross sections apart from the constants C .
To arrive at these constants we avail ourselves of
the fact that generalized oscillator strengths go over
to the optical oscillator strengths as the momentum
t. ansfer goes to zero. Accordingly, if we know

fo and Y2„we can establish C [see Eq. (26)j. In

Sec. VIII we discuss optical oscillator strength data
for nap-ns transitions in rare gases.

VIII. OPTICAL OSCILLATOR STRENGTHS

IQ I I I I I I III I I I I I I IL

3p—ns

Io I & I I I I I I I I I I I L

Io 10

lo 10

100

E(eV)

1000
I'

Io Ioo
E(ev)

1000

FIG. 11. Reduced cross sections for Argon {see caption
to Fig. 10).

FIG. 13. Reduced cross sections for xenon {see caption
to Fig. 10).
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TABLE VI. Oscillator strengths for ng-(np+1)s
transitions in rare gases.

I I I I I I III

Ref. f/Y 2 O. I

0. 0918

Ar

0. 160

21
21
22
23
24
25

21
21
22
23
26
25

0. 110
0. 121

0. 130
0. 168

0. 17
0. 200

0.228
0.278

0. 011
0, 012

0. 008
0. 012

0. 052
0. 049

0. 059
0. 063

0. 121
0. 133
0. 163
0. 140
0. 138
0. 180

0. 22
0. 25
0. 330
0. 233
0. 287
0. 341

1.32
l. 45
l. 78
1.52
1.50
1, 96

l. 38
l. 56
2. 06
l. 46
1.79
2. 13

O.OI

O.OOI

xrx,

0
0

0 0

0. 226

Xe

0. 257

20
20
22
27
28
29
23

20
20
30
31
25

0. 136
0. 153

0. 135
0. 266
0. 184

0. 147
0. 170
0.238
0. 189
0. 238

0. 138
0. 152

0. 158
0. 266
0. 204

0. 194
0. 190
0.256
0. 212
0. 256

0. 274
0.305
0. 405
0. 293
0. 346
0. 388
0. 346

0. 341
0.360
0.494
0. 401
0. 494

1.21
1.35
1.79
l. 29
1.53
l. 71
1.53

1.33
1.40
1.92
1.56
1.92

~Denotes Yp for gas.

a multiplet, only the total strengths of the single-
particle states will be considered. If we divide
the composite strengths of the 3P and 'P terms by
our calculated values of Y~, we obtain the C given
in the last column of Table VI. We note that the
variability of C for each substance is quite com-
parable to the over-all variability. Accordingly
it is not unreasonable to choose a single C = 1.5
as a coefficient for translating our calculated Yo
into single-particle oscillator strengths.

While we only have very little information on
other than resonance transitions, we can accept
the (n —5) ' rule for single-particle oscillator
strengths. We have examined this rule for n, P
-ns Rydberg series members in Ne and Ar and
found that available oscillator strengths'~ conform

FIG. 14. Generalized oscillator strengths for "triplet"
5p-6s transition in xenon versus x/xq. The circles de-
note experimental data, the dashed curve a Hartree-Fock
calculation, and the solid curve our IPM calculation.

quite well to this law with quantum defect given in
Table IV. Accordingly it is reasonable to infer all
single-particle oscillator strengths by using Eq.
(19) with C given by 1.5 and T&*,

2 as in Table IV.
No simple rule can be given for decomposing

these strengths into their multiplet components
since the coupling scheme varies from gas to gas
and state to state. Thus to obtain such a breakdown
one will have to lean upon detailed spectroscopic
assignment of the optical strengths. Such numbers
are becoming available.

While we have examined a number of recent ex-
tensive studies of electron impact excitation of
atoms, ' we have found very few direct experi-
mental data on rare gases to test the detailed as-
pects of our generalized oscillator strengths or ex-
citation cross sections. Chamberlain and
Mielczarek (CM) at the National Bureau of Stan-
dards3' have reported generalized oscillator
strengths for the 5P-Gs "triplet" transition in Xe
which display a minimum at about (=1. Figure
14 shows their data, the results of a theoretical
calculation of Kim and Inokuti (KI) using HF wave
functions, " and the results of our IPM adjusted to
the same optical oscillator strength (0. 212). The
two calculations are in reasonable agreement and

TABLE VII. Parameters for np-nd analytic generalized oscillator [use Yp&= YII'/(n —6) ).

m=o

Ne
Ar
Kr
Xe

—0. 780
—2. 81
—2. 21
—1.39

—1.23
—0. 44

1.51
3.51

2. 60
l. 55
1.55
2. 35

0. 036
0. 020
0. 080
0. 24

0. 33
0. 17
0. 37
0. 55

0. 64
—2. 39
—1.93
—l. 33

—1, 11
—0. 39

1.57
3.53

1.25
0 ~ 85
1.00
l. 25

—0. 10
—0. 10
—0. 14
—0. 30

0. 45
0.36
0.50
0.70
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in reasonable conformity with experiment. The
fact that the experimental peak beyond the first
minimum lies above the calculated IPM and HF
values is probably an indication of a breakdown of
the Born approximation.

%'e have also carried out calculations of np p-nd
transitions for four members of Rydberg series for
each of the rare gases. Here graphs of the rn= 0
transitions based upon III(a) in Table III show an
over™allbehavior which is, roughly speaking, sim-
ilar to that in Figs. 5-8. However, the m= 1 tran-
sitions based upon III(b) in Table III have fewer
nodes and are much smoother in shape. In Table
VII we give parameters for the relationship
To „=To"/(n —5)'~2 and for Eq. (20) which charac-
terize the generalized oscillator strengths for the
noP-nd Rydberg series out to $ -20. Here one
sees a major advantage of the approximate analytic
representation since it would take eight figures
each with four curves to convey much less pre-
cisely the useful aspects of our calculations. Again
our work indicates that scaling by $ is quite good
within the second node. Identification of the optical
oscillator strengths and application of the cross
sections to electron energy deposition in argon is
underway in a separate study.

IX. SUMMARY AND CONCLUSION

The primary purpose of this work has been to
apply a realistic IPM' to the programmatic genera-
tion of generalized oscillator strengths. The fact
that it is possible to do this permits us to bypass
present obstacles due to the lack of HF excited-
state wave functions. Our work is also intended
to lay the groundwork for distorted-wave-approxi-
mation calculations, of inelastic collisions. In
such calculations consideration is given to exchange
effects and the distortion of the incoming wave and
outgoing wave by the potential presented by the
neutral atom. Such work will provide a basis for
low-energy cross-section assignments and for
direct comparison with experimental data.

The approximate analytic representations for the
generalized oscillator strength which we have found

should be useful as a compact way of inputting
specific cross sections into such applied calcula-
tions as electron-energy deposition problems.
We believe it should be possible to extend the ana-
lytic representation of the generalized oscillator
strength into the low-energy region and such work
is under way.

We might note here that we have also calculated
generalized oscillator strengths for np pp sp for-
bidden transitions. These are found to vanish at
( = 0 as might have been expected from the orthog-
onality of the radial wave functions in a, common
central potential which includes the centrifugal en-
ergy. This natural property of an IPM potential
is another advantage with respect to the use of
Hartree-Pock excited-state wave functions, apart
from the fact that very few of the latter are avail-
able. We also have under way calculations of can-
tinuous generalized oscillator strengths. As
might be expected, their properties are reasonable
extrapolations of the upper members of the Rydberg
series which we have calculated here.

Perhaps our most important result is the clear
demonstration of systematic behavior in generalized
oscillator strengths for Rydberg series in rare-
gas atoms. Scaling by the use of the variable
)=K'a, R/W seems to be a useful way of correlat-
ing generalized oscillator strengths out to the sec-
ond node. While Kim et a/. ' have previously noted
the existence of the first minima in generalized
oscillator strengths, the fact that generalized oscil-
lator strengths have a complex nodal structure at
large values of E seems not to have been noted.
This feature will be further elucidated in dis-
torted-wave calculations of generalized oscillator
strengths. ~'
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A distorted-wave (DW) formulation with exchange is given for the electron impact excitation
of the rare gases from {nop) to (np) nl configurations. A practical form employing the pure
I.S-coupling scheme is used inconjunctionwith the phenomenologically determined independent-
particle model (IPM) and the DW potentials of real central forms to compute cross sections
averaged over fine structures. Numerical work is carried out for Ne 2p 3s and Ar 3p 4s
electron impact excitations. The distorted generalized oscillator strengths (DGOS), which
converge to the generalized oscillator strengths (GOS) in the limit of the Born approximation,
as well as integrated cross sections, are obtained over a wide range of energies, so that the
systematic variation of the cross sections in relation to the results of the Born approximation
can be studied. The results of the angular distributions at lower energies are in reasonable agree-
ment with the data by Nicoll and Mohr.

I. INTRODUCTION

The electron impact excitation of the rare gases
has been studied in the Born approximation by
Ganas and Green, based upon the analytic atomic
IPM of Green, Sellin, a.nd Zachor. '~ In order to
extend their work to lower-energy regions, it is
necessary to investigate the effects of distortion
as well as exchange contributions. Vfe study these
effects using the DW approximation based upon the
same IPM and the same DVf potential that has been
applied to the elastic scattering analysis. '

Very few D% calculations have been reported for
atoms heavier than hydrogen and helium, with the

exception of the work by Massey and Mohr on the
low-energy data of Ne and Ar obtained by Nicoll
and Mohr. " If the excitation cross sections of
individual levels in a, fine structure were required,
one would have to first obtain Hartree-Pock (HF)
atomic wave functions and HF potentials of the
initial and final states. A detailed D%' formulation
appropriate for such a computation has been pro-
posed recently by Shelton and Leherisseye with
particular emphasis on a transition from the I8-
coupled ground state to a Z&l-coupled excited state.

In this work, however, we are interested pri-
marily in obtaining cross sections averaged over
an energy interval whose width is of the order of


