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A general computational procedure is described for locating electron-atom scattering reso-
nances and for computing accurate values of the resonance parameters (eigenchannel vector,
energy, width, and background eigenphase). The procedure makes use of the anomaly-free
multichannel variational method and of the hierarchical continuum Bethe-Goldstone formalism
published previously. Eigenvalues of the electronic Hamiltonian in a variational Hilbert space
are located by an accurate procedure that takes advantage of analytic properties of the matri-
ces constructed in a variational phase shift calculation. Without computing the Hilbert space
eigenvector, effective bound-free matrix elements for a resonance are computed from re-
sidues of matrix elements that have poles at the Hilbert space eigenvalues. Each eigenvalue
associated with a resonance defines an initial approximation to the resonance parameters,
which are then refined by an iterative process that uses variational calculations of the eigen-
phases. The proposed method combines the ability of stabilization methods to locate narrow
resonances with an accurate computation of phase shifts in the resonant region. Calculations
of electron-hydrogen resonances are given as examples of the method.

I. INTRODUCTION

In electron-atom scattering, a resonance occurs
as a rapid increase through m radians of a partial-
wave phase shift 5, in a small energy interval of
magnitude 2F„, where I'„ is the sridth of the reso-
nance. In multichannel scattering, all coupled open
scattering channels experience this rapid variation
of phase shift in the same energy interval. Reviews
of theory and experimental data have been given re-
cently by Burke' and by Taylor.

For a single open channel, an isolated resonance
can be parametrized by

&|(E)=leo+&0»(E-E,)+ ~ ~ . +tan '[-,' r„/(E E„)], -
(1)

where 5, (E), the background or potential scattering
phase shift, is a slowly varying function of E near
E„. Equation (1), a Brett-Wigner formula for an
isolated resonance, follows from the general reso-
nance theory of Feshbach. For coupled channels,
a resonance is described for n coupled channels by
the n solutions 5&(E) of the equation given by
Macek, '

E —E„=zl'„Z y& cot[5&(E) —5(E)j. (2)

In this equation, index i refers to an eigenchannel,
obtained by diagonalizing the scattering matrix S,
or equivalently, by diagonalizing the real symmet-
ric reactance matrix R (or K) defined by

S = (1 +iR)/(1 —iR).

The coefficients y &, whose sum is unity, determine
the partial widths of the resonance with respect to
the eigenehannels. Partial widths with respect to
physical channels can be obtained by the inverse of
the orthogonal transformation that diagonalizes the

8 matrix.
Equation (2) defines n continuous functions 5~(E)

that connect the set of background phase shifts 5&,
for E(E„, with the same set of asymptotes (modulo
v) for E)E„. The sum of eigenphases g& &&(E) in-
creases by m radians in passing through the reso-
nance. If the resonance occurred in a single eigen-
channel, the resonant eigenphase, increasing con-
tinuously through m radians, would become degen-
erate (modulo v) in turn with each of the nonreso-
nant eigenphases in all other open channels. Since
a noncrossing rule holds for the tangents of the
eigenphases (eigenvalues of the R matrix), unless
interactions between the eigenchannels are forbidden
by symmetry selection rules, such a continuous in-
crease of one eigenphase is not possible but must
be broken up by avoided crossings. If the back-
ground eigenphases 5& are given as an ordered list
in an interval of g radians, the noncrossing rule
implies that in a multichannel resonance each func-
tion 5~(E), which must increase monotonically with
energy, connects one of the 6& with the next higher
one in the given list, the greatest initial && being
connected to the least plus ~. Since any one back-
ground phase 6& could be taken to be the lowest
member of the ordered list, the multichannel reso-
nance could be described as a resonance in that
eigenchannel (&, increasing by v radians), perturbed
by the other eigenchannels through the effect of the
noncrossing rule. The original eigenchannel can be
traced through the resonance by the approximate
continuity of the eigenchannel vector, jumping from
one branch of the function &&(E) to another at each
avoided crossing.

This description of the resonance will be most
appropriate for the eigenchannel of maximum weight
y, in Eq. (2). In the present method, the important
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simplifying assumption is made that a single reso-
nant eigenchannel, defined in principle by maximum

y&, will dominate a given multichannel resonance.
Under this assumption, the perturbing effects of
avoided crossings with other interacting eigenchan-
nels can be removed by considering the sum of
eigenphases g, &~(&), and this sum can be fitted to
the single-channel resonance formula, Eq. (1).

Only isolated resonances, for which I"„is smaller
than the spacing between successive resonances in
the same eigenchannel, will be considered here.
For such resonances the essential parameters to
be determined are the normalized channel eigenvec-
tor components (the eigenchannel vector) and the
values of 5o= & (E„), E„and I'„ to be used in Eq.
(1)

The physical origin of scattering resonances is
the occurrence of a metastable state that has a fi-
nite lifetime because of weak interaction with an
adjacent continuum. The simplest example of such
a resonance is given by a one-dimensional potential
well enclosed by a barrier of finite height. Station-
ary eigenstates of a particle in the potential well,
defined for infinite barrier height, become meta-
stable as thebarrier is reduced, interacting with the
scattering continuum of states outside the barrier.
Resonances of this kind are known as shape reso-
nances. The resonant energy E„is approximated
by the unperturbed metastable energy level, and

7„ is determined by the matrix element of the
Hamiltonian connecting this unperturbed state with
the adjacent scattering continuum.

In a system with several degrees of freedom,
resonances can arise from the interaction between
a nominally discreet excitation of one degree of
freedom and an adjacent continuum of excitations
of another degree of freedom. In electron-atom
scattering, excited states of the target atom are
degenerate with the kinetic energy continuum of an
external electron incident on the target atom in its
ground state. An attractive interaction between the
excited target state and the external electron can
lead to a metastable compound state with energy
below the target atom excitation threshold. Because
the adjacent scattering continuum arises from a
lower state of the target atom the interaction matrix
element is generally small, and the resulting width
of the metastable state is small. Such narrow reso-
nances immediately below an excitation threshold
are referred to as closed channel resonances, ' or
as core-excited resonances of type 1 (CE1).

If the incident electron has orbital angular mo-
mentum greater than zero, an effective rotational
barrier can cause a compound state to be metasta-
ble even though it lies above the corresponding ex-
citation threshold of the target atom. Because the
adjacent scattering continuum contains states aris-
ing from the same target atom state, interaction

matrix elements are greater than in the case of
closed channel resonances (CE1), and the metasta-
ble state or resonance is broader. Such reso-
nances, analogous to shape resonances, are refer-
red to as core-excited resonances of type 2 (CE2).

In the close-coupling calculations (including cor-
relation functions in some cases) reviewed by
Burke' a resonance is found essentially as it would

be observed experimentally, by scanning a range of
incident electron energy E or wave vector k and
looking for characteristic resonant behavior of the
phase shift. If no other information is available,
in the case of a typically narrow CE1 resonance this
may require a tedious search with very small in-
crements of k. Once a resonance is spanned on a
sufficiently small scale of k increments, the reso-
nance parameters are obtained by a least-squares
fit to Eq. (1) or to its generalization for multichan-
nel resonances.

The formalism of Feshbach' can be used directly
as a computational procedure by solving the Schro-
dinger equation in a truncated Hilbert space that ex-
cludes the scattering continuum. By suitable con-
straints, as in the work of O' Malley and Geltman
on H and He', energy eigenvalues in this truncated
Hilbert space are variational upper bounds for the
energies of metastable states associated with CE1
resonances. ' A more generally applicable ap-
proach, used in the stabilization method of Taylor
and co-workers ' is to diagonalize the N+ 1-electron
Hamiltonian matrix (for an N-electron target atom or
molecule) in the Hilbert space defined by a finite
set of normalizable basis functions. Eigenvalues
that lie above the threshold of the physical scatter-
ing continuum, but are found to be insensitive to
improvements in the finite basis function set, cor-
respond to metastable states and scattering reso-
nances. Model calculations by this method show
that the eigenvectors represent the projection of
scattering continuum wave functions in the varia-
tional Hilbert space. For a stabilized eigenvalue,
the eigenvector is an accurate representation of a
metastable state. The width of the corresponding
resonance is related to the rate of change of a. sta-
bilized eigenvalue with respect to the dimension of
the spatial region effectively spanned by the basis
function set. Thus narrow resonances lead to
well-defined stabilized energy eigenvalues, unless
the basis set is so large that individual eigenvalues
cannot be distinguished.

The method used by Hazi and Taylor to compute
resonant widths cannot easily be generalized from
their model problem. More recently, Hazi and
Fels have shown, for single-channel resonances
in a, two-level model problem, that two or more sta-
bilized eigenvalues corresponding to the same reso-
nance but obtained with different Hilbert space basis
functions can be used to determine the parameters
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I'„and 50. In this method, it is necessary to eval-
uate bound-free matrix elements of the Hamiltonian,
connecting the variational Hilbert space to continu-
um functions.

In earlier papers ' it has been shown how compu-
tational procedures similar to those used success-
fully for stationary states of many-electron atoms
can be applied to electron-atom scattering. In the

present paper this analysis is extended to include
an automatic search procedure for locating multi-
channel resonances and for computing accurate val-
ues of the resonance parameters. Since a bound-

bound matrix is constructed in this method, its
eigenvalues can be used to locate possible reso-
nances, as in the stabilization method. Then the
bound-free and free-free matrices are computed and

a version of the multichannel Kohn variational meth-
od, modified to avoid spurious singularities char-
acteristic of this method, is used to carry out ac-
curate phase shift calculations near the eigenvalue.
Limiting properties at the eigenvalue of matrices
occurring in this formalism are used to estimate
the range of k to be scanned for a resonance, and

to determine the resonant eigenchannel vector.
Resonance parameters are determined by fitting the
resonant eigenphase to Eq. (1). Thus the present
method combines the capability of stabilization
methods to locate narrow resonances with the ac-
curate determination of resonance parameters ehar-
acteristie of the close-coupling method and of its
generalizations that include correlation terms.

Details of the method proposed here are given in
Secs. II-V. Computations of 'S' and S' resonances
in e -H scattering are given in Sec. VI as an exam-
ple of the method.

II. NOTATION AND DEFINITIONS

Scattering of an electron by an N-electron atom
can be described by a stationary state wave function
of the general form

e =Z, n e,tt, +Z„C „c„.
Here 9~ is a normalized N-electron wave function
for the electronic stationary state of the target atom
corresponding to scattering channel p; g~ is the
one-electron channel wave function for an open
channel with angular momentum l~, wave-vector
magnitude k& (kinetic energy a k in Hartree atomic
units); 4 „ is one of an assumed orthonormal set of
N+1-particle Slater determinants that constitute the
Hilbert space component of 4. The operator g
antisymmetrizes 9~/~ and includes the factor
(N+1) ' required to give the antisymmetrized
function the same relative normalization as an N+1-
electron Slater determinant.

The Slater determinants 4„, defined in terms of
an N-electron reference state determinant 40, are
exemplified by

C' = detp, (1) ~ ~ ~ p&(i) ~ ~ ~ p&( j) ~ ~ ~ p„(N)p, (N+1),

C = detp, (1) ~ ~ ~ p, (i) ~ ~ ~ 4q(j) ~ ~ ~ AN(+)45Ã+ 1)
(4)

C'„~ = detp, (1) ~ ~ ~ p, (i) ~ ~ 0,(j) ~ ~ ~ p„(N)p, (N+ 1),

where an assumed denumerable orthonormal set of
one-electron orbital functions is subdivided into

orbitals Q&, Q&, . . . occupied in 40, and orbitals
Q„f~, . . . that are orthogonal to the occupied set.
det implies antisymmetrization and normalization
appropriate to the number of electrons. The orbit-
als are quadratically integrable functions of space
and spin variables, normalized to unity. As as-
sumed Hilbert space of orbitals and assumed refer-
ence state 40 generate a uniquely defined N+1-elec-
tron Hilbert space {4,}through Eqs. (4) if indices
are ordered by the convention

i&j& ~ ~ ~ &N&a&b& ~ ~ ~ .
The general computational procedure of successive
variational calculations using nested subspaces in
a lattice decomposition of the Hilbert space {P„}has
been described elsewhere, ' and will not be dis-
cussed in detail here. This computational proce-
dure is equivalent to variational solution of a hier-

8
archy of continuum Bethe-Goldstone equations.

The channel wave function is of the form

4p=fp(r) 1'&, ,~(t} 4)& „
where f~ satisfies the usual bound-state boundary
condition at r = 0, is orthogonal (by construction) to
all radial functions for Hilbert space orbitals
{P&,P,}with the same angular and spin quantum
numbers, and has the asymptotic form

f&(r) - r ' sin(k~r ——,
'

l~tt + 5~).

Here F, is a normalized spherical harmonic and

t is an elementary spin function. Equation (i) can
be written in the form

fp
- 0'pe+ n ~Cp

where

S&- r ' sin(k~r —
~ l&v), C~- r ' cos(k~r ——', l~w).

(9)
These functions are constructed to satisfy the same
boundary and orthogonality conditions as f~.

The target atom wave function 6~ is expressed as

e, =E.e~.', (1o)

where each 4, is a normalized N-electron Slater
determinant constructed from the orbital functions
{&f&,; P,}. The coefficients c~ are obtained as a nor-
malized eigenvector of the N-electron configuration
interaction matrix H„., corresponding to energy
eigenvalue E~. If E is the total energy of the sys-
tem, an open-channel k value is defined by
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=E —E M„„=Z,o, T»T„„ (21)

for energies in Hartree atomic units, if E —E~ is
non-negative. The operator H is the nonrelativistic
Schrodinger Hamiltonian, either for N or for N+ 1
electrons, according to context here.

The linearity of the Schrodinger equation makes
it possible to express Eq. (3) in the form

defining the lower triangular matrix T» and a diag-
onal sign matrix o„whose diagonal elements are
+1 only. An auxiliary rectangular matrix B is de-
fined in terms of the bound-free matrix by

Z, T„P,', =M), .

+=+,+pa„(Z,C."c',+Z„C „c'„'), (12)
Equation (16) is evaluated in the form

M~u = MP~ Q„-a„B„~B~ (23)
where the coefficients &», with I=0, 1, are defined
in Eq. (8), and the coefficients c~ are the target
state eigenvector coefficients of Eq. (10). The co-
efficients c„of Eq. (3), which are to be determined
by the variational scattering calculation, are ex-
panded as

c g =~p(agric~ + au,c ~ ).Op 1p (13)

The unnormalized N+ 1-electron Slater determin-
ants C,~ are defined by

(14)

It is convenient to define the N+1-electron unnor-
malized functions as

Q @)Pc& (16)

M~( = M~qq Q„Q„MI„(M-')„„M„q', (16)

where i =I, j=J with values 0, 1 as in Eq. (12), and

P, q are open channel indices. Here M denotes
H —E, where H is the N+1-electron Hamiltonian.
The matrices combined in Eq. (16) are the bound
bound matrix (Hermitian)

M pv=Hgv —E~pv~

where

II„„=(4„,H4„);

the bound free matrix (H-ermitian)

and the free free matrix -(non-Hermitian)

(18)

(19)

(20)

Details of the computational procedures will be
given in a separate publication. " One point that is
important in searching for resonances is that Eq.
(16) is evaluated by triangular factorization of the
bound-bound matrix. ' Since all matrix elements
considered here are real numbers, this can be ex-
pressed in the form

These definitions make it possible to apply the
multichannel anomaly-free variational method, de-
scribed previously, to the general wave function
given by Eqs. (3) or (12). The auxiliary matrix
M~~&, from which R-matrix elements are determined
by the Kohn and inverse Kohn variational formulas,
is of the form

Multichannel scattering can be considered in
terms of eigenchannels, defined formally by an
orthogonal transformation that diagonalizes the R
matrix. Because channels with different k~ values
are combined, it is desirable to avoid the explicit
appearance of k~ in the variational formulas. This
can be done by multiplying the functions S~ and C~,
Eqs. (9), by k~ ', as done by Mott and Massey.
This has the effect of multiplying each element of
M~&, Eq. (16), by (k~k, )

't . This will be referred
to here as the dimensionless form of this matrix,
since the surface integral given by Mo, —M &0 be-
comes a pure number for the modified matrices.
It can easily be verified from analysis given pre-
viously that this removes any explicit dependence
on k& from the Kohn and inverse Kohn variational
formulas.

III. LOCATION OF A BOUND-BOUND EIGENVALUE

If the eigenvalues E of H„„are nondegenerate,
it can easily be shown that the number n, of nega-
tive-sign elements of a„ in Eq. (21), is equal to
the number of eigenvalues E less than E. This
number changes by unity as E passes through an
eigenvalue. ' The first step of the resonance search
procedure is to monitor n, over a relatively coarse
grid of reference-channel k values (where —,

' k
= E —Eo, with Eo the lowest eigenvalue of the tar-
get atom configuration interaction matrix). The
change of n, is used to bracket the eigenvalue on a
narrower scale by a specified number of cycles of
interval halving. Only the bound-bound matrix is
needed for this step; the T matrix of Eq. (21) is
constructed for each k value, but bound-free and
free-free matrix elements are not computed.

When an eigenvalue E has been bracketed in a
sufficiently small interval, between reference-
channel k values that can be denoted by k, and k3,
analytic properties of the matrix M~&& are used to
obtain an accurate estimate of the eigenvalue.
Bound-free and free-free matrix elements are re-
quired, so calculations in this and subsequent steps
are equivalent to full phase shift calculations. It
has been shown that each element of M~&~& has a sim-
ple pole at Eo. Moreover, the determinant of any
principal submatrix of M~&& also has a simple pole
atE .
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Mo ——[ZsZ (M,)) /ksk ] sgn(M ) (27)

if x, is taken to be positive.
Each element of M&&, computed by Eq. (27), and

of the 2& 2 determinant

detM =M M -M00 11 01 10 & (2&)

has a simple pole at E . This fact is used in the
resonance search procedure to determine a value
ks intermediate between k, and k, (which bracket
E ) by two-term interpolation to the expected pole
of detM;&'. If f(k ) is a function with a simple pole
between k, and k3, then the interpolated location
of the pole is

ks = [f(ks )ks -f(ks )k| ]/[f(ks ) f(ki )1 ~ (29)

This formula is used with f(k ) taken to be detM,
&

defined by Eqs. (27) and (28).
The full calculation of M&& is repeated at k2.

This makes it possible to use a three-point inter-
polation formula for k, (corresponding to the eigen-
value E =Es+ ,' k ) and f—or the residues of the ma-
trix elements M&& and of detM&& at E . Near a
simple pole the function f(k ) can be represented by

f(k ) =fs+2a/(k' —k '), (30)

where a is the residue with respect to energy {in
Hartree atomic units). The three parameters fs,
a, and k can be determined from three values of
k near the pole. The required formulas can be de-
rived most easily by differencing values of Eq. (30)
in pairs. Thus we have

ks 2a(k, —k, )f" ' f" ' (k, -k„)(k. k, )
(31)

s s 2a(k, —k, )f"'-f" '-
(k -k. )(k k, )

(32)

If the normalized eigenchannel vectors x ~ were
known for the corresponding eigenchannels, then

M&& could be contracted to define dimensionless
matrix elements

Mo =ZsZ~, ~a, M~((ksk, ) '~s.

The inverse transformation is

(25)

Near an eigenvalue E„, a unique eigenchannel (x s)
is expected to be coupled to the bound-bound eigen-
function denoted by index e. Under this condition,
Eq. (16) shows that the pole in M~& arises only from
elements M,&, and near E Eq. (25) can be approx-
imated by

(26)

Because the vector x ~ is normalized to unity, this
approximation implies, for E near E,

s 2a(ks —ks )
(k'-k ')(k '-k, ') '

The parameter a can be eliminated from the last
two of these equations to give a formula for k 2.

k '=ks'+ [f(ks')-f (k|')]

Since k, and ks bracket the pole at k, if the original
interval is sufficiently small f(k, ) and f(k, ) have

opposite algebraic signs. Because k2 is originally
determined by linear interpolation to be a reason-
able estimate of k„ the denominator in Eq. (34) is
dominated by the terms in f(ks ), both of the same
algebraic sign. Thus there is no loss of accuracy
due to cancellation and this formula should provide
a very accurate value of the small correction k

ks . This formula is used with f(k ) taken to be
detM)) .

The computed value of k can be substituted into
Eq. (31) to evaluate the residue parameter a. This
determines

a = Res, detM,
&

——lim(E —E, ) detM& (35)
E~g

and the matrix elements

a,&
= Res~ M, &

= lim(E —E~) M, &
.

g~g
(36)

IV. INITIAL EIGENCHANNEL PARAMETERS

Since ks is close to k, Eq. (26) should be valid
for M, &(ks). By fixing the index q = 1, this equation
can be used to estimate the normalized eigenchannel
vector x ~ for the eigenchannel associated with the
bound-bound eigenvalue E (k ):

X„=-M'„' [5~„(M[,')'(k, /k, )] "'. (37)

Since this estimate should be independent of the in-
dices ij, the particular matrix elements 00 are
used.

When there is only a single open channel (elastic
scattering), variational formulas for the phase
shift reduce to simple expressions in terms of the
2x 2 matrix M&. The phase shift at an eigenvalue
E depends only on the residues

lim(E —E ) M, ~ (E).
g~g

(38)

From Eq. (16) it is clear that these residues involve
only the bound-free matrix elements. A formula of
this kind, taking advantage of limiting behavior at
an eigenvalue E, was proposed by Harris' as a
general computational method for elastic scattering.
These formulas should be valid for the eigenphase
in eigenchannel (s: s] in the vicinity of an eigenvalue
E, if M'„as defined by Eq. (24) is used in the
single-channel formulas. The further approxima-
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tion, Eq. (27), also valid near E, is used to define
eigenchannel matrix elements and the residues are
evaluated by Eqs. (35) and (36).

For a single channel, the Rubinow (inverse Kohn)
value t& of tan& is given by

f, = ——,
' I '. (E)/[E E—.—a.'.(E)],

where

r'. (E) = 4k-'(E —E.)M„
and

h~(E) = —2k '(E —E~)(M,O
—2k 'detM).

The Kohn value t~ of tan& is given by'

f„= [E —E —a", (E)]/-', 1" (E),
where

I' (E) = 4k '(E —E ) M„

(39)

(40)

(41)

(42}

(43)

4 (E) = 2k '(E —EN ) (Mo, + 2k ' detM). (44)

k =k —2k '(a ' —2a )

k =k +2k (aoP+2a ).
(46)

For a single channel, the residues a&& for dimen-
sionless matrix elements reduce to products of
bound-free matrix elements,

aoo-k M s, 1o=ao1=k MesMac-1

In the limit E-E these parameters all have well-
defined values expressed in terms of residues of

M&& and of detM. In particular, for dimensionless
matrix elements, we have

n. (E,)= —2(a,o
—2a), n (E )=2(ao~+2a), (45)

where the residues are defined by Eqs. (35) and
(36). The single-channel formulas given here show
clearly that dimensionless matrix elements are ob-
tained by absorbing a factor k ' into each matrix
element M &&.

The residues at a single eigenvalue near a reso-
nance do not give enough information to determine
the resonance parameters (5, I'„,E„or k, ), since
at least the first derivatives of the functions I'(E)
and n(E) are needed. However, Eq. (39) implies
that a zero of cot& occurs at a displacement from
E„approximated by r/. "(E ), and Eq. (42) implies
that a zero of tan& occurs at the approximate dis-
placement LP(E ). Since these two points must be
separated by a phase interval of —,'m, if a resonance
occurs in the vicinity of E the relative separation
of these points can be used to fix the magnitude of
the interval of E or k to be scanned for the reso-
nance.

Since an interval 4E in Hartree atomic units cor-
responds to an interval krak, Eqs. (45), applied to
the residues of M&&, define two values of k expected
to span the width of the resonance:

-1 2a»= k Mac (47)

if the arbitrary phase of eigenvector n is chosen to
make M, s. positive. Together with the residue a,
these bound-free matrix elements can be used, as
in the Harris method, to compute the scattering
phase shift at E . In the present method, Eqs.
(48} are used to give effective bound-free matrix
elements for the eigenchannel n. The eigenphase
is given by the usual single-channel formulas.
These bound-free elements for the eigenchannel can
also be used to compute resonance parameters by
the method of Hazi and Fels if two or more stabi-
lized eigenvalues are located near a given reso-
nance.

Because the two energy displacements given by
Eqs. (45) approximately locate zeroes, respective-
ly, of cot& and tan6, their difference gives an esti-
mate of the energy interval in which & changes by
~s. From Eq. (1), if this interval were centered
at the resonant energy E„, it would be equal to the
width I'„. Hence Eqs. (45) give an estimated width
in the form

r, =- In, '. —a"„I = 2I(a„+a,o) I.
From Eqs. (40), (43), and (47)-(49), this can be
expressed as

(49)

I'.= 4k 'IM. ,M„.
I
=4IM-'M"

I

4( )1/2 [FB(E )Fr(E )]1/8 (50)

This geometrical mean formula, which has not been
derived previously, makes it possible to estimate
the resonance width from bound-free matrix ele-
ments at a single eigenvalue E .

Because this estimate of I'„makes use of both the
Kohn and inverse-Kohn variational formulas, it is
not valid near a zero of either Moo or M». This
requires M s and M c. to be of comparable magni-
tude. From its derivation, it is clear that Eq. (50)
will be inaccurate unless the derivatives of rF(E)
and & (E}are small compared with their respective
values at E . These derivatives cannot be esti-
mated from information available at a single eigen-
value E,.

V. DETERMINATION OF RESONANCE PARAMETERS

Only those eigenvalues E that are insensitive to
augmentation of the basis Hilbert space for the
bound-bound matrix, in the sense of the stabiliza-

where index n refers to an eigenvector of the bound-

bound matrix. The residue a of detM cannot be ex-
pressed in terms of M s and M c. If a factor k '

is absorbed into functions S, C to give S', C' appro-
priate to dimensionless free-free matrix elements,
Eqs. (47) imply

M s. = (aoo)', M„c = (a„)' 'sgna, o, (48)



1818 R. K. NESBET AND J. D. LYONS

tion method, correspond to actual resonances.
Generally some prior knowledge is available to sug-
gest the quantum numbers and location of a reso-
nance. ' The present search procedure is intended
for use in this context.

If E corresponds to a true resonance, the phase
shift in the resonant eigenchannel will be described
by Eq. (1) near E . If E is sufficiently close to &„,
a three-parameter formula can be used to fit the
eigenphase. Expressed in terms of the reference-
channel k value, this is

6(k)

4.0—

3.0—

2.0—

6(k ) = 60+ tan ' [I'„/(k„—k )]. (sl)

6„= Q0+ —'m (53)

as the third parameter. From Eq. (51), we have

tan(6„—6,) = (k„—k )/I'„, (s3)

where 6, denotes 6(k').
The multiple-angle formula for tan(o. -P) can be

used to eliminate &„, giving the expressions:

(kz —k, ') cot(sz —6,) = F, + I'„' (k„—kz )(k„—k, ),
(54)

(k —k ) cot(6 —6 )= I'„+I'„' (k„—k )(k, —k ).
Subtracting these two equations and using Eq. (53)
to replace (k„—ka )/I'„by tan(6„—6z) results in

&„= &2+tan '

(k —k, ) t(k —6,) —(k —k ) t t(k —II
t)

k3 -k,
(55)

If this value of 6„ is used to compute tan(6„—6,) and
tan(6 63), Eq. (53) can be used to derive exact
three-point formulas for I'„and k„:

I'„= (k —k, )/[tan(6„—6,) —tan(6„—6 )], (56)

TABLE I. Orbital exponents for basis set A.

lg
2g

2p
3d

0.0625, 0.125, 0. 25, 0.5, 1.0, 1.5
0.5
0.1, 0.25, 0.5, 1.0, l. 5, 2. 0
2.0, 3.0

For each value of k, a full multichannel calculation
is carried out, determining eigenphases and eigen-
channel vectors. The sum of the eigenphases is
computed for all open channels that are not ortho-
gonal to the comparison channel vector, and this
sum is used in Eq. (51) as if it were the phase
shift 6(k ) for a single resonant channel.

Three eigenphases ~y ~g and 5„ for three val-
ues of k (k„kz, k3), can be used to determine the
three parameters k„ 1"„, and 60 in Eq. (51). In-
stead of 50, it is somewhat more convenient to use
the phase shift at resonance

1.0—

.830
I

.835

k (a.u. )

I

.845

FIG. 1. Phase shift for ~S (1) resonance.

k, '= [k,'tan(6„—6,) —k, tan(6„—6,)]/

[tan(6„—si) —tan(6„—sq)] . (57)

These three-point formulas are used iteratively,
starting with k, equal to the lesser of k", k of Eq.
(46), ka equal to their arithmetic mean, and k, equal
to the greater of them. At each iteration, the corn-
puted k„ is compared with the current k~: k„kz,
and k~. If &k is the interval Ik„—k&l of smallest
magnitude, the k values for the next iteration are
taken to be k„—4k, k„, and k„+4k, requiring only
two new phase-shift calculations. The search ter-
minates when ~k is smaller than some criterion,
taken to be 10 a. u. in the examples given here.

If there is no resonance in the eigenchannels de-
termined by the eigenvalue E, limited experience
with this iterative search indicates that it diverges
rapidly, and can be terminated by testing 4k against
an upper limit.

VI. EXAMPLES: e -H RESONANCES

As a first example of the resonance search pro-
cedure we have considered the two lowest 'S' and
the lowest 3S' resonances in e -H scattering, below
the n = 2 threshold. The computed phase shifts near
these resonances are shown in Figs. 1-3. The
computations used the orbital basis set defined in
Table I. The basis functions are exponentials
multiplied by powers of r and spherical harmonics.
Further details of these calculations, including the
choice of basis orbitals, will be published separate-
ly. Despite the fact that these are single-channel
resonances, by using a variational wave function
of the form of Eq. (1), constrained only by Mz, ——0,
M&=0, parity even, maximum l~=0, the calcula-
tions treated an effective two-channel problem. The
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I

S(1) 1S(2)

4.0—

tI(k)

3.0—
6„=3.135
kr 8637034 6(k)

6.0—

5,0—

2.0—

I

.86369
I

.86370

k3=.863703

~ kg=.863702
=.863700~ 50=1.564

.86371
k (a,u. )

.86372

4.0—

.8640
I

.8645
I

.8650

+ ~0 3'983
I

.8655 .8660

FIG. 2. Phase shift for S (1) resonance.
k (a.u. )

FIG. 3. Phase shift for S (2) resonance.

Hilbert space (C „}included all two-electron func-
tions defined by the basis orbitals. In this example,
a unique resonant eigenchannel is defined by sym-
metry, and the search procedure identified the ap-
propriate singlet or triplet eigenchannel in each
case.

Points that are significant in the resonance
search procedure are indicated in Figs. 1-3.
These include the location of the eigenvalue at k
[Eq. (34)], the estimated zeros of tan 5 and cot 5 at
k, and k, [Eqs. (46)], and the actual resonance posi-
tion k, [Eq. (57)]. The computed background phase
shift 50 is also indicated, as is the resonant phase
shift 5„[Eq. (55)]. The figures have been plotted
by computing many more points than are required
for the resonance search procedure. They verify
the qualitative validity of this procedure. In partic-
ular, k is close to the final k„, and k3-k, is the
same order of magnitude as the resonance width.

Our computed resonance parameters are corn-
pared with prior calculations on these hydrogen CE1
resonances in Table II. There is substantial agree-
ment with earlier results, which include the best
previous work known to us. The greatest disagree-
ment is in the case of the 'S'(2) resonance, where

further expansion and optimization of our orbital
basis set is required. These results are very sat-
isfactory in view of the modest expenditure of com-
puter time; the entire resonance search for 'S'(2)
reported here required 194 sec of CPU time on an
IBM 360/91 computer, starting from an eigenvalue
search in the k range 0. 865 (0. 0001) 0. 866.

As a second example, we have considered a true
S' multichannel CE1 resonance below the n = 3

threshold. The wave function is constrained by
M~ = 1, I&

= 0, parity even, maximum l~ = 0. Be-
cause this excludes functions (2PkP)'S, only two 'S
channels are open: (1sks) and (2sks). The two
eigenphase shifts 5,(k) and 5a(k) are plotted in Fig.
4. The figure also shows $5=5, +5a, fitted to the
single-channel resonance formula by our search
procedure. Values of k, k„, k„and k3 given by
the search procedure are indicated, together with
$5„and $50. As in the case of single channels, the
validity of the multichannel search procedure is
qualitatively evident from the figure.

The orbital basis set used for this calculation is
defined in Table III. Because the basis set contains
little more than the hydrogenic 1s, 2sp, and 3spd
orbitals, it is not expected to provide an accurate

TABLE II. Single-channel resonance energies and widths (eV). (Superscript indicates multiplying power of ten. )

'S(2)

Present work
SOC
Chenb
Bowc
TBd

9.571
9.574
9.559
9.575
9.560

4.918
5.44
4 1~2

5 43
4.75

10.183
10.178
10.170
10.178
10.178

3.615 3

2.31-3

2. 18
2.41 3

2. 19

10.150
10.151
10.149
10.151
10.150

1.949
1.90 5

2.01
1.89
2.06

~G. J. Seiler, R. S. Oberoi,
Rev. A 3, 2006 (1971).

~J. C. Y. Chen, Phys. Rev.
~P. G. Burke, S. Ormonde,

and J. Callaway, Phys.

156, 150 (1967).
and W. Whittaker,

Proc. Phys. Soc. (London) 92, 319 (1967).
~A. J. Taylor and P. G. Burke, Proc. Phys. Soc.

(London) 92, 336 (1967).
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2.5—
TABLE III. Orbital exponents for basis set B.

5(k)

2.0

1.5

ls
2s
3s
2p
3p
3d

0.3333,
0.3333,
0.3333
0.3333,
0.3333
0.3333,

0. 5, 1.0
0. 5

0. 5, 1.0

0.5, 1.0

1.0

0.5

0.0

-0.5
.886

k(a.u. )

.894 .898

FIG. 4. Eigenphase shifts for 3S~ resonance.

representation either of the channel orbitals or of
virtual excitations that describe nonresonant polar-
ization of the target atom. Moreover, the (2pkp) 'S
channel is omitted. For these reasons this example
can be considered only as a model problem, and re-
sults should not be compared with other calculations
or with experiment.

The computed width I „, for the example of Fig.
4, j.s 0. 181 79&&10 hartree, or 4. 947&&10 eV.
With this width, together with k„= 0. 892 32 a. u. ,
obtained from the search procedure, a satisfactory
fit to the computed functions 6,(k) and 62(k) is ob-
tained from Eq. (2) with y, 2-—0. 8819, yz, , =0. 1181.
Here the double subscript (1, 2) refers to the back-

ground eigenchannel approached by 5, for k & k„, and

by 62 for k & k„, and similarly for subscript (2, 1).
The background phases are assumed to be con-
stants: 5, , z= —0. 62533 and 6z, , = 0. 16548.

In this example, the estimated "resonant eigen-
channel" vector of Eq. (37) did not give a useful
estimate of the weight coefficients y, in Eq. (2). In

fact, the projection of the vector computed by Eq.
(37) onto the background eigenchannels indicated
values y, 2= 0. 2560, y2, = 0. 7440. This discrepency
may be due to inadequate representation of the
metastable H wave function associated with the
resonance, because of the very limited orbital basis
used here. Nonetheless, the search procedure us-
ing g6 as an effective single-channel resonant phase
shift has worked successfully to obtain I"„and k„.
In practical applications, accurate values of the
parameters 6, and y, in Eq. (2) could be obtained by
curve-fitting, with only a few additional phase shift
calculations.

ACKNOWLEDGMENTS

The authors are indebted to A. U. Hazi for a very
helpful discussion of the multichannel resonance
problem. The calculations reported here were
carried out on an IBM 360/91 computer.

P. G. Burke, Advan. At. Mol. Phys. 4, 173 (1968).
H. S. Taylor, Advan. Chem. Phys. 18, 91 (1970).
H. Feshbach, Ann. Phys. (N. Y. ) 19, 387 (1962); 43,

410 (1967); T. F. O'Malley and S. Geltman, Phys. Rev.
137, A1344 (1965); J. Macek, Phys. Rev. A 2, 1101
(i.970).4¹F. Mott and H. S. W. Massey, The Theory of
Atomic Collisions (Oxford U. P. , New York, 1965), pp.
369-379.

~H. S. Taylor and J. K. Williams, J. Chem. Phys.
42, 4063 (1965); I. Eliezer, H. S. Taylor, and J. K.
Williams, J. Chem. Phys. 47, 2165 (1967).

6A. U. Hazi and H. S. Taylor, Phys. Rev. A 1, 1109

(1970).
A. U. Hazi and M. F. Fels, Chem. Phys. Letters

8, 582 (1971).
R. K. Nesbet, Phys. Rev. 156, 99 (1967).
R. K. Nesbet, Phys. Rev. 175, 134 (1968); 179, 60

(1969).
R. K. Nesbet, Phys. Rev. A 2, 661 (1970).

~~J. D. Lyons, R. K. Nesbet, C. C. Rankin, and A. C.
Yates (unpublished).

R. K. Nesbet, J. Comp. Phys. (to be published).
F. E. Harris, Phys. Rev. Letters 19, 173 (1967);

H. H. Michels and F. E. Harris, ibid. 19, 885 (1967).


