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We present the details of a calculation of the m& inn contributions to the triplet-singlet
splitting of the positronium ground state. Our result Av(0. 1nn ) = 4n R„lno. =34 MHz places
the theoretical value for the transition frequency v approximately 1 standard deviation above
the most recent experimental value. The calculation is performed using a perturbation theory
based on the Bethe-Salpeter equation and on a wave function obtained by a single iteration
from thenonrelativistic Pauli wave function. After a study of all relevant terms, we conclude
that the only diagrams which contribute to our order are those involving the exchange of one
or two virtual transverse photons. These contributions are explicitly evaluated, and we show
that other possible contributions actually vanish.

I. INTRODUCTION

Potentially, the splitting between the triplet and

singlet levels of the positronium ground state af-
fords a very accurate test of quantum electro-
dynamics. This follows since the bound electron-
positron system, perhaps more than any other,
presents a very nearly pure quantum electrody-
namical problem, which to our order of approxi-
mation is free from contamination by hadronic ef-
fects or unusual leptonic corrections. Therefore,
an agreement between the experimental and theo-
retical determinations of the triplet-singlet split-
ting is necessary in any systematic check of the
predictive power of quantum electrodynamics.
Furthermore, positronium is the only experimen-
tally accessible bound system which must be de-
scribed by using the relativistic two-body equations
for interacting fermions. Agreement between theo-
ry and experiment is, therefore, also a check of
the treatment of bound states in field theory.

Motivated by these considerations, we have cal-
culated the corrections to the triplet-singlet transi-
tion frequency v of order z2lna . This calcula-
tion is necessary since the accuracy of the previous
theoretical value for this separation' ' has been
exceeded by that of the most recent experimental
value. 4 Hence, a meaningful comparison between
theory and experiment could not be made until
higher-order corrections were taken into account.

Our result for the & ln& ' correction to the
transition frequency is

&v(o.'in& ')= & & R„lno.' ',
where S=c =1, and where R is a frequency rydberg.
Combining this contribution with the order e
correction of Karplus and Klein, ' the total triplet-

singlet transition frequency becomes

v= a'R„[8 —(—", +ln2)(n/w)+-, o'1 na '+O(n')].
(2)

The contributions of order m & ln& ' represent
recoil corrections arising from low-momentum
components of the wave function associated with
the Bethe-Salpeter (BS) equation' for positronium.
The perturbation techniques used by Karplus and
Klein and Fulton and Martin prove sufficiently
accurate to this order. We obtain the necessary
wave function from the BS equation, containing only
the Coulomb interaction, by a single iteration from
the nonrelativistic Pauli wave function. This wave
function is expressed to a higher order in the wave-
function momentum than was previously necessary.
We must also keep other momentum contributions
to a higher order. Wave-function retardation ef-
fects are only important in the one-photon exchange
process, while wave-function pair effects can be
neglected. It is, however, essential that these two ef-
fects are taken into account in the interaction kernels.

In Sec. II, we review the necessary portions of
the perturbation theory for the BS equation, and
obtain the approximate wave function. Sections
III and IV contain, respectively, the calculations
of the one and two virtual transverse photon con-
tributions, and Sec. V is devoted to a discussion
of the noncontributing diagrams. Finally, we sum-
marize our results and compare them with the
latest experimental data.

In the following, we denote the space-time coor-
dinates by x~= (x, ixo) and take the y, to be Her-
mitian matrices satisfying (y„, y„)=N„„.
II. PERTURBATION THEORY AND APPROXIMATE WAVE

FUNCTION

We begin by presenting a brief account of the
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perturbation theory as developed by Fulton and

Karplus. ' The essential idea is to separate the
instantaneous Coulomb interaction, which accounts
for the maj or part of the binding, from the total
interaction. With the aid of an approximate solu-
tion to the BS equation containing only a Coulomb
interaction, we can then treat the contributions of
the remaining time-dependent interaction terms
by perturbation theory.

After mass and charge renormalization, the BS
equation for the wave function g {x&,x~) of a system
of two interacting equal-mass fermions is

= (2«) 4 fd pS"'(p+-K2)S F'(- p+ 2K)e'8

(11)

I,(x, x') = fd'X' e ''-'-I(x, x'; X X-') (12)

For the development which follows, it is useful to
factorize Gx(x, x') in the form

&px(x)=e "'"4(xs,»2),

G ( ) fd4K8 &x'&x x 1 S&11[(K X ) L~(x x )]

xS,'"[(X X') —.'(x —x')]

where

x I(x14 x2', »3, »4) $(xsp x4), (3)

0 ( 18 «2) SF (»1 1) F (»2 »2)
G x(x, x') = &x(x, y ) Ax(y x') r4"r4"

= Ax(» y ) 9x(y x') r4"r4", (13)

S"'(x)=
I d i1 S"'(P)e'8'"

(»)'s

(iy"'P m) e-"'
(2&&) J p +ms —ie

j=1, 2 (4)

and we use the convention that repeated four-vector
arguments are integrated over. The interaction
kernel I(x„xs,xs, x4) is extracted from the expansion
of the electron-positron Green's function
G (x„xs;xs, x4) in a. perturbation series. This
Green's function is defined as

Gas ys(»1~ »2& xsi «4)

= &01 Th («1) 48(«2)1)'.(Xs) &4(»4)] Io&

—(0
I
T Q'-(»1) @8(»2)] I

0 & &0
I
T Q.(x ) @e(»4)) I

0 &,

(6)
with

Fx(», «') Gx(»', y) = 6(» -y), (17)

so that the relative coordinate-dependent wave func-
tion &px(x) satisfies the differential equation

where

g (x y) (2&&)-4 fdspe&8'&*- 1[H&1&(p) H&21( p} K ]-1

(14)

Ax(y, x'}= (2«) fd pe'8'~" '([H&" (p) —(p, + 3K,)] '

+[H'"(-p)- (-P.+K)] 'l, (»)
where H'1'(p) is the Dirac Hamiltonian &xU'. p+ P"'m,
and we work in the rest system of the center of
mass so that K„= (0, iK, ). For completeness, we
note that the differential operator

F (x, x' ', = (y"' 8 + ,'iy"' K—+m)

x(- y'2' ~ S + sir&21 K+m) 5(x —x') (16)

obeys the relation

I(x„xs,xs, x4) is obtained by writing the summed
perturbation series as

G(x&, xs, xs, x4)=SF (x1 —xs}SF («2 —x4)
(1) (2)

+SF (»1 »1)SF (»8 »8)

(6) [F„(x,x') -Ix(x, x')] &px(x') = 0

We begin the development of the perturbation
theory by writing the interaction kernel as

I,(x, x') =I'(x, x')+I~(x, x'),
where

I'(x, x') = sn6(x —x') 6—(x,) y&»y&»ir

(16)

(2o)
I(x&, xs;x3 x4}G(x3 x4 x3 x4). (7)

In the following, it is convenient to introduce the
center-of-mass and relative coordinates X and x
defined by

(9)

1X= —,(x, +x,), x=x, —x, . (6)

Then, observing that SF"(»1 —x,') SF '(xs —xs) and
I(x„x„x'„x,') are functions of x, x' and X- K', we
can write Eq. (3) in the form

Vx(x) = Gx(x, x') Ix(x', x")Vx(x")
with

is the instantaneous Coulomb interaction kernel
and I~(x, x') denotes the remaining part of the in-
teraction kernel. With this separation, Eq. (9)
can be written

px(x) ~K(x, y) [- Ax(y, X')(sly') 6(x') & x(x')

+Ax(y, y'}y4' y4 I'x(y', x') &Px(x )], (21)
so that the unperturbed system, having total ener-
gy K,', will satisfy the equation

&8 .(x) = —3 &9',.(», y) A .(y, x') [&)(x!)/F'] &p;(x') .
(22)
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In order to obtain an expression for the energy
shift ~ =R,-K,', it proves convenient to intro-
duce a wave function p&(x) by the equation

(('»(x) = —)o8»r:(x y) A»(y x ) [5(xo)/& ]V)»4(x )

ly, we write

i3»('&(«) = G»(x, x'}I'(x', x")p~(x")
or

= —~~K(x, 3 ) &(X.) X(X), (23 }
(i)

~ () „(„)
where y(y) is defined as

5(y.)X(y)=(3&».(y, «') [5(x.')/r'] V,.(x') . (24)

Using the relations

e». (x, y) A»(y, x') =G.(x, ') y4()&&4(3&

X y4p & fP x 1) p
& ~ g(2) p

f ~ y(1)y(2)

d'k 9)~(k)
t2

[~(x.)/&] V)» (x) = [~ (x(&)/)'] (I)».(«) (26)

—I3EG»(x, y ) &4"&'4"9»4(y, «'), (25)
where

4x(3 m(&)~(0)
(2x)3/2 {k2 + y2)2 r (35)

together with Eq. (17), it is easily seen that (&3»(x)
satisfies the equation

[I" »(«, «') I'(«, «')—] V'(«') =iI3E r,'"r,'"5{«,)X(x),

y~(0) = y(0) x (spin function)

y x (spin function),

y= &m~.

(36)

(37)
(27)

which has as an adjoint

9)»(x') [F»(x', x) —I'(x', x)] =i ~X*(«}6(x,}, (28)

where 7()»(x) = p»*(x) y4 y4 . Multiplying Eq. (28)
by y»(x}, and using Eqs. (18) and (19), we obtain

After performing the k integration, the expression
for 9)»'4'(x) becomes

(q
—4m' &

&» (x) =
{2 )4

8~ »(I)+ &)~) (-P+ &)'4
())»(x)1»(x,x') rp»(x') = i r)E,

where the normalization is chosen so that

(29)

x ((r (0) . (38)
X'(x) 6 (x.) m»(x) = 1 . (30)

As can be seen by comparing Eqs. (22) and (23),
(((r'»(x) and (r()»c(x) differ by terms of order r)E,
and this difference is negligible to our order of
accuracy. Thus, if we can express Eq. {29)in
terms of y»(x), it is permissible to replace (r()»(x)
by 9)»~(x}. In view of Eq. (27), the connection
between (()»(x) and 9)»(x) is seen to be

(()»(x) = (i"»(x)+G»(x, x ) [I'»(«r x ) V'»(x )

—i~ y4()&y4(3&6(x.') X(")],
where G»(x, x') is the Green's function for Eq.
(18), which can be expanded in terms of the Cou-
lomb Green's function as

G» (x, «') = G)((x, «') + G»(x, y)I'(y, y ') G»(y', x') + ~ ~ ~ .

{32)
Hence, neglecting the term involving ~ in Eq.
(31), we finally obtain, to our order of accuracy,

~ = —i y»e(x) [I»(x, x')

+I' («, y ) G '
(y, y ') I» (y ', x')] v't(('(x') . (33)

ln order to make use of Eq. (33), we need an ap-
proximation to the Coulomb wave function ())»4(x).
This may be obtained by using Eq. (22} as the basis
of an iteration procedure beginning with the non-
relativistic Pauli wave function ())),(x). Specifical-

lt is useful to write (r()»", (x) in the form

W»"'(x) = &.(x)+ 6 V .(x)+ 5 V .'(x), (39)

where ((),(x) is the wave function used to obtain the
(3 contributions, while 5y, (x) and 6(&),'(x) repre-
sent higher-order correction terms. Explicit ex-
pressions for these wave functions are given in
the Appendix.

III. SINGLE TRANSVERSE PHOTON CONTRIBUTIONS

A. Pure One-Photon Exchange

The simplest correction term which produces a
& ln& ' contribution to the triplet-singlet splitting
is the single transverse photon exchange kernel
Is (x, x'). This (Breit) interaction kernel has the
form

(««r)&r(1)&r(2&I, (x, x') = 4'

[o(( & (3( ) (o( k)( ( ) k)]

(40)

where k =k/%1 and k =k —k, . Denoting the single
transverse photon exchange contribution to the
triplet-singlet splitting by ~&, we may use Eqs.
(33) and (39) to obtain
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~) = —i({&,(x)I&) (x, x') y, (x') —i6 rp, (x)I&)(x,x')

x(I(),(x') —i(f),(x)Is(x, x') 5V&,(x'), (41)

where we have omitted the 6y,' terms, which can
easily be shown to yield no o' lno' ' contributions.

The relevant spin-dependent part of the first
term in Eq. (41) has been computed previously,
and may be written in the form

—i V&,(x) I&) (x, x') &», (x')

1 a'I(»(0) I' -(,) (2) d'pd p'
(»)' EE'(p'+y')'(p '+y )

p (E'+m)+ p' (E+m)]
k+E+E' —K,

1 (r'
I p(0) I'

~&» &2&)
d'p 2p tan '(p/y)

3 2&&m E(f+y )

The ln& ' term in the remaining integral can be
obtained by setting tan '(p/y) = —', (( and noting that

r , = —ln(r +O(o) .
d'p p 4»

E(p+ ) m
(48)

Hence, the o inn ' portion of Eq. (42) is

—z q, (x)I, (x, x') (p, (x') =~m o&' ln o ' ((&'" o ' ),
(49)

J (p" ) )'(~'-i(' ' ) "" )")'()'.&))
(46)

and hence the leading contribution of Eq. (45) is

where

2() E ( 'E)'I"&'(E — ) )'"(E—m)I}k+E+E' k+E+E'+K,
(42)

where we have used Eqs. (36) and (37}.
Using the expression for 6u&, (x) given in the Ap-

pendix, the remaining terms in Eq. (41) can be
shown to give

E = (P'+m')"', k = ~p —p' ~, K,=2m ——,'m a',
(43)

and p denotes the magnitude of the vector p. As
we shall see, the & ln& ' contributions arise from
integrands which behave as (momentum) ' in the
region of small wave-function momenta, provided
there is a coupling between the d'p and dsp' integra-
tions. Using these criteria, the 4m term in large
parentheses should yield no ~ ln~ ' terms, and this
is confirmed by a direct evaluation which gives the
well-known & contribution' together with an o.'
correction. Of the remaining terms in Eq. (42),
only the second in the large parentheses gives an
& ln& ' contribution. It may be extracted by using
the relations

p' p' 2(E' —m)
k+E+E' —K, k+E —E' k+E+E' —K

1 ~ I(»{0) I ~()& -(~) d'pd'p'
24 (2)&)'m~ ' (p'+ y')'(p" + y )'EE'k

(m —EE') 2(m +EE') (m —E E')
k+E +E —Ko k+E +E k+E +E +Ko

Ipxp'I~ p (m-E)(m+E'} 2p (m +EE')
k k+E+E' —K, k+E+E'

P (m+E)(m —E') (,)k+E+E'+K, (50)

ln contrast to Eq. (42), where the denominator
(k+E+E' —K,}gave the most singular low-mo-
mentum behavior, the corresponding term in Eq.
(50) is not dominant at low momentum owing to a
factor (m'-EE') in its numerator. ' Instead, the
denominator (k+E+E') gives the leading low-mo-
mentum behavior of Eq. (50). Keeping only the
leading terms, Eq. (50) reduces to

(44)
P" P" 2(E m)

k+E +E' —Ko k +E'- E k+E+E' —K0

1 & I{I (0}l o())o(a& I
d Pd P'

6 (2&()'m J (P + y')'(P" + y')'EE'k

X 'j2
4p2pi2 p2 +pI2 5

which produce a correction term of order Sin& '
given by

4 0 lu)(0)I ((& &g) d pd p p p
3 (2)&)' E(p'+ y )'(p" + y')'k'

(45)
The integration involving k may be evaluated with
the aid of the formula

(52)

B. Coulomb-Transverse Exchange

In computing the effects of a single transverse

For small p and p', the integrand of Eq. (51) be-
haves as (momentum) ' and we therefore expect no
& ln& ' contribution. Explicit evaluation of the
integrals shows this to be the case.

Hence, the & ln& ' contribution to ~& is given by

~,{a'lnu ') =~ma lna ' P"'.o' ') .
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exchange, it is important to remember that, be-
cause of retardation, the exchange of a single
transverse photon can be accompanied by the ex-
change of instantaneous Coulomb photons. This is
evident in the & calculation, where an important
cancellation occurs between the one transverse
photon exchange diagram and the diagram contain-
ing one transverse and one Coulomb photon. A
similar cancellation will be seen to occur in the
present calculation.

If we denote the Coulomb-transverse kernel by
Icr(x, x'}, and the corresponding energy shift by
~cT, then the o' lno' ' spin-dependent part of
~&T is given by

()Ecr =- I fd xd'x'[cp, (0)I,r(x, x') y, (x')

+ &I&,(x)Icr(x, x'} I)&&,(0)] . (53)

d3Pk p m, k yk
(k' y'I'Ik Pt' k y tk' ~ tkt) '

(59)

f dk ik m
tan —= ln(2

m(0

(60)

Hence, we finally obtain

~cT((2 ln(2 ')= —~»& a In(2 (o' ' g& ') . (61)

IV. DOUBLE TRANSVERSE PHOTON EXCHANGE

Recalling Eq. (33), we see that contributions to~ involving two transverse photons can arise in
two ways. First, there is the contribution from
the irreducible crossed two-photon kernel Ir(x, x'),

Ir(x, x') = —[(42(2)2/(2&() ] f d2k d4k' (6(q —k(k~)

Q& Q& —5&j+fc

to obtain, for example,

((2(1& kk (2(2& k (2(1& &2(2) )

(54)

(k' 1( g&» g&2& g& &. k' g&2&. k ) (55)

where the angular brackets indicate that we have
retained only spin-spin terms. Further, apart
from terms such as those in Eq. (55), the integrand
of Eq. (53) is invariant under a simultaneous rota-
tion of all momentum vectors. Since such a rota-
tion is nothing but a change of integration variables,
we obtain the result

(g& &. Ag&2& R ) —A )5 (g&)& g&2& ) (56)

so that Eq. (55) may be written

(o(1) k~k (2(2) k o (1). g(2) ) 2 k f k (g(1) g(2) )
(57 }

In this way, the spin dependence of Eq. (53) may be
separated from the momentum dependence and,
retaining the leading low-momentum contributions,
we find

3 2
(F81 Q-)) g ~ S ( ) (g(1&.g&2&)

3 w'

dkdP k ~ p
k(2k+»()(P' y+')'lk+p I'

The remaining integrations can be performed with
the aid of the formulas

Since the evaluation of hEc T is quite similar to the
evaluation of the crossed two-transverse photon
contribution, which is given in detail in Sec. IV,
we will merely outline the calculation. After trans-
forming to momentum space, the spin-spin content
of Eq. (53) is made explicit by repeated use of the
relation

&((6 —k', k' ) y,"'y,'2'G -(x, x') y' 'y' '(1/k )(1/k' )

~ s 1 ()k k') (xkx-'&/2~

(63)

r&E2= —2 fd4xd x'Pp', (x) [I&((x,x')+Ir(x, x')]g&r(x')

+&I)1( )[4( )+ r(x, )l&t() (x )

—
&Iv&, (x) [Ir(x, x')+Er(x x'}]9).(x'}}, (64)

where ~2 denotes the energy shift associated with
the two transverse photon exchange. After some
effort, it can be shown that the first two terms in
Eq. (64) make equal contributions, and we choose
to work with the term in which &I(&,'(x} appears on
the right. We further separate the leading &' con-
tribution by writing ~2 in the form

where G2(x, x'} is given by Eq. (11). Secondly,
there is the effective uncrossed two-photon kernel
Ir(x, x'}, corresponding to the iteration of the
single transverse exchange kernel I» (x, x'). Ex-
plicitly, we have

Ir (x, x') = I() (x, y ) G r (y, y ') Is (y ', x'), (63)

where we have approximated G)((x, x') in Eq. (33)
by Gx(x, x').

When evaluating the contributions of Ix(x, x')
and Iz(x, x'}, it is important to note that the ad-
dition of another photon introduces a factor ot into
the expression for ~. This allows us to replace
one of the wave functions in Eq. (33) by I)&), (x),
while using g&', (x) = &tt&, (x)+ 6&&(),(x) as the other wave
function. We have also found, by explicit calcula-
tion, that is is permissible to neglect the spatial
dependence of y~(x) to our order of accuracy. In
implementing these two simplifications, it can be
seen that g&', (x) will appear on the right-hand as
well as on the left-hand side of the kernel, i. e. ,
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~z = —2i fd'x d'x' rp I, (0)Ir(x, x') [9&',(x') -y ~(x') ]

—2ifd'xdx'(( (O)I (x, x')[9,'(x') —(( (x')]

—i fd x d x' (2(&&),(0) [I&((x,x' ) +I&((x, x')] ((&J, (x')

—(pJ, (0}[I&((x x')+I&((x x )] (p), (0))

tribution. For the purposes of computing E and &,

we note that, to the accuracy required,

((.'(p) —9 ~ (p) = «(») "(p'+ y')

x [2m( n( & n(2)) .p p2 n(l) p n(2) .p]~ (0)

(«)
= &+&+&g, (65} A. Calculation of e

where, as we shall see, c~ contains the & con- From Eqs. (63) and (66), we find

e= 4 d pd k d k5(f(k)5)fg(k ) g». pE g 2 og g

4x n'l((&(0)l' 3 3 / 4 r r t 5(k' —k —p) 1 1
2r p+y E p k~-ko kr

x( n(1) «2)g(1) ( k )K)5(2) (k
) K} (1)y(2) n(1 &n(2) [2 (n(1) n(2)) p P2 n(1) p n(R) p]) (67)

where

5r( (k) = 5„—k, k, . (66)

i n I (I()(0) I d pd k'd k 5(k' —k —p)
(2x}' (P"y')'E(P)E'(k)

The ko dependence of the fermion propagators can
be made explicit by using the decomposition x[J„(k,k')+ J, (k, k )+j (k, k )], (72)

where

A, (k) A (k)
k, —E(k) k, + E(k) (69} where

g, =(-P [E(k) —m] A —2m [E(k) —m]B+ C II„,
A, (k) = [E(k}+H(k)]/2E(k) . (7o)

Using Eq. (69), we encounter the contour integrals
I„(k,k') defined by

J, = (2P k A —4m B —2C)I,

= (P [E(k}+m] A+ 2m [E(k) + m]B+ C II

(73)

«r 1 1
Ioo(k) k }= dko ~ p~a 0 0x, , (71)

1 1
—k, + 2 K, v E(k) k, + 2 K, w E(k)

The values" of these integrals are listed in Table
I. After performing the k, integration, the expres-
sion for & takes the form

and the spin averages A, 8, and C are given in
Table II. Since extensive cancellations occur be-
tween the expressions for & and &, it is best to
defer the evaluation of Eq. (72) until the corre-
sponding expression for & is obtained.

8. Calculation of e

From Eqs. (62) and (66), we find

4i n I p(0) I d pd k d k 5,~(k )5, (k)5(k —k —p) 1 1
(2)&)' (p'+ y')'E(p) k~-ko k» —k

x(««& Z )(k + K)s )(k+ K) ( )y( )«))n(2) [2m(n( ) n( )) p «&. n( p]) (74)

where

k, =k, . (75)
The k, integration leads to the contour integrals
I„(k,k ) defined by

a
1 1Ioo(k, k )= dko p kg ki2 kp

X
1 1

k, + 2K, v E(k) k, + 2~+ E(k)
(76}

I

The values of these integrals are listed in Table
III. After performing the k, integration, the ex-
pression for & takes the form

in' I((&(0) I' d'pd'k'd'k5(k'-k-p)
(»)' (P'+ y')'E(P)E(k)E(k')

&( [ J„(k,k )+8 (k, k )+J (k, k )], (77)

where
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Signa-
ture

TABLE I. Integrals I»» (k, k').

Contribution

1 ( I
k'

I + I k II
k'

I + lk I )' lkl4I~'I' 2(l~'I+ Ikl)IK'I'IKI'

-1
4mlk I I~'I

2nmi - - I 1—B~ kk p. C)

~+ „ I
k pI'(0" ~ o"'), (78)

while the next most singular term is

4m I (k, k )(B—B+B )

1
8mz( I

~'
I + I f I } I f II f'

I

J„=Ip [E(k) —m][E(k') —m]A+A B—k' B' CII„-

J, =(P (k +k )A+4m B—4m B'+2C)I,

J = (P [E(k')+ m][E(k)+ m]A
(78)

—4m B+4m B —C)II

and the spin averages A, B, B', and C are given
in Table IV.

Before combining Eqs. (72} and (77) we note that,
since the leading contributions to E and E are of
order +inn ', it is permissible to use the approxi-
mation E(k ) =E(k}. The error made in doing so
is of order . Moreover, the inn-' dependence
arises from the low-momentum region of the in-
tegrations, where a neglect of binding would intro-
duce a logarithmic singularity. As discussed in
Sec. III, the relevant terms in the expressions for
the J's (J's) of Eq. (72) [Eq. (78)] are those which
are most singular in the low-momentum region.
Examination of Tables I-1V reveals that the most
singular term behaves as (momentum) ~, and that
the next most singular term has a (momentum) '
behavior. Again, our calculations will show that
the most singular term does, indeed, give a
~ lne ' contribution, and that the next most sin-
gular term does not.

Apart from common factors, the most singular
term in the integrand of the expression for e+ E

is seen to be

+I„(k k )(k B+k B—k B —C —C) . (80)

The contribution of Eq. (79) to 2+ e is given by

4 mn') p(0)) -(t& &2) d k d p
(2 )' E (k) E(P)(P'+ y')'

Ik &pl 1 1

The evaluation of the remaining integrals in facil-
itated by employing the formula

1 1 dv 1
Wak 2 (1 —v)'" [a+(k-a)v]'" '

0
(82)

which, when combined with the usual Feynman pa-
rameter integrals, can be used to obtain

1 15
)p+k)'E(P)(P'+ y')'

1

x y/2 [(p+ uk) + A]
0

1
1 105

d 1 q gP

k) 4E(p)(p2 2)2 18 ( )

(83)

where

1

)t g2 [ (p+ u k) + A]
0

A = (1 —u)[k u+ m + (y —m )v] = (1 —u) (k u+ 4) ~ 0 .
(84)

By combining the denominators of the d3P integra-
tion with the aid of Eqs. (83), suitably translating
the integration variable (p-p- uk), and then in-

TABLE II. Spin averages for the uncrossed two-photon term.

Product of &'s

gT (~) gT (k 2)
~

&(i)&(2)&(i) &(2)~

Coefficient of '(o ' & )

f2')T ($) f2'iT (k 2) (&(i) &(2)~(i) ~ k~(i)~(2)~(i), p+ (1 2))
2 3 Ikxpl
3

+ -, z

g T {g) g T (k r ) g&(i) (2) 0(i) k py(2) k (1) +(2)&(i) ~ &(2) ~

Ik I

)

kkk' ~ Ik.k-I, '",', Ik. k II )3 E
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Signature Contribution

TABLE III. Integrals I~(k, k'). The d3P integration can be performed with the aid
of Eq. (82), and the remaining k integration is
easily performed, to give

( I
k'

I + Ikl I
k'

I + lkl )

2(l kl + I
k'

I ) I kl' I
k' I'

0 I) QI2 9 (o( ) /(8&)1 (1 ) ~) (ss)

+ —& —+
—1

4 I kI2Ik' I2

1
8m2{lk' I + IkI ) Ikl Ik' I

which is clearly an + contribution. The remaining
term in Eq. (80) is difficult to evaluate exactly,
though both its momentum dependence and an ap-
proximate evaluation lead us to conclude that it too
contributes in order +. Therefore, the +1n& '

contribution to e+ e is given by Eq. (86).

dv v " dk 1 uk

(l —())(" E'(k) A A'
0 0

To our order of accuracy, we may put Z(k) =m,
and evaluate the remaining integrals to obtain

1 m((() ino(-1( o(() o(2)} (ss)

It remains to show that Eq. (80) yields no &'inn '
contributions. To see how this can be done, con-
sider the first term in Eq. (80). Using Tables
II-IV it leads to a spin-spin contribution given by

o' I 9&(0) I (-(() -(2)) d k d p
6(2(()' E'(k) E(p)(p'+ r')'

tegrating symmetrically, we find that Eq. (81) be-
comes

0 i
I p(0) I2(o (I) «(j(2)) d( (1 (()& Ia

3r

C. Calculation of e

When computing eI, , it must be remembered' that
the leading term is of order +'. Therefore, we
must be particularly careful when making approxi-
mations, because the error involved could be of
order e'inn '. Keeping this in mind, we have found
that it is permissible to put E(k ) = E(k) in expres-
sions of the form E(k')+ m, but that this cannot
be done in expressions of the form E(k') —m.

The explicit expression for &~ can be obtained'
from Eqs. (67) and (74) simply by omitting the
factor [2~( o(1& ~(R)) .p p2 ~(() .p o(2) .p]/E(p)
The k, integration can be performed with the aid
of Tables 1 and III, and the only spin averages en-
countered are A and A= —A. Keeping the most
singular terms, we find

2 mo( I ((&(0) I (-()& (~)) d k
8 (2x)' Z'(k)

d k [E(k) —m] Ik xpl
(p +'Y ) k'1k+pl' k'Ik+

Let us concentrate on the terms in the square
brackets associated with the factor 2, since the
remaining expressions can be treated similarly.

where we have omitted terms which can be shown
to be of order +. To isolate the n' contribution,
we note that the integral associated with the factor
2 in the large parentheses is

TABLE IV. Spin averages for the crossed two-photon term. .

Product of o.'s Coefficient of & a ' '0

gT @i)gT y) ( +(f)&(2)&(f)&(2))
3& lm l m

Ikxp I2
2+

B gT q c)(I)T (y) (O((f)&(2)&(f) ~ k&O)(f)&(2)O)(i) ~ )if lm 3 l O'm
3 IkxpI 2

Ikl 2

gT @i)gT (j) (&(f)&(2)&(2),k&(f)&(2)&(2),p )if lm 3 l m f
3 IkxpI 2

——2k'p+
I
k'

I

gT (I ~)gT (j) (ot f)~(2) (f),kyat(2) ko(f) o)(2)~(f) ~ 0, (2) . )m 3[ I p I (k'k') —
I kxp I ]
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( )~ ( „,,)
"

dk[E(k) —m]
(k'+ y')E'(k) ' (9O)

which has a leading n' contribution and no lno.' '
dependence. Thus, the +inn ' dependence of &&

is contained in the remaining term in Eq. (89),
which may be integrated over d3p with the aid of
the formula

Ik xp I

' duu(1 —u) Ik xp I

(p2+ y'}'Ik+ p I'
1&

[(p+uk)2+ (1-u)(uk'+ y')]' '

(91}

&(2-k'& ~ (x+k'&/2 (96)

and the corresponding energy shift &E« is given

by

&Ecc = —2i f d'xd'x'V&1. (0)fcc(x, x')9&c(x') .
(96)

Using Eqs. (66) and (95) and proceeding as in the
earlier two photon calculations, we obtain

I +(O) I

( (1& . 12&) d3k4Ecc = —
. a v ~ a

12;mm

to give

~ - (1& .- (2&)Ep 3
(a' O

d p[kxp
k'

I k+ p I
2(p2+ y')'E'(k) (97}

= -L m &26 ino-&( g(1& . c (2&) (93)

Finally, by adding Eqs. (86) and (93}we have

+E (okln&2-1) ~m&26lnc6-&(&(1& o(2&) (94)

V. NONCONTRIBUTING DIAGRAMS

In this section, we briefly summarize" our
arguments for the absence of + inn ' contributions
from the other diagrams which are known to con-
tribute in order n'. For the most part, the proof
that a particular term does not contain an e inn '
contribution consists of actually evaluating the
relevant integrals and thereby showing that this is
the case. Since a successive repetition of this
procedure, though necessary, is not particularly
illuminating, we will confine our attention to the
terms which would appear most likely to yield an
& inn ' contribution. The results for the remainder
of the terms investigated will then be stated, with
details available in Ref. 13.

Of all the terms to be considered, the one most
similar in structure to the crossed transverse
photon kernel and the Coulomb-transverse kernel
is the crossed Coulomb kernel. This similarity
to contributing diagrams suggests that the crossed
Coulomb diagram may yield an ~inn ', and for this
reason we investigate it in some detail.

Crossed Coulomb Contribution

The crossed Coulomb kernel Icc(x, x') is

Icc(x x')= [(4&&o) /(2&&) ]

xf d4k d4k y(1&y(2&G (x x )y(l&y(2&(1/k2)(1/k 2)

dk [E(k) —m] 1,k

(92)

The last term in the large parentheses is of order
o.', while the first term, after using

[E(k) —m]/E (k) =k /2m E(k),

can be integrated to give

Since terms involving three photons are at least
of order e', we conclude that the & inc-' terms
arise from the one and two virtual. transverse photon
contributions, which have been evaluated in Secs.
III and IV.

TABLE V. Theoretical contributions to positroniurn
frequencies.

Order

% of contribution
or last order

b,v
10' MHz Actual Expected

Schr Ringer
level
(ionization
frequency)

Triplet- singlet
ground-state
splitting

~4
~5

e'ino. '
u8 (est)

16 449. 2

2. 043 86
—0. 01005

0. 00034
+0.00007

0. 012
0. 49
3.4

0. 005
0. 73
3.6

20

The remaining integrals can be evaluated with the
aid of Eq. (82) to give

(98)

which is clearly of order ~. It should be noted that
for small values of the momenta k and P, the in-
tegrand of Eq. (97) behaves as (momentum)6, com-
pared to the (momentum} 2 behavior of the inte-
grands in Eqs. (81) and (89), which led to a in& '
contribution. This further supports our contention
that anything less than a (momentum) 2 behavior
will not give rise to a logarithmic dependence on
Q.

We have carried out similar calculations for the
one and two photon annihilation terms and for the
radiative corrections to the one transverse photon
exchange and one photon annihilation terms. '3 In
none of these terms do we find an e inn ' contribu-
tion. We have checked that the replacement of
Gx(x, x ) by Gx(x, x'} in Eq. (63}does not affect
the ~inn ' dependence of the corresponding energy
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Vl. SUMMARY AND DISCUSSION

Combining Eqs. (52), (61), and (94), we obtain

ttE, + tREcr+ &ER =~22 mas lnt2 '( tt'" ~ o '}, (99)

which leads to a triplet-singlet energy separation
of
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ttE(otR lnt2 ') =+mtRR lnt2-' .

Taking the value of o.' ' to be'4

(100)
APPENDIX

Introducing the Fourier transform of tent, (x) by

= 137.036 08, (101)

Eq. (100) leads to a frequency shift A v given by

6v(t2 int2 ') = 34 MHz . (lo2}

W'hen this correction is added to the previous result
of Karplus and Klein gCK), 2 we obtain

yr, (z) = (2tt) "f d'p 9tr, (p, t}e"'*,

the various terms in Eq. (39) are given by

&~& m + ~ p & ~ py, (p, t) =2t2(2w) '"—I+ 1—
E 2m 2m

v'"(KK} = 2. 033 81 x 10 MHz,

v'"(this paper) = 2. 034 15 x10' MHz,
(lo3)

x [mf, (t}+Ef (t)j 2
— 2, (A2}

p +p

which are to be compared with the experimental
value'

v'~'(19 to) = 2. 034 03(12) x 10 MHz (104)

One observes that, while the previous theoretical
value was about two standard deviations below the
experimental result, the contributions we obtain
raise the theoretical value to one standard deviation
above experiment. Considering the estimated m&
contributions given in Table V, the agreement be-
tween theory and experiment seems quite reason-
able. "

t ~ 2 y / t22tmf+(t) —Ef (t)j er (0)

(A3)

where

E= (pR+ m')'", y= —,'mt2,
Z tA t t -t(2-m) It I + e t(t2 m) I-t I)

(A4)
(p2 y2)2

5p (p t) IR(22) t/2 pR( t2(tI ~(RI) p e (t}f )
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