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A general theory of spontaneous emission was developed in Papers I and II of this series.
In the present paper, the master equation describing spontaneous emission from N identical

two-level atoms is investigated further. It is shown that the equation of motion for the p(&N)-

atom density matrix is coupled to the @+1)-atom density matrix. We first consider the initial

excitation of the system to state )Hp pp) (Hp&7t) and solve thehierarchyof equations so obtained

in the "uncorrelated approximation. " It is found that the presence of other atoms is equiva-

lent to an external field which is determined from a self-consistent analysis. It is also found

that in this approximation the state of the atom at time t can be described by a single parame-

ter 8(t) (8 & ~), with sin2 y8 giving the probability that the atom is to be found in the excited

state. Next, some improvements over the uncorrelated approximation are given. This is

done by decoupling the equation of motion for higher-order mean values. It is found that the

fluctuation ((Sts —(Spy) (S& —(Sf))) for any pair of atoms is of the order of 1/N. The case
when Hp=71 is considered separately and we obtain an expression for the radiation rate by mak-

ing a "Hartree-Fock" type of approximation on the two-particle mean values. In this case,
the behavior of the radiation rate .s found to differ markedly from the "sech" behavior. It is
then shown that the entire dynamics of two-level atoms emitting spontaneously can be described

by a set of 2N coupled first-order equations which clearly exhibit the type of nonlinearity

(which is the analog of the van de" Pol type of nonlinearity) for this problem and provide a

better understanding of spontaneous emission. Finally in Sec. V, the theory is extended to

include the effects of inhomogeneous broadening, and the functional dependence of the radia-
tion rate on the atomic-line-shape factor is obtained.

I. INTRODUCTION

where 2yo is the inverse of the spontaneous life-
time of a single atom and S& and S& are the compo-
nents of the spin angular momentum operators for
the ith atom. Equation (1. 1), in terms of the col-
lective operators S', S introduced by Dicke, ' can
be written as

8
= —y, (S'S p —2S pS'+pS'S ), (1 2)

where

S'=Q, S', , S'=Q, S,'. (1 3)

In I, we presented the ex&et solution of the master
equation (1.2) [cf. Eq. (I 4. 7)]. However in any

In Papers I and II of this series, ' we developed
a general theory of spontaneous emission from
two systems, namely, from a system of N identical
two-level atoms and from a system of N identical
harmonic oscillators. This general theory em-
ployed the standard methods of nonequilibrium
statistical mechanics. It was found that the re-
duced density operator, for the atomic system
(whose size is small compared to a wavelength),
satisfies the following master equation [Eq. (I A7)]:

a

~E
—= —yc (S;S~ p —2S~ p S; + p S;S&),

practical solution (for which N is large, say of the
order of 10s) the exact solution is too involved to
be of any use. One should therefore resort to ap-
proximate methods. It is not clear how the ap-
proximations can be made on the master equation
involving the collective operators. Moreover we

would like to study how the individual atoms behave
in spontaneous emission. For instance, one can
ask the following question: Are there any correla-
tions induced between any pair of atoms owing to
spontaneous emission'P We already provided an
answer to such a question in II for the case in
which each of the two-level atoms is replaced by
a harmonic oscillator. For the harmonic-oscilla-
tor model, we showed that no correlation is induced
between any two oscillators if the system was ini-
tially excited to a coherent state [superradiant
state for this system; cf. Eqs. (D 3. 21) and

(11 3. 22)]. For these reasons it seems better to
work with the master equation (l. 1) which gives
us the many-body description of spontaneous emis-
sion and solve it under various approximate
schemes.

In Sec. II of the present paper, we use the master
equation (l. 1) to obtain the equation of motion for
the P(&N)-atom density matrix. The equation for
the P-atom density matrix is found to be coupled
to that of (P+1)-atom density matrix. We consider
the case in which the atomic system seas PrePart. d
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in a state 180, yo }[cf. Eq. (2. 6)] and make the un-

correlated approximation, i.e. , we assume that
the total density operator factorizes in terms of
the density operators of individual atoms. We
then find that the state of each atom at time t can
be described by one parameter 8(t), where the
probability amplitude that the atom be in the ex-
cited state is sin~He " . The phase y is found to
be a constant of motion. In Sec. III, we obtain a
result' for the radiation rate that is an improvement
over the one obtained by making the uncorrelated
approximation. This is done by decoupling the
equation of motion for the higher-order mean val-
ues. It is shown that, for the case of initial ex-
citations given by )80, rpo), (80& v), the fluctuations
(S', S& }—(S',}(S&)is of the order I/N In th.is section
we also consider the case in which each of the atoms
was initially in its excited state and obtain an ex-
pression for the radiation rate which differs mark-
edly from the "sech" behavior. In Sec. IV we
present a new description of spontaneous emission
which is similar to the one used for the descrip-
tion of lasers. This description provides us with
a new insight into the process of spontaneous emis-
sion. It is found that a complete solution to the
problem of spontaneous emission is equivalent to

the solution of 2N coupled van der Pol-type equa-
tions. ' These equations clearly exhibit the type
of nonlinearity which exists for the problem of

spontaneous emission from two-level atoms. Fi-
nally, in Sec. V we consider the effects of inhomo-
geneous broadening and derive the appropriate
master equation. We then obtain the explicit func-
tional dependence of the radiation rate on the line-
shape factor for the atomic system.

II. HIERARCHY OF EQUATIONS FOR P-PARTICLE
DENSITY MATRIX AND SOLUTION IN UNCORRE-

LATED APPROXIMATION

Pp= »p+~. p+2,. , s(p. .). i (2. 1)

where Trp„,p.3,..., & indicates the trace over the
coordinates of the (P + I), (P + 2), . . . , Nth atoms.
On combining (l. 1) and (2. 1), we obtain the fol-
lowing equation:

In this section, we first consider the many-body
problem as described by the master equation (1. 1)
and obtain the hierarchy of equations for the P-
particle density matrix. ~ The p-particle (p & N) den-

sity matrix, denoted by pp, is obtained from the
N-particle density matrix by taking the trace over
the coordinates of rest of the particles, i. e. ,

9 Z Tr,„,, 2,„{S;Sjp- 2S;pS;+pS;S;)
&0 &t

(2 2)

This equation may be rewritten as

a
Tr, , ~, „{S;Sjp-2SjpS;+PS;Sj)+ Z Tr„,,~,, „{S;S,p-2S, pS;+pS S)

&0 ~t i«yp p+1 c««N

+ Tr~„,~. s „{S;Sjp -2S pS;+ pS;S +S'SP —2S,"pS'+ pS,'S, )
'L % «4p p + f %J ccg

+ Z Try g p s s{SjSjP—2SjPS~" +PS~+Sj+ SySjP —2SjPSj+PSjSj) . (2. 3)
p+1+ «&j &N

It follows from the cylic property of the trace that the terms in the second summation and in the last
summation on the right-hand side of (2. 3) are identically equal to zero. Then (2. 3) reduces to

18' Z {S;Sjpp—2Sjp~S; + PALS;Sj)
&o &t i~«g~p

+ ~ Tr~, , ~, 2 ... „{S;Sjp-2SjpS,'+ PS;Sj+SJSjp —2SjpSJ+ PSjSj) . (2. 4)
1 «s4p, p +1 +f 4&

We now simplify the last term on the right-hand
side of (2. 4). Since the atoms are identical, it
follows that all the terms in g~, „&,„willgive iden-
tical contribution. Then on introducing the (P+1)-
particle density matrix p~. „defined by a relation
similar to (2. 1), we find that (2. 4) reduces to

8 = —yo 6 (S(Syph —2SjpqS)'+ PALS(Sj)

—yo(N —P) Tr„,{S;,, [5 S;, p. ..]+H. c.) .
« =1

(2. 6)
We thus find that the equation of motion for the P-
particle density matrix is coupled to that for the
(P+1)-particle density matrix, and so on. This is
a general feature of the many-particle systems.
In order to obtain a closed set of equations, we must
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I= 2yoo&oN[l + (N 1)cos ——,'8o]sin —,'8o . (2. 6)

Equation (2. 6) shows that for large values of N, 1
is proportional to N when 8o = —«, i. e. , the sys-
tem when excited to the state (2. 6) with 8o=-, «
leads to the "superradiant emission" even though
there are "no correlations" among different atoms.
The important point to notice here is that the di-
pole moment takes maximum value for such a situ-
ation. On the other hand, as we will see later, a
system in a state with "zero dipole moment" and
with "no correlations" cannot lead to superradiant
emission. We also recall that if each two-level
atom is replaced by a harmonic oscillator then,
as we saw in II [Eqs. (II 3.21) and (II 3. 22)], the
total density matrix (when each of the oscillators
was excited to a superradiant state) can be ex-
pressed as a product of one-particle density rna-
trices. In view of these facts, it appears reason-
able to assume that the p-particle density matrix
can be written as a product of one-particle density
matrices. We will refer to this approximation as
the "uncorrelated approximation, " i. e. ,

P =II Pi ~ (2. 9)

Then the equation of motion for the one-particle
density matrix p, becomes

Bpg

Bt
= —'Yo(S&Sipi —2&ip&Si+ piSiSi)

—yo(N- 1)((Si)[Si, pi]+ H. c.}. (2. iO)

Here &S;) are, of course, the one-particle expec-
tation values. It is seen that the equation for the
one-particle density matrix, in the uncorrelated
approximation, is the same as would be obtained
for a damped driven two-level atom. Here the
driving field is to be determined from a self-con-

truncate the hierarchy by making a suitable approx-
imation on the higher-order density matrix.

We will assume that the system was initially pre-
pared in a state which is free of "correlations" and
for which the dipole moment has a "finite value. "
In particular we assume that the state (which can
be obtained by appropriate excitation by external
fields) at time t = 0 is given by

P(0)=II, I8„o.&„&8., o.l, 8, ~, (2 6)

where

l8„qo&,=sm '. 8, e-'"o" I+), +cos.'8o-e'&"
I

—
&, .

(2. 7)

Here eo and yo are two parameters which charac-
terize the initial state, and I+ && and I

—
&, are the

excited and the ground states of the ith atom. Then
it can be easily shown that the radiation rate, in
first-order perturbation theory, is given by [cf.
also Eq. (2. 16)]

sistent analysis. It should be noted that the one-
particle density matrix can also be expressed as

p, (t) = —,
' + 2 (S, (t) & Sf + &S; (f) ) S, + (S,(t) )S; .

(2. 11)
Moreover, since all the atoms are identical and

they are initially excited to a permutation symme-
tric state [Eq. (2. 6)], the expectation values
(S, (t) ), &S',(t)) will be independent of the labeling.
On combining (2. 10) and (2. 11)we obtain

g

Bt
= —2yo(s'+-,'}—2yo(N 1) I

s-I ',
—= —y s+2y (N-1)ssBs 2

o o

(2. 12)

where

(S, )=s, &S, &=s, &S;)=s (2. ia)

It follows from the second of Eqs. (2. 12) that if
s(t = 0) = 0, then s(f) = 0, which implies that the radi-
ation rate is proportional to the number of atoms,
which confirms the statement made earlier, viz. ,
the atoms in a state that has zero dipole moment
and that has no correlations do not give rise to
superradiant emission.

We now consider the superradiant case. We note
that the first terms on the right-hand side of Eqs.
(2. 12}lead to normal emission and these terms ap-
pear to be important only for times less than I/yo.
Hence in what follows we will consider the solution
for times greater than I/yo and we will ignore the
effect of these terms since we are only considering
the superradiant emission. It then follows from
(2. 12) that

—((se)'+ Isl']=0 or (s')'+ Isl'=-.', (2. 14)

where we have used the initial condition (2. 6).
This result enables us to represent the expectation
value in the form

&Si (t) ) = —,
' sin8(t) e"'"', &Sie(f) ) = ——,'cos8(t) .

(2. 15)
On combining (2. 12) and (2. 15) it can be shown that
&p(t) is a constant of motion and cos8(t) is given by

cos8(f}=I —2[I+cot -'8 eo"o™-II']-i (2. 1,6)

p, (t) = —,
' —cos8(t) S, +(—,

'
sin8 (t) e "oSi+ H. C. j

= o I+&ii&+1[1—cos8(t)]+ '
I
—&»( —

I [1+cos8(t)]

+b',
I
—)i i(+ I

sin8(t) e"o+H. c.]
=

I 9 (f), &oo &»&8(f), o ol, (2. i7)

where 1&8(t), &po&, is given by (2. 7) with 8o replaced
by 8(t) which is obtained from (2. 16). We have

On combining (2. 11) and (2. 15) we obtain the follow-
ing result for the one-particle density matrix:
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thus shown that, in the uncorrelated approximation
and with the effects of normal emission ignored, the
system remains in a state of the form (2. 6) if it
is initially excited to such a state. A similar (ex-
act) result was found in II for the case of emission
from a system of harmonic oscillators. It is in-
teresting to note that the solution can be described
by one parameter, namely, 8(t). The approxima-
tions that we have considered are in a sense equiva-
lent to the "semiclassical limit" of the master
equation (1.1) for one can adopt the following view-
point': An initial dipole moment radiates a field
which causes the dipole moment of the system to
change which in turn leads to an enhancement of
the radiation rate. We also remark that in a re-
cent publication of Eberly and Rehler, '~ the solu-
tion of the form (2. 17) for all times was assumed
e priori. Our deviation, under the approximations
that we stated above, provides the first explicit
demonstration that such states in fact occur. It is,
of course, desirable to examine the validity of the
uncorrelated approximation. This question will be
examined in Sec. III.

The superradiant contribution to the radiation
rate is given by

I~(t) =2ya&dDN(N 1)(s;S-&)= ~yo&doN(N 1)sin 8(t)—

= 2yo+ON(N l)[I + c-otm —,'8))e o'" "']
)&cot —8 e 0 (2 16)

We will compare this result with the corresponding
result obtained from the solution of Eq. (I 3. 13)
(with t) = 1 —1/N) for the initial excitation (2. 6)
[cf. Eq. (3.7)]:

lz(t) = 2yo&uoN(N —1)[1+cotm ,'8O e~o"—'+at] 2

&& [cot~-,'8o e~o"'+ at], nt = (1/N) (e'"0"' —1) .
(2. 19)

A comparison of (2. 16) and (2. 19) shows that they
agree up to terms of order 1/N provided that we as-
sume that Ncot ', 8~» l. (W—e recall that we are
considering only times greater than I/ya. ) This is
consistent with the fact that our theory is correct to
terms of order 1/N since as it is shown explicitly
in Sec. III, the fluctuation (S)»S, ) —(S)x ) (S~ ), which
is ignored in the present section, is of the order
1/N.

It has already been discussed in I and II and in
other publications1~ that the properties of the radia-
tion field are determined from the averages involv-
ing the collective operators S' and Sx defined by
(1.3). A calculation similar to that carried out in
II (cf. Sec. IV) shows that the positive frequency
part of the electric field operator in the radiation
zone is given by

M(x, y) = (e*'e"' ) . (2. 22)

On substituting (1.3) and on using the uncorrelated
approximation (2. 9), we find that (2. 22) reduces to

l!f(», y) =Q, &(1+»S,'+yS, +xyS;S, ) }

=II) ((1+doxy)+xs,'+ys, +xyS, )

= sin~ —,'8 f 1+ [xe)"0+cot-,'8]

x [ye '"0+cot-,'8]P. (2. 23)

On substituting 8(t), as given by (2. 16), we easily
obtain the time dependence of the generating func-
tion. The correlation functions I'„arethen ob-
tained from the formula

etC+ fftr„-. l!fx, y .. .X

V mtz)
2N ) 8 i(n- m)eo

,.)) (N l)!(l —n—)!(l —)n)!

x(cot-,'8)"- -" . (2. 24)

A special case of I'„corresponding to n = m = 2 has
been recently computed. ' '"

We conclude this section by briefly outlining the
approach which takes into account the correlations
between various atoms. We use the Eq. (2. 5) for
p=2 and make the approximation p3= p~p„ i.e. , we
assume that the three-particle density matrix can
be written as a product of two-particle and one-
particle density matrices. We then obtain the fol-
lowing closed set of equations of motion:

8 1st'= —yo(SiS)p) 2S)» )+pi )Si)

—yo(N —1) Tr~ (Sm[s;, pz] + H. c.), (2. 25)

= —yp S]Sfp~ —2S)p2Sf'+ p2S]Sf
f, f= 1

x(e"o' '"o-'/i ) S-(t i/—c), (2. 20)

where n is the unit vector in the direction of ob-
servation and all other symbols have the usual
meaning. We will now give a formula which ena-
bles us to calculate the expectation values of the
form

([s'(t)]"[s-(t)]"}-=r„ (2. 21)

We introduce the generating function M(x, y) defined

by

E"(r, t) - ((umo/c') g —n(B n)] —yo(N —2){(Si ) [Si + Sz, p~] + H. c.] . (2. 26)
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—
st &S,')+y Z, (&S;S, &+&S;S,&)=O. (3. 1)

By making use of the permutation symmetry it has
been shown in I that &S„S~)=-,'. On using this re-
sult in (3.1), we obtain the equation

(S, )+2yo(S;S, )

The solution to these equations will indicate the way
in which the correlations between different atoms
develop during the process of spontaneous emission,
when the system was initially excited to the state
(2. 6). We again point out that the approximation
p3= p~, will not lead to the superradiant emission
if the system was initially excited to a state with
zero dipole moment. In this case one must employ
some type of nonlinear decoupling and in Sec. III B
we will give one example of such a decoupling.

III. RADIATION RATE

In this section, we will determine the radiation
rate by making approximations that are much weak-
er than the ones given in Sec. II. On using (1.1),
we easily find that (S, ) = (S;S;)——,

' satisfies the
following equation:

A. Atomic System Initially Excited to State (2.6) with 00(n.

In the case of an atomic system initially excited
to state (2. 6) with 8 & v, we proceed, as was also
done in I, by making a "Hartree-type" approxima-
tion on the two-particle mean value

&S;SJS,S, ) = (S;S, ) (SEES)) (it j) . (s. 6)

On combining (3. 6) and (3.4) we obtain a simple
equation for (S;.S, ), which is easily solved subject
to the initial condition (S;S,) = (-,' ——,

' cos80). The
radiation rate is then found to be given by the well-
known"~ "sech" solution

3

I(t) = 0 sech~ (Xyo(t —z)j,

1 (N-1)
2Nyo 1+N cot~ 290

(3. V)

It is now desirable to test the accuracy of the Har-
tree-type approximation (3.6). Now in general it
is well known" that the inaccuracy introduced would
be smaller the higher the order of the mean values
for which the decoupling is done. With this in mind,
we now make a Hartree-type approximation on
the three-particle mean value:

+ 2yo(N - 1)( &S;S, &
—

& S;S&S,S,:& }= 0, (3. 2)
(S;S,S'S )=&S;S)&(S'S ) (i4jwk) . (3. 6)

and hence the total energy (in units of &uo) satisfies
the equation

aw
et

+ 2yo(W+ 2N)

+ 2yo(N - I){W+ 2 N —N &
S(' StS( Sj &]

= 0 . (3. 3)

The radiation rate I(t) is then given by

f(t) = —(uo
BW

'et
= 2yzcuo[N(W+ 2N) —N(N —1) &S&S&S&S&) ) .

(3. 4)
It is seen from (3. 3) and (3.4) that the radiation
rate can be determined if the two-particle mean
value &S;S&S,S, ) is known. On the other hand, it
is easily seen from Eq. (1.1) that the two-particle
mean value &S;StS,S, ) satisfies the following equa-
tion'4:

8—(S,'S,'S, S& ) + 4yo (S,'SJSS& ) + yo Z [( S(SfSjSg )
LWi&j

+ &S&S&S&S,)+c.c.] =0 (i &j) . (3. 5)

We thus obtain the whole hierarchy of equations.
We now describe various decoupling procedures.
The nature of the decoupling will, of course, de-
pend on the initial excitation of the system. We
consider two types of excitation.

It is easily verified thataHartree-Fock-typeapprox-
imation will be inconsistent with the initial condi-
tion. On substituting (3. 6) in (3. 5) we obta. in

8—
& S;S)S,Sq & + 4yo& S;S,'S,S, ) + (N —2)yo & SqSq &

x (( S;S,) + c.c. )+ (N —2)yo (S;S,. )((S S; )

(s. 9)+c.e. ) =P,
where in writing (3. 9) we have made use of the
permutation symmetry. We multiply Eq. (3. 1) by
(S;.S, ) and add to it the corresponding equation ob-
tained by replacing i by j. We then obtain the fol-
lowing equation:

x ((S;S,) +c.c. ) + (N 1)yo (S;S, )—

x((S;S,)+c.c. )=0. (3. 10)

On combining (3.9) and (3. 10), we obtain the follow-
ing relation:

[(S;SyS,S) ) —&S(S( ) (S,'S, ) (N —2)/(N —1)]e "0 = const .
(3.11)

The constant of integration is found to be equal to
[1/(N-1)] sin ~80 on using the initial condition.
This result leads us to conclude that the fluctuation

a—{(S(S( ) ( S~ S~ ) )+ 4yo (S,".S, ) (S~S,. ) + (N 1)yo ( S;.S,.)—
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at
+ 2yoN(W+ 2N) —2yo(1 —2/N) (W+ ~N)~

—2ypNsin —,'Hpe p'=0 . (s. 13)

It should be noted that this equation is in the form
of the Riccati equation' and can be solved by stan-
dard techniques. Its solution, which is given in
Appendix A, is

(S, S/ ) —(S, ) (S/ ) is of the order of 1/N and there-
fore the inaccuracy introduced by the approximation
(3. 8) is quite small for large N values. From
(3. 11), we also have

~ 41
&S;S/S(Sj ) = ~ (W+ zN) + e+ + N —2 i p slQ ggp gyp

(s. 12)
On substituting (3. 12) in (3.3) we obtain the equa-
tion

now be used to obtain an approximation to the esti-
mate of the radiation rate that is better than the
one given by (3.7).

B. Atomic System Initially Excited to the State
P(o) =IIfl+ &i f&+ I

In the case of an atomic system initially excited
to the state p(0) =II, I+&«&+ I, the dipole moment of
the system remains zero and we must make an ap-
proximation which takes into account the correla-
tions between different atoms. In this case the ap-
proximation (3. 6) is inadequate; however, an Har-
tree-Fock-type approximation turns out to be a
good one. This approximation is

(S(S/S(S/) = (S('S( ) (S/S/ )+ &S('S/) &S/S( ) (i4 j) .
(s. i7)

On using the relation & 5, S/) = —,', Eq. (3. 17) may
be written as

N d
W(t)= 1 ——Inf(7), a=2yot

N —2 d7
(3.14)

&S&'S S/(S )/=(S&'S&) &S/S/)+ ((S('S( &
—&S&'S/S(S/&)

which leads to
where

f(&) =x[~///2(x)Y///a(xe ') —Y///2(x)~i//2(xe ')]

and

+ 0[1'/g(xe ') Yg/~(x) —Yg/2(xe ')J„/2(x)]
(3.15)

x= sin —,'8 (N-2)' ~, 8= —[1+(', N 1)cos—80]-.
(3. ie)

Here J„and F„arethe Bessel functions of first and
second kind, respectively. Equation (3.14) can

& «'S/SiS/& = &SiSi&+2 -6'+ &S&'Sj& —&S('S( &']'" .
(3. 18)

On substituting (3.18) in (3. 3), we obtam the follow-
ing equation for 8':

dS' 1

dt
+ syo(W+ aN) y&(N 1)

+2y&N(N 1) (z —8 /N—) / =0 . (3. 19)

The solution of (3. 19) is reduced to quadratures and
is found to be given by

b c ac 2 z, /2 (a —b)tan~x+c —(b +c —a )'
z.l(nab +sco+xc is)nx+, z x- z 2(b +c —a ) ln. . . , »,), /3 =2yo(t —to),b +c b +c b +c ~a —bhutan&x+ c+ jb + c —a

(s. 20)

where

a = —N+ 2/v 2, b = 1, c = (N —1), W= (N/v 2 ) cosx .
(s. 2i)

In Eq. (3. 20), to is determined from the initial con-
dition x(0) = —,'v. For large values of N, expression
(3. 20) is considerably simplified and we have

tan~@- n1

= exp [2Nyo(t —to) —x],tan~ x —p

where

(3. 22)

a = v 2 —1 —(2v 2/N) (v 2 —1), P = (W2+ 1) .
(3. 23)

Equations (3. 22) and (3. 21) enable us to calculate
the time dependence of the energy of the system and
the radiation rate is then given by

I(t) = 2yo&oo[W+N —~N + (N —1) (2N —W )'/~] .
(3. 24)

Our results (3. 7) and (3.24) for the radiation rate
are found to be in good agreement with the results
obtained by the direct numerical integration~ of the
master equation (1.2).

IV. NEW DESCRIPTION OF SPONTANEOUS EMISSION

In this section we obtain a different type of Fok-
ker-Planck equation which describes spontaneous
emission. We will show that the solution to the
problem of spontaneous emission from two-level
atoms is equivalent to the solution of 2N couplednon-
linear equations which provide a new insight into
this problem. We introduce the characteristic func-
tion'~ C([a,), [a,*j, t) defined by
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C({a,},(n*, },t) -=(1I,e""ie"i'i) . (4. I)

It is obvious that this characteristic function is use-

ful in computing the expectation values of the form
(S;S,'S; ~ S,S ~ ~ ~ ). The desired equation of motion
for C can be obtained by combining (l. 1) and (4. 1):

—= —yoZ Tr (S;S,P —2$,PS«'+PS;$, )ge' ' Sef '+ —yoZZ Tr (S;$«P —2$jPS;+PS;Sj)g e' '~2 e' ' 2

k iA f k

(4. &)

which can be rewritten as

—= —I 8 (II 4'' " (e'" e'" ' S;S, —2S;e"' e"«S;~ S;S, e"«e"«)
VpBt

Yp
«42)2s«4 «42)2 s2. ( f(I« sf iuf sf $4 f(Ijsj ef(Ij j S-e e e

i Af klieg f

+ + + uu +
3$+ fa«sf f(I« st f(Ij j »IIj sjS yS ei 'f f e»mf sf $ ef j j ei j sj) (4 3)

To simplify Eq. (4. 3) we make use of the following identities":

e'' 'e'' «S'S =e i «S'e'f «S, +(ia*)e «e' i 'Si i i (4. 4)

(4. 6)

and their Hermitian adjoints. Then (4. 3) reduces to

+
f)8«t f ~2 ef)

(
~ 24 «(If 2 «42 ~i S- .n «(Sic« $+ i ~f) QQ Q e» 2 2e +)I 2

Pp g g SC 8

ue + +
r . + + iaiS ~ i+i Si . ~ ioiSi iai Si &. ~P ia&Si „ iei Si& ifzfSf ief $f ~ ~+ iotigt i e iSi
L
—2i&i$i e 'Si e +i&i e ' e —yiei ~ e S e j e e Sf+Si e ' ' e

+ t
e[ —2(uee S]S)e ~ ~ 'u& e 4 e —('u&) e' ee' ~ eS ]}) (4 I)

It should now be noted that various expectation values appearing on the right-hand side of (4. 6) can
be expressed in terms of the derivatives of C({af},{n,"},t). Then (4. 6) reduces to

8C . 8C—= —y()ZZ (ia*, ) . , +(ia, )
Bt fj 8(iaj ) 8(injj

8(i )8n(if)aj' 8(iaf)8(in'f)8(iaj) ' 8(ia', )8(in,') ' 8(in, )8(ia', )8(in,")

Since the operators S'; satisfy the relation (S;) = 0, Eq. (4. 7) is equivalent to the equation

' 8(,)8(;)8(,') ' 8(,)8( *, )8(,)

We now introduce the distribution function' p({zf},{z,}, t) defined by

(4. 8)

I((*,}, (*,"}ei =
' II'(4 }C(&u}, (u', }, 4) )( 4- «

(4 9)

On substituting (4. 8) in (4. 9) we can obtain the time dependence of P, which is given by
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—''=„» ' („P).'. (., p) -2r.»
ij Pzg 8zg Bz]

(4. 10)

The Fokker-Planck equation (4. 10) is equivalent to

the following Langevin' equations:
&—S', S-, ) = ro-E KS;S;)+&S;S;)),dt

(4. 17)

(4. 11)

These are the Langevin equations which provide an

alternative description of spontaneous emission
from a system of N two-level atoms and a solution
to these equations should provide us with the en-
tire dynamics of the atoms emitting spontaneously.
It is also of interest to note that (4. 11) is a kind of
equation of motion for an N-dimensional van der
Pol oscillator' and equations of similar type also
occur in the description of multimode lasers. 2~ We
first note that the steady-state solution of (4. 11)
corresponds to z, = 0, which leads to the following
for the steady-state solution of the Fokker-Planck
equation:

—(Iz, I'Iz, I') = —4r, I», I'lz, I'- r, 2 ( .»*Iz, I'
dt k Aflak j

+ZkZj Z4 +C. C (4. 18)

On taking the mean value, Eq. (4. 18}reduces to

—
&S& SJ'S& S& ) = —4ro &S& S&s& S& )dt

—r Z (&S;S&s&s,) ~ &S&s&s, s, ) +c.c. ),
k14 j4j

(4. 19)

which is easily seen to lead to Eq. (3. 1). Sim-
ilarly, from the Langevin equations (4. 11) we ob-

tain the following equation for (I», I Iz& I ) (i ej):

&. .. ({ ~], {t'))=II 5"'( ).
On combining (4. 12) and (4. 9) we find that

(4. 12)
which is the desired (3. 5).

V. SPONTANEOUS EMISSION FROM TWO-LEVEL ATOMS
PATH INHOMOGENEOUS BROADENING

z~ = —rogyzs. (4. 15)

On comparing (4. 11) with (4. 15) we clearly see
the type of nonlinearity which occurs for the prob-
lem of spontaneous emission from two-level
atoms. For one two-level atom, there is of course
no nonlinearity and one has the solution z (f) =z (0)
~e~o', which can be shown to lead to all the well-
known results for spontaneous emission from one
two- level atom.

The Langevin equations (4. 11) are very useful
in obtaining the equations of motion for the mean
values: It is clear from (4. 11) that lz, lz satisfies
the equation of motion

C.„,({a,},{a,*])=1 for all {a,] and {o*,] .
(4. 13)

It is obvious then that

(4. 14)

as expected. We recall that the Langevin equations
which described spontaneous emission from a sys-
tem of harmonic oscillators were' [cf. Eq.
(II 2. 3}]

In our treatment' of the spontaneous emission
from identical N two-level atoms, and also in oth-
er publications, "' it was assumed that all the
atoms had the same energy separation between the
two levels. In this section we consider the effects
of inhomogeneous broadening, ' i.e. , we assume
that the jth atom has the frequency &j, the atoms
being identical otherwise. Such a circumstance
is highly desirable because substances, such as
ruby, which are usually employed for experiments
have finite inhomogeneous broadening. Moreover
there are phenomena such as photon echoes for
which the presence of inhomogeneous broadening
is crucial. A general theory should, therefore,
take into account the effects of inhomogeneous
broadening and this will be done now. The inter-
action Hamiltonian between N two-level atoms and
the quantized field is now equal to

H=Z~&S&+E~&~& n& +»(S'Ja& g» +H. c. ),
ks ks j

(5. 1)

where the coupling constantgj~, is given by [com-
pare it with that given by Eq. (I 2. 2)]

d 2-„—(lz~l )=-ro~( iz&+z~z f*),dt (4. 16) c L vk
(5. 2)

where we have made use of the auxiliary constraint
z] =z(* = 0. On taking the expecta. tion value of
(4. 16), we obtain the equation

Starting with the Hamiltonian (5. 1), we can obtain
the master equation for the reduced density oper-
ator p(f}, in the interaction picture, corresponding
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to the atomic system. The details are given in

Appendix B, where we find that the approximate
master equation is

—= —yoQ ($&S,p —S,pS&)e""s s" +H. c.

W(0) = —p N cos8p is given by

W(t) = — s N+ N[2yp)l) (t) + I + cot o8p X(t)]

where
(5. 10)

(5. 3)

In the derivation of (5. 3), we assumed that the
frequencies && are clustered around some central
frequency &0 and that l~& —~0l & ~0. Under this
condition we can replaceg», byg», , whereg», is
obtained from (5. 2) by the replacement p)~ = p)p.

Equation (5. 3) leads to the following equation for
the mean value &S& (t)):

)((t)=exp(2Nyp f r(r}dr}, )l)(t)=X(t)fo drx '(r) .
(5. 11)

On using (5. 10), we obtain the following expression
for the radiation rate:

f(t)= 2yp (do[1+ 2Nyp I'(t))l)(t)+NI'(t) cot —'8p X(t)]

x [1+ 2yp)j)(t) + cot o8pX (t)] . (5, 12)

&S& (t))= —yo ~ {&SgS,&e""& s" +c.c.j .

The radiation rate is then given by

l(t) =-—Q w(&$( (t))= —wp —Q&$( (t))
d z - d z
dt

2y p) Q (($+$ )e 'l(es) esp)S
)

ij

(5. 4)

(5. 5)

It is seen from (5. 12) that the radiation rate is a
functional of I'(t), which is equal to the modulus
square of the Fourier transform of the atomic
line shape -factor

One may carry out a similar analysis for the
case when each two-level atom is replaced by a
harmonic oscillator. It is found that the Fokker-
Planck equation describing the spontaneous emis-
sion from this system is

Thus to obtain the radiation rate, &S& S&) has to be
calculated. This expectation value is, in turn,
to be obtained by the solution of the master equa-
tion (5. 3). We will again assume that the system
was initially excited to the state (2. 6). We make
the Hartree-type approximation &$&$~$&$&&
= (S;S,) & $~$~ ) and moreover assume that even though
there is inhomogeneity in the medium the expec-
tation values of the form (S,*) and &S,'Sz&, where
operators refer to the interaction picture, are
roughly same for any pair of atoms. We think that
this will be well satisfied because of the condition

I p)y p)p I ~+ p)p, From (5.4) we obtain the equation

—= —E (s*)=—c E (s's )e""e'e"~ c.c) .dR' d
dt dt

(5. 6)

Because of the assumed validity of thp relation
(S, ~ S&) = —,', Eq. (5. 6) can be written in the form

r(t)= Ig, e'"~'/NI'.

Equation (5. 7) becomes

(5 8)

= —2yo(W+ s N) —2yo(s —W /N )(N I'(t } N] . -
(5 8)

The solution of (5. 9) subject to the initial condition

2yp(W+ ~sN) 2yp(s W /N ) Q (e "& & ')
dt

(5. 7)
where we have also assumed that initially each atom
was similarly excited. Let us introduce the quantity
I'(t) defined by

ey (A)

=ypZ [z)F,'"']e" &
")"+c.c. (5. 13)

where &z, (t})is the solution of the equation

&';(t)) = y.E,e"-~ "~"
&z, (t)&, (5. 15)

subject to the initial condition &z&(0)& =zo. We
again assume that &z, (t)) is approximately indepen-
dent of the index i; the solution of the Eq. (5. 15)
is then

&z~(t))=zpexp[-Ny, f 'dt, r(t, )],
where I'(t) is defined as before. The energy of
the system is equal to

w(t) =~
& ~s &a&as') ~o~s I & s(t) & I

= p)oNIzoI'exp[-2Ny, f 'dt, I'(t )] . (5. 17)

From (5. 17), we then obtain the following expres-
sion for the radiation rate:

f(t) = 2N'IzoI'p)oyor(t)exp[- 2Nyo f,'dt, r(ti)1.
(5. 18)

This formula exhibits explicitly the effects of in-
homogeneous broadening on the intensity of the
spontaneously emitted radiation.

APPENDIX A: SOLUTION OF EQ. (3.13)

In this appendix, we will present the solution of

The notation is the same as that of II. We assume
that at time t = 0, each of the oscillators was ex-
cited to a coherent state Izo); the solution of (5. 13)
is then

F!"'((z),[zr];t)=~ [»"'( &z (t)&)]-, (5 14)
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Eq. (3. 13). On introducing the parameter r = 2yo t,
we can write (3. 13) in the form

lnX . (A2)

dT
= —¹]&+(1- 2/N) ([&'+Nein' z808 ', ('p= (IF+-,'N) .

(A1)

It should be noted that the Eq. (Al} is a Riccati-
type equation and can be solved by using the stand-
ard techniques. ' We first make the transformation

the case of N harmonic oscillators emitting spon-
taneously. We will use the general approach de-
veloped in Ref. 3. The desired master equation
in the Born approximation is given by Eq. (G4. 36),
viz. ,

gy (A)
+ K(t, 1'}d1=0, (Bl

~o

where the kernel is given by Eq. (G 4. 37a). For
the problem under consideration, the correlation
matrix, as given by Eq. (G4. 37b) is

Then X is found to satisfy the following second-
order differential equation:

d X dX 4& -27.
2

d+ +N —+(N-2)sin z808 X=O.
dT (A3)

0 8 -f tel t (t v)r"""(t r)=) p p
&gyp & ss

The kernel (G 4. 37a) then simplifies to

K(t r) Q 8-( (p(&(tt-t& Qy (t)(5&(1) ~(2&)

(B2)

On changing the independent variable T to y defined
by x [[t(„(1)u(»F(A&(~)] j+c.c. (B3)

y = 4 (N —2) sin4 z80e

we obtain the equation

y, + (1 —zN) —+ X = 0 .dX I dX

dg

The solution to (A5) can be shown to be

(A4)

(A5}

Here the differential operators up(» and 5&(pz) [cf. Eq.
(G 4. 35)] for the antinormal rule of mapping are
given by

X(y)=y"'[ «tz(2' )+B Ywz(2~X)], (A6)

where J„,2 and YNI2 are Bessel functions of the
first and second kind, respectively. The constants
A and B are to be determined from the initial con-
dition. On introducing the original variable T, we
have

]((r)= (zx)"' e "' [A J«, z(xe ')+BY»z(xe ')],
(A7)

x= (N- 2)'~z sinz —,'80.

On substituting (A7) in (A2), we obtain, after some
simplifications,

N Nx8 cl«tz(xe )+ (B/A) Y«tz(xe }
2(N-2) N 2J«tz(-xe ')+ (B/A) F„,z(xe ')

(AS)
where prime indicates the derivative with respect
to the, argument. On using the initial condition
(]&(0)= zN(1 —cos 80), we obtain the following expres-
sion for the ratio B/A:

B J«tz(x)- (P/x) J«tz(x)
p = —[1 ()N 1)cos8 ]-

A (8/x) Y«tz(x) —Y«tz(x)
(Ag)

On substituting (Ag) in (AS) and making use of the
relation W(1') = (t&(r) —ZN, we obtain after a number
of simplifications, the results (3. 14) and (3. 15)
given in the text.

APPENDIX 8: DERIVATION OF MASTER EQUATION
(5.3) AND (5.13)

We first derive the master equation (5. 13) for

ey (A)t
y Q [z F(A&] 8(((P(-(Pt)t + 8

ef, ' ez,
(BS)

In the derivation of (B6), we took the infinite volume
limit and made use of the Markovian approximation.
Equation (BS) is the master equation which has the
effects of inhomogeneous broadening in it. The
corresponding equation of motion for the reduced
density operator may be obtained by the use of the
identities2

(z pt*'&) = —[p' p ]
8

Zt
(B7a)

(('"' „(*,"p',"'&) = [,, p. ', ],A) (B7b)

where 0'"' is the mapping operator'6 + ' for the
antinormal rule of association. The master equa-
tion for the reduced density operator is

—-=;yo 2 [a, , at p, ] e ' "1 "t"+ H. c.
tj

(BS)

The derivation of the master equation for the case
of two-level atoms is algebraically more involved

and the system functions P„(t)are given by

$ &(p(t) =Et gt«tZt 8 (B5)

We now assume that the inhomogeneity is such that
gt„~g„,where g„is obtained from (5. 2) by the
substitution (dt = (eo. On substituting (B3)-(B5) in
(Bl), we obtain the following master equation:
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and will not be presented here. The derivation is
exactly similar to the one given above and the re-
sult (which can also be obtained formally by replac-
ing a; by S~ and ai by S,') is

Bp '= —wsZ [S;, S,p, ]e""' "~"+H. c. ,
fj

which is Eq. (5. 3).

(B9)
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