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This paper constructs a special perturbation theory vrhich directly describes the alteration
of decaying states by an external perturbation. The complex energies of the decaying states
appear in this theory. When lifetime effects are taken into account, we find that the criteria
for quantum degeneracy are slightly strengthened and sharpened. We also discuss the smooth
merger of the properties of decaying states and those of true eigenstates in the case of long
lifetimes.

I. INTRODUCTION

It is intuitively clear that a decaying state close-
ly resembles a true eigenstate, even though the two
are distinguished by certain differences of detail.
The differences are worth careful study, for all the
excited states of real atomic and nuclear systems
actually decay. The energy of a decaying state is
usefully regarded as a complex number, for exam-
ple —and the associated wave functions cannot be
normalized. Despite these technical differences,
there is a systematic correspondence between the
properties of true eigenstates and those of decaying
states, and for long lifetimes the two merge smooth-
ly. We study this correspondence in a simple con-
text in which an elementary mathematical treatment
is practical. Some results are new; others merely
strengthen or beautify theorems long known in the
very extensive literature.

This paper presents a special perturbation theory
which directly describes the alteration of decaying
states by an external perturbation. ' The complex
energies of the decaying states appear in this the-
ory. In this way, we can study the near degeneracy
of two levels with finite widths. Do they become
degenerate (and strongly coupled) as soon as their
wings overlap? This question was raised by Cas-
alese and Gerjuoy in a study of the Stark quench-
ing of hydrogen spectra, but obviously it is a very
general and fundamental question.

In the context of this work, we find the opposite
result. The criteria for quantum degeneracy are
slightly strengthened or sharpened when lifetime
effects are included. Two levels with different
widths may behave as if nondegenerate even when
their centers overlap. The perturbation theory is
discussed in Sec. V; the mathematical derivation
is given in Sec. IV. The earlier sections establish
properties of the wave functions associated with the
decaying states.

For physical reasons, these methods are primar-
ily of interest in applications to atomic or solid-
state physics; however, the general theory of de-
caying states has been most extensively developed

in the literature of high-energy physics and nu-
clear physics. '6 '

In the present paper, as in much of the cited lit-
erature, the system decays by tunneling through a
potential barrier (see Fig. 1). There are many ad-
vantages to studying this model problem. ~' There
is a mell-developed theory of potential scattering de-
veloped by Jost, Pais, Regge, and many others3 ';
we take over this theory and app1y it. There are
'no unnecessary or inconvenient quantum numbers;
we express the theory in very simple notation.
Most of the essential problems already arise in the
tunneling model, and it is itself of direct physical
interest because many important physical systems
decay via tunneling. ~ However, it would be quite
interesting to extend the present theory to cases
where the decay mechanism is autoionization, ra-
diation of light, radiation of phonons, or other pro-
cesses.

To stuc'y the tunneling model, we may consider
the scattering of particles by a potential having a
barrier and an inner region (see Fig. 1). This is
one fundamental view of the decaying state; in this
scattering viesopoint, our initial wave function is
a plane wave or wave packet approaching the poten-
tial. The particle has a continuous energy spec-
trum, but certain energies are singled out as res-
onance scattering peaks. These energies e„are
defined' only to within their widths I'„. It is well
known that the Green's function and S matrix have
a pole at the nearby complex energy E„=e„+il', .
This pole gives one precise definition of e„and
1 „.~' 34 It is well known that resonance scattering
is associated with large time delays (of the order
of a/I'„) ".uring which the particle is "captured" or
trapped b".hind the potential barrier.

Another fundamental approach to a theory of de-
caying states is the bound-state viewpoint. Here
one introduces an unperturbed Hamiltonian 00
which is assumed to have true discrete eigenstates.
In the barrier penetration case, Ho might have an
infinitely high barrier; there are discrete states
inside the barrier and a continuum of exterior states.
The discrete interior states have normalized wave
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V(r) Q„(t)=N„f(K„;r), (2)

FIG. 1. A potential with a
barrier.

where K„ is the (complex) wave vector of the decay-
ing state, obtained as a solution of f(K„;0) =0. In

Eq. (2), the factor N„ is determined by

functions g„; from the bound-. state viewpoint one
of these is taken as the initial state of the system.
The remainder of the Hamiltonian IJ, =+ Hp causes
a time dependence in the occupation of the state g„;
the particle is transferred outside with a charac-
teristic time T„=ff/ I'„.

However there are technical ~difficulties with the
bound-state viewpoint. In the tunneling problem,
for example, Hj cannot be a finite operator; it is the
difference between the finite barrier of Fig. 1 and

the infinite barrier of Hp. Also, there is a discon-
tinuity in the description; even a tiny amount of
tunneling formally causes a serious change in the
mathematical nature of the eigenstates.

Ultimately the bound-state viewpoint is not as real-
istic as the scattering viewpoint. It deals with
states g„which are not physically real, which are
only defined with reference to the (arbitrary) choice
of Hp. It is in the spirit of modern theoretical
physics to deal as far as possible with the physi-
cally real states, even when they are unknown or
are mathematically complicated. For all these
reasons, the bound-state viewpoint is not mathe-
matically or physically elegant.

We therefore adopt the scattering viewpoint.
Working exactly in the scattering formalism, we
attempt to identify features of the bound-state view-
point hidden in the scattering theory. These fea-
tures become especially clear and prominent in the
case of long lifetimes, and we give close attention
to that limiting case.

II. DECAYING-STATE WAVE FUNCTIONS

In order to know the real nature of anything, we
must understand its resistance to changes. For
example, when a decaying state of the complex
energy Eo is perturbed by a weak potential Xu(r),
then its energy is altered to

E„=E„+XJ [P„(r)] (r) due 0(X+) .
The formula suggests that we consider the function
@0 (r) as a wave function for the (unperturbed) de-
caying state.

In Ref. 1, we have shown that the function Q„(r)
is related to the Jost function f(k; r) by the formula
(we omit superscripts to distinguish unperturbed
quantities in this section}

where f (k) -=(d/dk) f(k; 0). Equations (l)-(3) were
derived in Ref. 1.

The Jost function f(k; r} is that solution of the s-
wave radial Schrodinger equation

dz
z + v(r) —k f(k; r) = 0,dr

(4}

specified by the boundary conditions

f(k; r)=e "" for r=a (5)

Here, as always, we assume that the potentials van-
ish beyond a finite fixed radius a. The general
theory of Jost functions is reviewed by Newton and

by Goldberger and Watson.
Our objective is to extend the perturbation for-

mula (1) to higher-order terms. Although the re-
sult is simple, the derivation is distinctly difficult,
because the decaying-state wave functions cannot be
normalized nor are they mutually orthogonal. In
fact the absolute value of P„(r) grows for large r
(the imaginary part of K„ is positive). The integral
which appears in (1) is finite, but only due to the
properties of the potential.

The perturbation theory will have a characteristic
non-Hermitian character. The wave function Q„(r)
is not real, and its complex square appears in (1)
rather than the squared absolute value. This is
perfectly proper and correct; the perturbation may
alter the lifetime (and hence I'„) in first order.
What is in a sense remarkable about the decaying
state perturbation theory is the unification or in-
tegration of changes in the real and imaginary parts
of the complex energies.

Formula (2) for the factor N„ is very similar to
the Heisenberg expression for the bound-state nor-
malization constant. " However, the significance is
quite different. Whereas the bound-state normal-
ization can be verified by integrating the absolute
square of the wave function over the range (0, ~),
in the case of a decaying state such an integral cer-
tainly diverges and the wave function cannot be nor-
malized.

All the anomalous properties of decaying states
gradually disappear in the limit in which their life-
times become long. The wave function P„(r}de-
fined above becomes real, normalized and even
orthogonal to the wave functions of other decaying
states. These are the properties we will now estab-
lish; they depend crucially (of course) on the choice
(2) for the factor N„.

Before considering the general case, we give a
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simple soluble example. In addition to providing
general orientation, this example will aid us to an-
ticipate the analytic properties of the quantities of
the theory. We consider the special potential

v(r) = V, 5(r —b). (8)

For this potential it is easy to determine f(k; r) and

f(k) =f(k; 0):

-3K„=
b

n —
bEV

n+ )) a n+i bgV 2 +O(VO ). (8)
b b Vp b Vp b Vp

Here the integer n may be positive or negative.
The K„appear in symmetrically placed pairs in the
upper half k plane, as in general.

For the particular decaying state specified by K„,
we obtain

i/a sinK„r
b [1+(bV +2'A„b) ]'

This is obtained by straightforward substitution into
Eqs. (2 and 3) and is exactly true. In the limit in
which Vp approaches infinity, the K„will become
real [see Eq. (8)] and p„(r) will approach

P„(r)= (2/b)~ asin(nwr/b) (r= b),

which is the normalized (real) rigid-box wave function.
We argue that this simple behavior occurs gen-

erally, for an arbitrary potential v(r). We begin
with the differential equation (4) and the similar
equation for a different wave vector O'. We mul-
tiply each equation by the Jost solution of the other
equation, subtract, and then integrate from r=0 to
r=R ~a. The result is

()"—a') I f(& ")f)& &)d"''
Jo

B

f kr —k;r -f k;r —f kr
0

{10)
Now we set k =K„, so that f(k;0) is zero, and use
the condition (5) to evaluate the contributions from
r =R. The result is further simplified using a rel-
ation

2i K„K„;0)=-f(
)

proven in the Appendix of Ref. l. We then obtain

f s P2 (y)dr= 1+N„(e ' ~ /2iK„),

which is exactly true for all R =a.

(12)

f(k) = i+(V,/2ik) (i e—"").
The decaying-state wave vectors K„are the solutions
of the equation f(K„)=0. When Vo is much larger
than K„, we have an expansion

Note that the right-hand side of (12) becomes
large as R grows. If we fix ImK„, i.e. , fix the
lifetime, and let R grow, then the integral of (12}
diverges. Thus the decay state cannot be normal-
ized on the interval (0, ) for fixed K„.

However, the limit taken in the other yields unity.
If we fix R, and then let ImK„become zero by rais-
ingthe barrier height, the decaying state isultimate-
ly "normalized" on the (arbitrary) finite interval
(0, R}.

To establish this result, we must show that &„~
becomes zero in the limit of long lifetimes. This
is the case in the example above. Our demonstra-
tion for the general case is plausible but not quite
rigorous. " For k near K„, we expand the Jost
function f (k) in a power series

f(k) = o)(k K„)+-P(k K„)'+.-. . . (Ls)

We assume that the linear term of this series dom-
inates within the (small) circle of radius 2ImK„,
and so obtain the estimate

f(K„) = -2io ImK„.

We then recall the general theorem3'

f ( k)=f* (k*)-,

and using this we obtain

(14)

1U„=- (2a "/o)) ImK„ (15)

for the factor N„, which thus approaches zero hn-
early with ImK„. When this argument is correct,
the integral of Eq. (12) becomes unity in the limit
of long lifetimes (for fixed arbitrary R) . Thus the
decaying-state wave function is normalized in that
limit.

Again using Eq. (13), we may show that the wave
function P„(x) becomes real. In the long-Life limit,
when ImK„ is small, the differential equation has
real coefficients. Thus if )f)„(r) begins being real
near the origin, it can remain real out to r =R.
Actually, $„(0) is zero, so we must examine
(d/dr)@„(0). We compute this quantity from Eqs.
(11) and (15). The result is real, whatever the phase
of (y.

If we return to Eq. (10) and let k = K„dakn' = I('„,
we can simply show that the wave functions of two
decaying states exactly obey

f" @„(r) )t) (y) dr= NP' [e " ~' )))) /i(K„-+K~)]

(18)
for num.

Again using the estimate (15) we find the decay-
ing-state wave functions to be orthogonal in the limit
of long lifetime on a fixed interval (0, R). The limit
taken in the other order, i. e. , on (0, ~) for finite
lifetime, again yields infinity.

To summarize this discussion, we have shown
that the decaying-state wave functions become real
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orthonormal wave functions for the limiting case of
long lifetimes. This correspondence is scarcely
surprising; it implies that the decaying-state per-
turbation theory which we will ultimately construct
merges smoothly into the ordinary perturbation
theory of discrete eigenstates in the appropriate
limit.

III. DECAY OF A PREPARED STATE

w (k; 0)=0,

lim w(k;r)= (2/w) ' sin(kr+8),
pvoo

(17)

(17')

where 8(k) is the s-wave phase shift. The limit in
(17') is assumed for r &a, since v(r) = 0 for r &a.

The functions w(k; r) are formally orthonormal in
the sense that

Jo w(k; r)w(k'; r) dr= 6 (k-k'}, (18)

and are complete for a potential without bound states
In order to abbreviate the notation, we assume that
the potential has no bound states.

The phase shift 5(k) is related to the Jost function
f(k) =f(k; 0) through the formula

In this section we show the existence of an initial
state $„(0}which begins localized behind the barrier
but in time decays out into the exterior region. Cal-
culations of this type have often been given in the
literature ' ' '; our approach differs in certain
technical details. This section is a digression from
the main theme of the paper.

The state $„(0) is normalizable. It is intimately
connected with Q„(r), but not the same. $„(0) is
essentially concentrated or localized behind the
potential barrier. However, it is not the eigenstate
of some unperturbed Hamiltonian, but rather is a
certain superposition of the real-energy continuum
wave functions of the actual Hamiltonian.

Our initial state $„(0) is not alleged to be unique.
In fact, it is a very subtle and interesting question
how much ambiguity does exist in an "initial" state
of a decaying system. ' However we do not attempt
to study these questions here, but content ourselves
to exhibit the one initial state $„(0).

We introduce the continuum eigenstates of the
actual radial Schrodinger equation (4) with real en-
ergy, following a notation of the textbook of Goldber-
ger and Watson'; these states w(k;r) obey

bounded potential v(r) with no bound states.
We concentrate on one decay state specified by

the wave vector &„=K' + iR" which corresponds to
a zero of f(k) in the upper half-plane. Because these
zeros appear in symmetrical pairs, we may assume
both K' and K" are positive.

Consider the function

io (k)

Ao(r) = «2 w(k; r)dk.
v Q

(20)

We shall show that this function is a suitable "pre-
pared state" for the decay calculation. In order to
develop its properties we consider first

A(r) =Ao(r)+A, (r) = }"„3}dk
v40

e$6 (k)

=(2„)«a e
k K w (k; r)dk .

IO 5
(21)

In this equation, we define A(r), A, (r), and A(k).
A(r) is zero when r ~ a. In that case, w(k;r) as-
sumes the asymptotic form (17') and we obtain

-A(r) = . e'" dk
27ti „„yg'„I

2%i

gf6(k) fko

The first integral is clearly zero, as we may dis-
place its contour down into the lower half-plane.
The second integral is also zero. Writing it

A(r) = 0 for r & a.
Next, we show that A, (r)» A, (r) in a certain

sense. This result only holds when K' » K" (i. e. ,
in the case of a long-lived state). It is no surprise,
because A(k) is large in the region of integration of
A,(r}. Using the formal orthonormality relation
(18), we compute

—(I/2vi) f [e ~e~~/(k —K„)][f(k)/f( k)] dk,-
we see that we are free to displace the contour into
the upper half-plane. The integrand has no pole at
K„because f(k) is zero there; and f(-k)is nonzero
throughout the upper half-plane. Thus we have
shown

e = f(k)/f( k)

In the sequel we will need to recall two properties
of the Jost function, which are well known ': (i)
f(k) is entire, i.e. , analytic for all finite k, and

(ii) if there are no bound states, then f(k) is nonzero
for Im(k) negative, i. e. , throughout the lower half
k plane. These properties hold for a finite range

"p

1 m K—+ arctan

JA (r)/'«
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1 m K——arctan2m@" 2 E

Calling x = K"/K', and assuming x « I, it is clear
that

IAil /lAo la= (x/v) [I —0(x)].
In this sense A, (r) is small. When this limit x«1
holds, we further have

lAO(r)l dr = (I/2K") [I—0(x)] . (24)

Now consider the properties of Ao(r). (i) It is
normalizable [ see Eq. (24) above] unlike P„(r).
(ii) It is primarily localized within the range (O, a).
This follows from the fact that for x & a, A(r) = 0
implies Ao(r) =-A~(r)and thus

IAil'= f. IAi(r)l'«=' f. IAi(r)l'«

I&(f) I' =& ' ' + 0(x), (2S)

e'z+ f(K„;r) = A(x) + B(r) + C(r), (30)

where A(r) is the function discussed above, B(r) is
zero when there are no bound states, and C(r) is
defined by a contour integral over a large semi-
circle in the upper half k plane

where I' = 2K'E".
Thus q'„(0) is an acceptable localized initial state

and decays according to the usual decay law. This
state was constructed from the eigenfunctions of
the actual Hamiltonian, with no artificial separation
into perturbed and unperturbed parts. Our result
is exact and does not neglect contributions from
other decaying states. Both these features slightly
extend the usual derivations of this result.

It can be shown (by a contour deformation) that

= f"
l
A, (r) l' dx.

Using (23) it follows that

f, lA, (r)l'dr» f (25)

and thus Ao(r) is large only for r & a. (Iii) Note
also that Ao(r) contains a Lorenz state distribu
tion:

IA(k) I' = [ (k -K')' + K'"] '

We thus regard A, (r) as a suitable prepared
state. We assume it is the initial state of a par-
ticle obeying the time-dependent Schrodinger equa-
tion

4'„(r, 0) -=Ao(x) . (26)

We compute the portion remaining in this state at
a later time f, given by IR(t) ), where

&(f) =-0/IAOI')f 4.*(r, O) ~. (», f) « (27)

Now it is evident that

4„(r,t) =(2w) + f A(k)ra(k;r)e ' 'dk

and again using the formal orthogonality of the m's
we see that

e-fk~t

2vlA, l' J (k -K')'+ (K")z
1 dk. 28

This formula is exact. It does not neglect contribu-
tions from other possible decaying states. The
evaluation (or rather estimation) of this integral is
straightforward. We swing the contour to run along
the lower half-plan diagonal, and obtain the usual
pair of contributions '4': a decaying exponential and
a nonexponential term which dominates at very short
or very long times, but which is small compared to
unity,

x[f(k; r) —f(- k; r)f(k)/f ( k)]-dk
(31)

On the contour of integration, we have k = Ikle",
where 8 ranges over (O, v). The separation indicated
in Eq. (30) is evidently the removal of an "infinite
frequency" portion of f(K„;r), in a sense suggested
by Weiner. It may be regarded as a projection of
f(K„;r) into the Hilbert space of the continuum
wave functions w(k; r). The nonuniqueness of the
initial state 4'„(0) can be studied in this fashion,
but we do not pursue this interesting question here.

To summarize, one may describe the decaying
state by the wave function P„(r), which obeys a def-
inite differential equation but cannot be normalized.
Alternatively, one may describe it by the initial
state 4'„(0), which may be normalized but does not
obey a differential equation and which is time depen-
dent.

IV. DECAYING - STATE PERTURBATION THEORY

We now develop the perturbation theory for de-
caying states. At this point, it should be clear how
not to proceed. One should not merely imitate the
elementary derivation of eigenstate perturbation
theory, for the required orthogonality and normal-
ization theorems are not true. They are approxi-
mately true (Sec. II) and by imitating the elementary
derivation one could establish an approximate per-
turbation theory. It is possible to do better.

We begin with the continuum perturbation theory
for the scattering wave functions w(k;r). Through
a technique of analytic continuation, we show that
the continuum. theory implies the decaying-state
perturbation theory. The decaying-state theory is
merely a recasting of continuum perturbation theory
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into a different form.
It is temyting to say that nothing new is obtained

in this fashion, and that is yerhaps logically correct.
However, the decaying-state perturbation theory
has the advantage of dealing with discrete states.
An approximation, such as limiting the intermediate
state sum to nearby states, is better defined and
more appropriate in such a discrete theory. More
important, for long-lived decaying states one is
able to work directly with the resonance parameters
of interest. Finally, the decaying state theory may
be more generally valid.

The continuum perturbation theory is expressed
in terms of a Green's function G(r,r'; q) defined
by

G(r, r'; q)
—= s((k; r) a((k;r') w- w- .

q -k (32)

lim [G(q+ iP) —G(q —iP)] = (- i /qw} (qs;(r)m(q', r ),
8 0

(33)
where q is real. We wish to continue G(q) to obtain
a function with no branch cut, but with passible
poles. In order to accomplish this, we recall the
connection between w(k; r) and the Jost function

f(k}f( k; r) f( k}f(k;r)---
i(2w)" I f(-k I

2 "' k g(k, r)
If(-&) I

' (34)

This formula is valid for real k. '4 The function
g(k; r) defined above is often called (f( (k; r) in the
literature. ' It is an entire function of k for each
fixed r. Because of the absolute value appearing
in (34), the integrand of Eq. (32) does not seem to
be an analytic function of k. However, on the line
of integration (i.e. , for all real k) it is numerically

This is the exact Green's function associated with
the total potential v(r). The continuum wave func-
tions u (k; r) are defined for real wave vector k only
[see Eq. (17) above], whereas q is an arbitrary
complex number. For complex q, no further bounda-
ry conditions are needed to define G(q). Since there
are two ways for q to become real, we should need
boundary conditions to distinguish them; that will
not prove necessary in this work. For each q, we
formally have

dq' ~ ~, — (r) ) ('(, ';e) = &(r-r'I.

The Green's function G(q) has a branch cut along
the real axis of the q plane. Since we continue to
assume that there are no bound states for the po-
tentials of interest, the branch cut is the only sin-
gularity of G(q). The discontinuity of G(q) across
the cut is

true that

~f (k)
~

' =lf (-k)
~

' = f(k) f ( k)-,

which follows from Eq. (14). Thus the expression
(32) is numerically equal to

k g (k; r)g(ki r')
w „ f(k) f(-k) q -k

~ OO

(35)

but here the integrand is meromorPhic. It is ana-
lytic but for poles at the zeros of f(-k). Now it is
possible to perform the analytic continuation of
G(q) by deforming the contour of integration in Eq.
(35). The problem is soluble only because we have
an explicit representation of G(q) as the integral of
a m eromorphie function.

We define I'(q) to be the meromorphic function
which agrees with G(q) in the upper half q plane.
The value 1'(q) in the lower half q plane is obtained
by deforming the contour in Eq. (35). We find that

I'(r, r';q) = G(r,r';q) (Imq &0),

K(q~ r) K(q;r')I'(r,r;q) = G(r, r;q)-2iq f( )f( )

(Imq & 0). (37)

The result may be confirmed directly by comparison
with Eq. (33). 1(q) is analytic in the upper half
q plane, has no branch cut along the real axis, but
has poles in the lower half q plane at q =-K„, where
K„ is a decaying-state wave vector. The poles are
the only singularities. The residue at the nth pole
is easily computed

lim (q+ K„) I'(r,r'; q) = —(1/2K„) (b„(r) (tI, (r').

(38)
We invoke the Mittag-Leffler theorem to write 1'(q)
as an infinite sum of partial fractions "':

I'(r, r';q)=P„[P„(r) (t(„(r')/(-2K„) (q+ K'„)]

(r &a, r'& a}. (39}

The convergence of such a reyresentation depends
uyon the distribution of the larger K„. If the po-
tential vanishes beyond a finite radius a, then the
K„are distributed appropriately so that the Mittag-
Leffler representation converges. ' '"

It is reassuring to make a slight heuristic digres-
sion at this point in order to convince ourselves
that the representation (39) is sensible in the case
of long lifetimes.

The decaying states occur in mirror-image pairs,
and we label them so that K( „&=-K„. See Eq. (8)
above for an example of this labeling. Then from
Eqs. (2) and (3), it follows that
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(t)( „)(r ) = (&)„(r) . (4O)
(46)

These symmetries occur in general. Now we
consider I'(q) or G(q) for long lifetime and for both

r, r' & a. In that case, both (t)„and K„become real.
For positive Imq, F(q) and G(q) agree by Eq. (36);
they are

where we define

U„=- f "&b„(r) u(r) @(r)dr. (4t)

From Eq. (45) alone, we cannot determine &j)„")(r)
completely. But we can show that

G (r, r'; q): Q 4"(r) 0 (r)
tt&0 'V n

(41) K& ) = Q [U„ /4K„K (K„-K )], (46)

in the limit of long lifetimes. This is the expected
result; each decaying state is correctly counted
once. Note that the sum in (41) is over positive
n only; that in Eq. (39) ran over all poles (positive
or negative )2).

The Green's function G and its continuation F re-
fer to the exact potential v(r). We denote all the
corresponding unperturbed quantities by super- or
subscript zeros and set

where the prime on the summation indicates omis-
sion of the term with m= n. It is important that
the (well-behaved) term with m= -)2 be included in
the summation.

Using Eq. (45) in conjunction with (45 ), we find
the first-order change in (t)„(r). The result is

4 '(r) = &„") 4„' (r) + Z. [U„.y' (r)/2R'o (f&o-lto)],

(4())

v(r) = vo(r) + Xu(r),

and then we formally have

(42)
where

~&1) K(2) /2K(1) K(1) /2K(o)
tt n + n (5O)

G = G0+ A.G0uG. (43)
Now we examine the "energies" E„=lf„'. The

results are
Equation (43) is the continuum perturbation theory.
The second term is an operator product. The equa-
tion may be continued into the lower half q plane,
so that

I'(r, r';r) = I'p(r, r') q)

+)& f rp(r, s;q)u(s)F(s, r', q) ds. (44)

We now extract and equate the residues of the two
sides of this equation at the point q=-K„. The re-
sulting equation is

e.( ) ( ) 4. ( ) d. .
(b'. (r)

m m 2 m i p

(45)
We may also extract and equate residues at q =-K„,
and this leads to a slightly different equation

(j)o (r)= )(P ~ &t)„(s)u(s) &t) (s)ds.
m m m n p

(45')
These equations form the basis for our perturbation
theory. However they must be expanded carefully,
as the term in the summations with m = n will be-
have slightly differently from the other terms.

We write

=K +XK ~ +XK + ~ ~ ~ ttt tt tt tt

4h ='bo+1'g + ''
Expanding (45) and (45') to first order in X, we ob-
tain the first- and second-order corrections to E„.
The first result is [see Eq. (1) above]

E„"' = U„„=f, [ &j)„(r)j u(r)dr,

which is Eq. (1) above, and

(51)

We now review and discuss our results. We have
introduced wave functions &t)„(r) to describe decay-
ing states. These functions solve a complex-energy
Schrodinger equation, but are not "proper" wave
functions because they cannot be normalized. How-
ever in the limit of long lifetimes, we have shown
that they become real, normalized, and mutually
orthogonal on any appropriate fixed interval. Thus
they reduce to eigenstate wave functions in the limit
of long lifetimes.

We have studied a "projection" of P„(r) onto the
scattering states of real energies. The result is an

2

4E 2K(K-K)
tt ttt m tt m

(52)

This equation, which looks somewhat strange, may
be shown to reduce to the usual result in the long
lifetime limit. For in that case the quantities U„
become real as do the K„. The sum in Eq. (52)
runs over both signs of m, we rearrange the sum to
obtain

E&2) = Z [U2 /(Ep Ep )]- (53)
ttt& 0

in the long lifetime limit. Equation (53) is of course
correct. The decaying- state perturbation theory
reduces to eigenstate perturbation theory in the
limit of long lifetimes.

V. DISCUSSION
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interesting initial state 4'„(r; 0) which begins local-
ized behind the barrier but gradually decays out in-
to the continuum.

We have constructed a perturbation theory which
gives the changes in P„(r) and the associated complex
energies E„caused by a weak perturbation.

The simplest practical application of the result-
ing theory is to avoid the use of the WKB approxi-
mation in a discussion of tunneling problems. This
is already an important application, we believe.
One can compute the tunneling through the true po-
tential v(r) by choosing a simpler approximate po-
tential vo(r) and then using the perturbation theory.

However, a much more general and more inter-
esting application is to the near degeneracy of tmo

decaying states. This mill not normally occur in
problems of the type we have been discussing, and
there is no doubt that further mathematical analysis
is required before absolutely reliable results can be
obtained. Nevertheless we can suggest the implica-
tions of the work of Sec. IV, for these implications
are quite clear.

As we see in Eqs. (48) and (52), it is the differ
ences of two K„'s which appear in the "energy de-
nominators" of the theory. The small denominators
which signal degeneracy or near degeneracy cannot
occur unless both real and imaginary parts of the
complex energies of the two states are equal.

Thus we are led to a sharpening of the concept of
degeneracy of two quantum states. Two energy
levels will strongly mix for a weak perturbation
only if both their centers and lifetimes coincide.
The case where the centers coincide but the widths
are very different should be considered a sort of
"false" degeneracy, not associated with strong mu-
tual influence {for weak perturbations).

This conclusion is very easily understood from
rate-equation arguments. ' Consider a very narrow
(long-lived) state E, and a broad state E„and sup-
pose the line centers coincide. Is the long-lived
state strongly mixed with the short-lived state?
No, for instead of resonating between the two states,
a system transferred from state E& to state E2 will
probably decay before being transferred back to E,.
This conclusion obviously depends on the strength
of the perturbation relative to the lifetimes of E&
and E,.

In this way a large difference in lifetimes can
make states behave as if nondegenerate even when
their centers overlap. This conclusion is probably
very well known in other contexts (e. g. , theory of
electric circuits) and follows from rate equation
arguments for quantum systems. The present deri-
vation is more convincing.

We conclude with a number of technical comments
on the decaying-state perturbation theory. We have
already mentioned the non-Hermitian character of
the theory. This is seen in the definition (47) of the

matrix elements U„, in the appearance of U„ in
(48) instead of an absolute square, and in the com-
plexity of the K .

A very interesting point is the unambiguous expres-
sion (50) for the amount of g(r) contained in g"(r).
In this respect thedecaying-stateperturbation theory
differs from elementary eigenstate perturbation
theory. The usual ambiguity of this overlap is
associated with an ambiguity in the phase of an
eigenstate. In the decaying-state theory, there is
no such ambiguity.

This apparently formal difference has probably
a deep and subtle physical content. It is intimately
connected with the separation of "unlinked" diagrams
of many-body perturbation theory, for that separa-
tion is connected with a manipulation of the phase of
the "vacuum" state. '

Another related open question is the relation of
this theory to adiabatic perturbation theory. 33 A
time-dependent perturbation theory, with adiabatic
switching of the perturbation u(r), is not permis-
sible when the system decays. It is well known that
the adiabatic perturbation theory differs from ele-
mentary perturbation theory in the values of the
ambiguous "overlay" phases mentioned above.

There is one unsatisfactory feature of the decay-
ing-state perturbation theory worth further study.
If the perturbation u(r) is located outside the barrier,
it appears to have a strange effect on the decaying
states. Here again, one has a question of correct
of limits. If we fix the barrier height and move
u(r) to larger values of r, we obtain a strange or
confusing result. If instead we fix the location of
u(r) and then raise the barrier height, the influence
of u(r) upon the decaying-state parameters becomes
weaker and weaker as N„approaches zero.

It will be interesting to attempt to extend the pres-
ent theory to the general case. Low has given a
general treatment of decaying states in quantum
electrodynamics, from a different viewpoint.
The rate equation approaches give interesting in-
dications for the general case. In the case of
systems decaying through a meak coupling, the
decaying-state perturbation theory may be obtained
by performing the perturbations in other order,
although this approach is subject to the difficulties
discussed in the Introduction.

There are many other interesting aspects of de-
caying-state theory. For example, all the present
work has been conditioned on the Jost-function ap-
proach to defining the resonance parameters. '
There is another (slightly different) definition due
to Kapur and Peierls ' and a perturbation theory
may also be constructed for that case. There exist
also interesting variational theorems for decaying-
state wave functions. ' These variational theorems
strengthen further the correspondence between the
properties of decaying states and those of true
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eigenstates.
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