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(infirst order): n$ =0. VGQ35; o., =0.02480.
Total values of the constant through first order,
= no + Z ' a, , for various Z values, are listed

in Table III.

IV. DISCUSSION

The constant n as calculated by applying crite-
rion B exhibits Z dependence for these ions. The
Z ' perturbation expansion of n appears to be rapid-
ly convergent. In applying criterion A, one finds
that the total energy through first order is indepen-
dent of n, and that the second-order energy involves
n in zero order. The values no and 8, found by
forcing the total energy ESA to be exactly the HF
total energy, are different from, but quite close to,
the value eo found by minimizing the energy in

criterion A. Minimum energy thus found is higher
than, but quite close to, the HF energy in second or-
der. The zero-order values ao and oz are in the
neighborhood of the corresponding values for the
three-electron ions, ' but show a slight decrease
with increasing number of electrons. The first-
order corrections n, increase rather rapidly with
increasing number of electrons. However, the total
value 0. shows a decrease with increasing number
of electrons.
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Spontaneous emission from two systems, namely, N identical harmonic oscillators and N
identical two-level atoms, is studied without the use of the rotating-wave approximation.
Certain new features of spontaneous emission, for instance, the dependence of the radiation
rate on the initial dipole moment phase, are discussed.

It is well known' that the Hamiltonian characteriz-
ing the interaction between a quantized radiation
field and identical two-level atoms has the form

H —(0QQSJ +ZQ)$$ s$$ 0$$+Z{g$$ s$$(Sf+Sf)+ H. c.),j AS OSJ
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where

g„$=(-t»$»»/c) (2»»c/L )' k ' (d),$ Z». (2)

Here (d),$ is the dipole matrix element and S; are
the spin angular momentum operators. All other
symbols have the usual meanings. In quantum op-
tics' one invariably makes the "rotating-wave ap-
proximation" (RWA), which amounts to ignoring the

rapidly oscillating terms. In this approximation the
Hamiltonian for the interaction between the radiation
field and two-level atoms has the form

c f Y ] +
H=up Om S»+m &o, $ a„$ a,$+~ (g$$a$$Sf+H. c.}

os asg
(2)

Following the classic work of Bloch and Siegert
(in which the interaction of two-level systems with
external c-number fields was considered), it has
a Priori been assumed that BWA is a good approxi-
mation, provided that the interaction between the
radiation field and matter is weak. However, to
our knowledge no calculation has been carried out
for the problem of interaction between radiation and
matter which explicitly justifies the above asser-
tion. ' The present investigation is concerned with
this question.

We consider spontaneous emission from two
systems, namely, N identical two-level atoms and
N identical harmonic oscillators. We obtain, with-
out the use of the RWA, the master equation which
describes the spontaneous emission. We calculate
the initial radiation rate I(Q) from these two sys-
tems under various conditions of initial excitation
and it is found that I(0), in contrast to the radiation
rateI'"' (0) obtained by making the RWA, depends
strongly on the phase of the dipole moment at t = 0.
In particular, if the system is initia1, 1y excited to
a state with zero dipole moment, for instance,
the state ) ,'N, M) introduc—ed by Dicks, $ then I(0) is
identical with I"'(0}. We also show explicitly for
the case of harmonic oscillators that the radiation
rate I(t) for later times reduces to I'"'(t) in the
weak-coupling limit and if averaging operation over
a few optical cycles is carried out.

We first examine a system of harmonic oscilla-
tors which are emitting spontaneously. We have
studied spontaneous emission from this system in
the RWA in detail in II. Our treatment was based
on the master equation for the reduced phase-space
distribution function characterizing the oscillator
system alone. When we do not make the RWA, we
find that the reduced phase-space distribution func-
tion satisfies the fo11owing master equation

(A)
(A )

= t(dpi' .z» —z» ~ F
8Z ) 8Z+]

+y»»Z [(z» —z» )F '"']+c.c. . (4)Zi

+ p a»a»+a, a,p —a»pa» —a»pa»+ pa, a, }. (6)t

We first calculate the radiation rate I(t), which is
given by

I(t) = —~, —E (a,'(t) a, (t)) .'dt, (7)

On using (6) and (7) we find that

I(t) = 2»»»»»y»» [(D (t) D(t)) —$ (D (t) D (t)) —$ (D(t)D(t))],
(8)

where the operator D(t), which determines the prop-
erties of the emitted radiation, is given by

D(t) =&» a&(t). (8)

The mean values appearing in (8) are, of course, to
be obtained from the solution of the master equa-
tion. We now present the solution of (4). It is
easily shown that the Green's function K '((z»),
(z»), tl (zQ&, {z» ), 0) associated with the Fokker-
Planck equation (4) is

K'"'({,), (*,), tl( ', ), {,), 0)-Q, 5"'(,-r, (t)),

(lo)
where Z»(t) is obtained from the solution of (5) sub-
ject to the initial condition z, (0) = z, . The time de-
pendence of the phase-space distribution function is
then given by

F'"'((z, ), (z+}, t) = J 8(z',)K'"'

&&((z,), (z,*), t~(z},{z$*},0)F»"'((z$), (zg), O), (ll)

where F'"'((z,), (z»*}, 0) is the distribution function
at time t=0.

We first consider the case when each of the oscil-
lators at t= 0 was excited to a coherent state Iz$)
(which is a state with finite dipole moment), i.e. ,

The notation is the same as that of II. Here I''"'
corresponds to the reduced density operator in the

Schrodinger picture. We recall that in our termi-
nology, (1/»»)F ' is the same as the Sudarshan-
Glauber phase-space distribution function. Equa-
tion (4) is the desired Fokker-Planck equation which

can be used to calculate all the properties of the
spontaneously emitted radiation. It is clear that the

Langevin equations ' equivalent to (4} are

z» = —
»QJ»» z» —

y»» Z» (z» —z» ). (5)

It should be noted that Eqs. (5) do not contain any
fluctuating forces. We can also write down the op-
erator form of the master equation by using the
general theory developed in Ref. 11. It is found by
straightforward but long calculations that the re-
duced density operator p satisfies the following
equation' '

—= —t&L»$ Z [a» a», p] —
y»» E(a» a& p —2a»pa»



1780 G. S. AGARWAL

E(A)({zo} {zoo}0) =II {5(o&( o — )}

On combining (10)-(12)we find that

I"'"'({ }{'} t) =II {6"'( — (t))}.

(ia)

We thus find that the oscillator system remains in
a coherent state whose amplitude is given by

limit I(t) is equal to I'"'(t).
W'e will now brieQy examine spontaneous emis-

sion from a system of N identical two-level atoms.
The master equation in the RWA was obtained in I.
On carrying out calculations similar to those given
in I, we find that the master equation (IA7) is mod-
ified to

z(t) = [cos(ut —(t(uo/(u) sin(ut] zoe ""o'

+ (Nyo/(u) sin(utzge ""o',

where

(14)
—= —i(uo~s[Si& p] yo Z(~ {S;S~p —2S~ pS;+ pS;S~

+S,Sq p —S( pSj —S;pSq+pS;Sq} . (21)

((u
2 y2+ss )

1 / 2 (15)

On using (13), we find that the radiation is given by

I(t) =4yo(uoN
~
z(t)

~
'sin'(p(t), (p(t) = Im lnz(t) .

(16)
The corresponding result in the rotating-wave ap-
proximation is given by

(t)=ayo(uoN lzol e (i7)

On comparing (16) and (17), it is clear that I(0) may
be very different from I'"'(0) depending on the phase
of the initial coherent amplitude. On the other
hand, if the system is excited initially to a state
with zero dipole moment [e.g. , a Fock state or the
state characterized by I ("' =II({5(lz, I

—
I zo I)/

2 I zo 1 }], then the last two terms on the right-hand
side of (8) do not contribute and I(0) becomes iden-
tical with I'"'(0).

We now study the limiting form of the radiation
rate (16) in the weak-coupling limit Nyo «(uo. In
this limit (15) reduces to

I(t) —2I'"'(t) sino((po+ (ut), (po = Im lnzo . (i8)

It is clear that I(t) is the same as I'"'(t), provided
that the rapidly oscillating terms are ignored. One
may also argue that such a rapid oscillation cannot
be observed by means of available photodetectors
and in practice an averaging operation over a few
optical periods is always performed. On the other
hand, the correlation function of the form

( a& (t)ao(0) ) = [cos(ut+ (i(uo/'(u) sin(ut]
~ zo ~

e ""o'

I(0) = 2(uoyo(&N —M+ 1) (&N+ M) . (24)

This result is identical to the one obtained by mak-
ing the RWA. (b) If the system is excited to a state
given by

~P) =II({sin-,'8 e '""~+)(+cos-,'8 e(""~-),},
(26)

then the initial radiation rate is given by

I(0) = 2(uoyoN{cos (—,'8) + ,'(N 1)sin 8 si—no(o}—.
(26)

Equation (26) shows the strong dependence of I(0)
on the dipole moment phase y. The corresponding
result in the RWA is

On using (21) one can show that the radiation rate
I(t) is given by

I(t) = —(uo
—Z (SJ)df

= » yo{(S'(t)S (t)) --,' (S'(t)S'(t))

—-,'(S.(t)S-(t) )}, (22)

where we have introduced the collective operators~
S' defined by

S'(t) =Z, S,'(t) . (22)

We will compute the radiation rate at t = 0 for two
types of initial excitation: (a) If the system is ex-
cited to a Dicke stateo I-,'N, M) (which is a state
with zero dipole moment), then

+ (Nyo/(u) sin(utzoe ""o' I'"'(0)= 2(uoyoN{cos (,'8)+ ,'(N 1-) sin -8} .- (27)

shows the oscillation at the optical frequency. For
the problem of the interaction of radiation and mat-
ter, our analysis indicates the sense in which the
rotating-wave approximation is to be interpreted.
Similar results hold if the system is initially ex-
cited to a state with zero dipole moment. For ex-
ample, for the initial Fock-state excitation and for
N = 1, it is found that

I(t) —I("'(t) ay,
o {yosin(ut —(u cos(ut} sin(ut . (20)

It is again clear from (20) that in the weak-coupling

For 8 = &m, we find that

I(0) = (uoyoN {cos'(p + N sin (o}, I'"'(0) = ,'(uoyoN(N+ I—),

{28)
which shows that for 8 = &n., the emission, in con-
trast to the result obtained by making the RWA, is
not necessarily superradiant. The radiation rate
I(t) from one two-level atom is the same as I'"'(t)
because (S') = 0. However, the time dependence of
the dipole moment is different from the one ob-
tained by making the HWA:

( S (t) ) = [cos(ut —(t(uo/(u) sin(ut] (S-(0)) e "o'
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+ (y, /tc) sin(et ( S'(0) ) e "4' . (29)

The corresponding result in the RWA is

(s-(t)) = (s-(0) ) e-'"o' -"o' .

We have thus shown that (i) I(0) is identical to
I"'(0) if the system is initially excited to a state
with zero dipole moment; (ii) if the system is ex-
cited to a state with finite dipole moment, then I(0)
could be very different from I'"'(0), depending upon

the phase of the initial dipole moment; and (iii) for
the case when each two-level atom is replaced by
a harmonic oscillator, I(t) in the weak-coupling
limit reduces to I"'(t), provided that an averaging
over a few optical periods is performed. We ex-
pect that such a result will also hold good for the
problem of two-level atoms emitting spontaneously.
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