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~e consider the lowest-order nonlinear contributions to the electric dipole moment in-
duced in closed-shell atomic systems by intense electromagnetic fields. These contributions
are comprised of two terms: (i) an intensity-dependent refractive-index coefficient
X««(-(d; ~, ~, —~), and (ii) athird-harmoniccoefficientx~»(-3~; cu, ~, cu). Theproblem is
formulated within the framework of time-dependent Hartree-Fock perturbation theory. The
expressions forx««(- &; (d, (d, —~) and X«(-3+; cu, ~, ~) contain third- and lower-order
frequency-dependent wave functions. It is found possible to eliminate the third-order terms
from the expressions for the X's. A variational method for solving the required second-order
integrodifferential equations is proposed. Numerical results for helium are obtained. A

zero-frequency Hartree-Fock hyperpolarizability for helium of 35.8 a. u. is obtained which
agrees reasonably weil with the previous Hartree-Fock calculations of Sitter and Hurst. The
Hartree-Fock wave functions give static hyperpolarizability results which are about 17%
smaller than more accurate calculations. A "static second-order function" approximation
for calculating the X's is developed and is shown to be useful for obtaining the y's at low fre-
quencies with a substantial saving in computing effort.

I. INTRODUCTION

The large, monochromatic, coherent electromag-
netic fields produced by laser sources have been
used in recent years to study experimentally non-
linear el.ectrooptical effects in solids, liquids, and

gases. Dilute gases are particularly useful for this
work because the effects of interatomic or intermo-
lecular interactions are minimized and therefore
the results can be more easily compared with cal-
culations for isolated quantum systems interacting
with a radiation field. The results of many radia-
tion-matter experiments depend on the values of
nonlinear polarization coefficients. For example,
the power flux generated in the third harmonic is
proportional to the square of the atomic second
hyperpolarizability. '~ Also for large field ampli-
tudes the refractive index of a gas is intensity de-
pendent. A third phenomenon manifests itself in
Kerr-effect experiments in which the induced elec-
trooptical birefringence is proportional to the atomic
hyperpolarizability. 4'

In order to describe conveniently nonlinear elec-
trooptical effects theoretically, one must be able
to calculate nonlinear, quantum-mechanical, elec-
tric-dipole susceptibilities for the atomic and mo-
lecular systems of interest. These microscopic re-
sults can then be related to the macroscopic polar-
ization via statistical-mechanical methods. This
polarization can then be employed as a current
source in Maxwell, 's equations. We thereby have,
in principle, a complete description (power flux,
phase shifts, etc. ) of nonlinear optical effects. 6~

In this paper we consider electric-dipole pertur-

bation interactions. Of particular interest from
both theoretical and experimental standpoints is
the determination of the nonlinear polarization co-
efficients of spherically symmetric atomic systems
produced by a perturbing harmonically time-depen-
dent electric field F(f). The electric-dipole moment
of such an atomic system can be expanded in odd
powers of F(f), as the coefficients of even powers
vanish from parity considerations. In this paper
we obtain expressions for the coefficients of F'(t}
in the dipole moment expansion within the fully cou-
pled Hartree-Fock framework. These coefficients
give the lowest-order nonlinear contributions to
the dipole moment. One of the coefficients,
y„„(-&u;&o, ur, -&u}, is related to an intensity-
dependent refractive index, and the other,
y„„(-3u&;co, ur, u&), is related to third-harmonic
generation. In what follows y„„(-&u;~, &u, -~)
and y„„(-3~;a&,~, ~} are abbreviated as y and

respectively.
Calculations of y", y ", and other higher suscep-

tibilities are conveniently handled by time-depen-
dent perturbation theory. Sitz and Yaris calculated
the Kerr coefficient and y "very accurately for H
and He, but their methods are not readily extendable
to more complicated systems. Dawes' obtained
g

" for the inert gases using a perturbation method
in which sums over states are replaced by a single
average term. His method is extendable to many-
electron atomic systems but the accuracy is not
impressive and differs from the Sitz and Yaris he-
lium calculation by about a factor of 4.

We use a time-dependent variation perturbation
technique to calculate y" and P". A variation per-

1760



HARTREE-FOCK THEORY OF THIRD-HARMONIC. . ~ 1761

turbation method for time-dependent problems has

been introduced by Karplus and Kolker. " In our

development of the theory we include the time-de-
pendent phase factor modifications of Chung. '~ The

resulting time-dependent Hartree-Fock theory in

many aspects resembles that of Dalgarno and Vic-
tor. ' Inasmuch as the techniques of Sitz and
Yaris cannot be readily extended to systems con-
taining more than two electrons, it is a primary
goal of this research to determine if the Hartree-
Fock scheme can be used to obtain reasonable re-
sults for y" and y'" for larger atomic systems as
this approach can be extended to larger systems.

In Sec. II the Hartree-Fock equations for an

atomic system perturbed by an external time-de-
pendent electric field are developed. We then ob-
tain expressions for y" and y

"which contain fre-
quency-dependent wave functions up to third order.
Following a method suggested by Dalgarno and

Stewart' for time-independent perturbations, and

by Epstein" for time-dependent perturbations, we

eliminate the third-order terms. This makes the
computational problem more tractable since we

need only calculate wave functions up to second or-
der to obtain y" and y'". The method of solving
the second-order equations is described in Sec. III.
As a useful test of the theory we calculate y" and

y "for He. In Sec. IV our results for He are pre-
sented and a "static second-order function" approxi-
mation~ within the Hartree-Fock framework is de-
scribed. Finally, Sec. V gives a summary and a
brief discussion of the results.

variational principle':

5 ()lt (r, t)
I
H + AH ' —i s/st

I

)lt (r, t)& = 0,
subject to the conservation of probability:

(6)

(6)

(9a)

It is convenient to write (9a) as

l(l)=l —
) t, =D, (9b)

where

-i'~(t) ~» (10)

The time-dependent Hartree- Fock approximation
consists of choosing )it(r, t) as a single Slater deter-
minant comprised of N time-dependent spin orbitals
(!)t(r„f), i. e. ,

)1((r, t) = (N!) ' !!(!)1(I,t)g(2, t) ~ ~ gtt~ (N, t)ll. (f)

To ensure that this trial function be normalized we

require that the spin orbitals satisfy

(6)

Proceeding in a straightforward manner one ob-
tains the time-dependent one-electron Hartree-
Fock equationsiv, ~e

II. THEORY

We consider the interaction of plane-polarized
monochromatic electromagnetic radiation with an
N-electron atom. The electric field F(t) can be
represented by

and

h1(r $)
t

Z (ei(lit + e-ildt} (12)

F(f} t F (
tlAt e l t)lA

where (d is the angular frequency. The Schrlinger
equation, expressed in atomic units, for the system
is then

[H (r)+!(H'(r, t) —ie/Stj )it(r, t) =0,

where

Here t!t(t) is Chung's time-dependent phase factor'z
and the operator (1 —P,z)/r, z is defined for any
function f(1) by

( nfl (I —Plz)/rtzl '!'t &f(I)

= &~t'(2}
I »rt. l

Ct'(2} &f(» —&!!t &2)
I
I/r»lf(2) &!!t&I) .

is the Hamiltonian of the unperturbed atom and

N~ 1 F Q t z (et lAt e-1 lAt)

jag
(4)

Here we consider only closed-shell atoms. For
such systems it is convenient to convert from the
N spin orbitals t!)t(rt, f} to n = ,'N doubly occupied—
atomic orbitals (((At(rt, t):

is the semiclassical, electric-dipole interaction
potential expressed as a sum of one-electron op-
erators in the long-wavelength approximation.

We now proceed to solve Etl. (2) within the Har-
tree-Fock framework. For this we use Frenkel's

(!)zt 1= /to( and Qt
——(!ttp, (14)

where, to simplify the notation, we have suppressed
the primes on the orbitals. The time-dependent
Hartree-Fock equations for each atomic orbital are
then
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[h(1) —i&/&t] @,=ji Pi,
where

h (1)Pi = (- 2 V, —Z/r, ) Pi+ vPi+ Vt

and where v is the Fock potential given by

(15)

(16)

and

(26b)

+ v'(- 3) '*"' (26c)

v'= v (+2)e ' '+ v (0}+v (-2}e""',
vz= vz(+3)e3'"'+v (+ l)e' '+v (- l)e '"'

v=~i(&iI(2 —+iz)/r~zI&i& . (I'I )

The remaining problem is then to solve Eq. (15)
and use these functions to compute the induced di-
pole moment. In this paper we use the perturba-
tion technique which involves expanding g; and p~
in a power series in &. We then have

(2'7a)

(2Vb)

+ ji(-3)e '"' . (2Vc)

j i = q ', (+ 1 )e ' '
+q i(- 1 )e ' ',

q,'=q, (+ 2)e'"'+i}i(0)+ji(- 2)e "
t}i=q i(+ 3)e '"'+ j, (+ l)e'"'+7},(- 1)e '"'

pi(t) = bio+ XQ~~+ XZpi+ X pi+ ~ ~ ~

qi (t) = ei t+ +~i+ X pi+ & g~i+ ~ ~ ~

(18)

(19)

Equations (22) then become the following.
First order:

[ho —eo + ~] P,'(+ 1)+ —,
'

z~ P, + [v '(+ 1)—i}i ](+ 1)] P, = 0 .
(28a), (28b)

v (t) = v + &v + A v + & v + ~ ~ ~ (20)

Substituting Eqs. (18)-(20) into Eq. (15) yields the
following hierarchy of integrodifferential equa-
tions:

(h —ei) P, = 0, (21)

(h —e, —i&/&t) Pi+ (v —j,' h+) P, = 0, (22a)

is/et) y', +(v' q', +h') y', +(v' j;)go=-o,

(22b)

(h —e —i &/&t) P, + (v' —j,'+ h') Q, + (v —q ) P'

+ (v —q, ) &P, = 0, (22c)

Second order:

[h e, + 2~—]P,'(+ 2)+ —,'z, P', (+ I)+ [v'(+ 1)-q', (+ 1)]

x Qi(+ I)+ [vz(+'2)-itiz(+2)] go= 0,
(29a), (29b)

[h'- ei) 4'i(0)+ ~zzi[AJ (+ I)+ ei(-1)l
+ [v (+ 1)—tt, (+ 1)]P, (- 1)+ [v (- 1)—j,(- 1)]

x 0', (+ 1)+ [v'(0)-a', (0)]4',=0 . (29c)

Third order:

[h —e, + w] Q, (+ 1)+ 2~zt[p~i(+ 2)+ Pai(0)]
where

h = ——,
' v', —Z/r, +vD I 2 0

In Eq. (21) and Eqs. (22),

0', = 0,'(r)

(23)

(24a)

+ [v'(+ I)- &'i(~ I)]y', (~ 2)

+ [v'(+ I)-j,'(+1)]g,'.(0)+ [v (+2)-j,'(+2)]P,'(+I)
+ [v (0) —j (0)] @,. (+ I)+ [v (+ I)—j (+I)]Q = 0,

(30a), (30b)and

Pi= Pi(r, t), h = 1, 2, 3. (24b)

Pi= Pi(+ 1)e'"'+ PI(- 1)e '"',
pi= Q, (+2)e '"'+ Qi(0)+ Pi( 2)e-

I

Q, = Pi (+ 3)e '"'+
Qi (+ 1)e '"'+

Qi (- 1)e '"'

(25a)

(25b)

+P, (-3)e ' ', (25c)

where we have separated the space-dependent and
time-dependent parts.

It is convenient now to separate the v' and g~,
l = 1, 2, 3, into space-dependent and time-dependent
parts. Using obvious notation, we have

v'= v'(+1)e' '+ v (-1}e ' ', (26a)

The j", are obtained by operating on Eqs. (22) with
(4', &

From the form of h' [cf. Eq. (12)] one can deter-
mine by inspection the explicit time dependence of
the solutions to Eqs. (22) as

[ h —e, + 3u] P,. (+ 3)+ —,
' z, P, (s 2)

+ [v'(+ I ) —i'(+ I)1@l(+2)

+ [v'(~ 2) —i}ai (~ 2)) 0'i'(~ I )+ lv'(+ 3) —ii (~ 3)) 0i'= o .
(30c), (30d)

In this paper we use Clementi's zero-order func-
tions. ' The first-order functions are those ob-
tained by Kaveeshwar, Chung, and Hurst. ' The
method of solving the second-order equations is
given in Sec. III. It is of interest to note that the
equations for the jth and the kth orbitals are cou-
pled through the Fock potentials v', l = 1, 2, 3.
Also, Pi (+I) is coupled to @,'(- 1), Qi(+ 2) to
P;(-2), P;(+ 1) to P, (- 1), and P;(+3) to Qi(-3).

In what follows it is shown that it is not necessary
to explicitly obtain the third-order functions. Thus,
we first obtain an expression for the induced di-
pole moment P in the customary way, which con-
tains the third-order functions. We then show
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from the form of Eqs. (30) that the expressions for
P can be reduced to an equation involving only
zeroth-, first-, and second-order functions

Following the convention of New and Ward, ' the
frequency-dependent dipole moment is written as
a power series in the electric field intensity such
that in the limit of zero frequency the coefficient
o(to) equals the static polarizability and the co-
efficients y" and y

" each equal the static hyper-
polarizability y:

+ &4](- 1)
I

zeal

4 ~(+ 2)&

+ &4g(+ 1)
I zeal 0'g(- 2)&] (33c)

Finally, at zero frequency

a= o. (&u)l „, (34a)

x'"= 86K,[&~;I, I ~l(. 3)+ &'(- 3))

p —Of+0+ 6 y~O+ (31a)
r = x"I. ,= x'"l.a. (34b)

Thus, in the frequency-dependent case,

p = —,
' a(~) E,(e'"'+ e-'"') + ~24 x"F',(e'"'+ e-'"')

+~ X
~P (e~'~t+ e~~~ ) (31b}

The coefficients o.(~), X", and X3" are then obtained
by comparing the quantum-mechanical dipole mo-
ment with (31b). Thus,

p= &0(' t)I ~~'~l &(r f)& =2~~~+o[&%~I'il A~&

+ &4 ll zil &l &]+ &a [&'&ll ail &)&+ &&l I zeal 4 ) &

+ &ol I zx
I &l &+ &&l I z~

I
4'~&]&

so that

~(~}= 4Z~ [&all z~l el(+ 1)+ P&(- 1)&],

X"= 32K~ [&4"il z~
I
el(+ I)+ el(- I)&

&&l(- »I I
el(-2)&]

+&4y(+1)lzgl 4~(+2)&+&4((-1)lzgl 4)(-2)&],
(33b)

It can be shown in a number of ways that the co-
efficients of F~ in the dipole moment expansion can
be determined from the second- and lower-order
wave functions, i.e. , the third-order terms in
Eqs. (33b) and (33c) can be eliminated. '"'"Al-
though the procedure is straightforward, it is some-
what tedious. Hence we will indicate the various
steps involved and give the final results. First
one operates on Eq. (28a) with the bra &P&(+ 1)

I
and

on Eq. (28b) with &P', (-1}l. Next Eq. (30a) is op-
erated on with &P](+1)l and Eq. (30b) with &P~(-1)l.
Upon adding the resulting equations and summing
over j=1 to n, all of the terms containing third-
order functions cancel except

which is now expressed in terms of functions up to
second order. Inserting this result into Eq. (33b)
gives y" in terms of second- and lower-order func-
tions:

where

Qq[&P)(+1)+ Pq(-1)l z,
l Pq(0)&+&/~(+1)l z~l Pq(+2)&+ &Pq( 1)l z~l Q-q(- 2)&+&Pq(+I)l v'(+1)l Q (0)&

+ &y,'(- 1)I"(-I)
I
y', (0)&+ &y](+I)I v~(-I)

I
y', (+2)&+&4',. (-1)

I

v'(+ I)
I y, (-2))

+ & y', (+1)
I
v'(o) -q', (0)

I
y', (+1))+( y', (-1)

I
v'(o) j,'(0)

I
y', (-1—))

+ & @](+1)
I
v'(+ 2) ~l(+2}I4-l (-»&+ & e] (-»

I
"(-»—~l(-2)

I y](+I)&

x & @,(+ 1)
I vs(+ 1)

I @)& + ( @~(-I)
I
vs(- I)

I P, &], (35)

v'(*I) =&.[& e.(+1}l@i~
l
ea(+2) &+ & e.(+ I)

I otal &.(0}&+&4'.(+ 2}
I ei21 4.(+I) &+ & el«) I @2l &.(+I}&]

(36a},36b)
are the remaining terms coming from v'(+1), and where @&3=(2-p, 2)/r, a. If we replace u by 3u& in Eqs.
(28), then a similar procedure can be used to eliminate the third-order terms in x'", i. e. ,

J & pi I
z~

I pl( 3}++4 ~(- 3'&

is obtained in terms of second- and lower-order functions. We then have

~~ [-'& e~(+ I}+@~(-1}

Ilail

el(0}&+'& el(+ I}+&-l(+3}lzi
I
&l(+ 2&&+ '& &'8 I}+el-( 3&

I
z-i Ill -(-2}&

+ & l 4+ (l3v}'(+1}
I 4 l(+ 2}&+ & yl(- 3)

I
v'(-1&

I 4 l(-2}&+& +~J(+ 3)
I

v'(+ 2) il(+ 2}
I yl(+ I) &
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+ & &l&-3}I
v'&-2} -4&-2}

I
&l&- 1}&+ & e', (+ 3)

I v" (+ 3)
I y,'&+

& e', (-3)
I v,'(-3)

I
e', &], (37)

where

v'(~ 3}= ~.I & y'(+1}
I @a I el&+ 2) &+ & el&+ » I eta I yl(~ »)]

are the remaining terms coming from v'(+ 3).

(38a), (38b)

III. METHOD OF COMPUTATION

The second-order equations are now solved by a variational technique. First, functionals J,2[/&(a 2)]
and Jo[g, (0)] are constructed so as to yield Eqs. (29a), (29b), and (29c), respectively, when varied. These
functionals are given by

~2[@&&~2)]=(y,'(+2)lk'-~,'+2~I Ii'&+2))+2(4,'(~2) I2zil e~j(+1))

+2& @&&+2)
I
v'(~1)

I
@g(+1)&+K&4g(~2)l v(~ 2} j,'(+—2)

I @,'& (39a), (39b)

~[&~&0&] =
& 4'i&0} I

k —~ i I 4'g &0& &+ 2& 0 y(0} I 'zi
I @((+1)+ 4 y(- 1)& + 2 ( y,'(0)

I
v'(+ 1)

I
@',(- 1))

+ 2&4~&0} I
v'&-1)

I 4&(+1}&+«e~(0}I
v'(0& n~(0}-I es) ~

Equations (39) are considerably condensed by in-
troducing the operator K. Thus, in Eqs. (39s.),
(39b) the expansion of &p2~(+2)Iv~(+2) —j~(+2)(y~o)
[cf. Eqs. (20) and (17)] yields some integrals which
are quadratic in y&(+ 2) [e.g. , & y~&(+ 2) I & y&~(+ 2)1 (

r&2 l &p', & l4&&) ] and some terms in which an integral
linear in g&(a 2) is squared [e.g. , & p&~(s 2) ( p&~) (

~ ].
Then, for the functional to have the desired prop-
erty, K is defined to assume the numerical value
1 for such terms and a value of 2 for all others.
This same convention is used in Eq. (39c).

Next, trial solutions, containing a number of
variational parameters, are chosen to approximate
the true solutions to Eqs. (29}. On substituting
these trial solutions into the functionals and on
carrying out the variations of P&(+ 2) and P&(0), one
obtains algebraic equations which when solved for
the variational parameters at various frequencies
give approximate second-order wave functions.

As a test of the theory we calculate y" and X'"
for helium. This is of particular interest because
laser experiments have been performed with helium
gas.' "' Also, an accurate calculation of some of
the frequency dependent nonlinear susceptibilities
of He has been performed by Sitz and Yaris.
Therefore, we are able to compare the Hartree-Pock
results with the more accurate calculations. For
helium there is only one atomic orbital so we can
omit the orbital subscript. The trial solutions
then have the form

@'(s 2) =g, [A,(k) Yoo(8, y)+B,(k) Yzo(8, P)]r"~e

(40a), (40b)

& P(f)
I
A(f) ) = 1 . (41)

Thus, substituting the expansion for P(t) given by
Eq. (18) into Eq. (41), and since

(0 I4 &=1 (42)

we must require that

&0'le'& &e'I4'&=0 (43)

Then, substituting Eq. (25a) into Eq. (43) gives

&e'I e'&+» &+ & @'I y'(- »& = 0

(44}

(45)

which is automatically satisfied since the angular
factor for p is Yoo and for g (+) is Y,o. On sub-
stituting Eq. (25b) into Eq. (44), one obtains

(4'I e'(+2) &+ & e'I e'(-2) &+ & y'(+1)
I
O'(-1)) = 0

(45a)

p (0)=+~[AD(k)YOO(8, p)+Bo(k)Y~O(8, p)]r"ae

(40c)

where the A's and B's are linear variational pa-
rameters. The Y, (8, P)'s are the normalized
spherical harmonics. The Z~'s in Eqs. (40) are
those found'8 previously for P'(+ 1) and a sufficient
number of different A~'s are taken to ensure con-
vergence of the susceptibilities. This method is
computationally more efficient than varying the
nonlinear parameters Z~.

We require the atomic orbital P(t) of helium to
be normalized:
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I I I I I I l I I I I I

2& 4 '] 4 '(0) &+ & 4 '(+ l)
) 4 '(+ i) &+ & 4'(- l)

(
y'(- l) ) = 0 .

(46b)

The left-hand sides of Eqs. (46) do not automatical-
ly vanish. We must impose Eqs. (46) in order to
satisfy (44). To do this we use Lagrange's method
of undetermined multipliers. Therefore, instead
of the functionals Z~[Q (+ 2)] and J'0[/'(0)], given
by Eqs. (39), we construct new functionals

L, [0'(+2)]=&„[4'(+2)]

+~,[&e'I e'(+2) &+ &a'I e'(-2) &+&0'(+ l) le'(- l)&]

(47a), (47b)

and

1.,[e'(0)] =~,[y'(0)] ~.[2 e'I e'(0)&

+ &@'(+l) I
e'(+ l) &+&y'(- l) I

e'(- l) &]

(4Vc)

The variational conditions

1 I I I I I I I I I I I

0 .OI .02 .05 .04 .05 .06 .07 .08 .09 .IO .I I .I2

a IN ATOMIC UNITS

FIG. 1. Intensity-dependent refractive-index coeffi-
cient, X"=X„~(-v; v, v, —v), harmonic coefficient, X"
=Xg~~(—3v; v, v, v), for helium plotted as ratios to the
zero-frequency result y = 35.8 a.u. Linear polarizability
e(v) plotted as ratio to the zero-frequency result e =1.32
a.u.

6L~[$ (+2)]=0

6L,,[y'(0)]= 0

(48a), (48b)

(48c)

second-order functions so obtained, and the first-
order functions and zeroth-order functions of Refs.
18 and 19, respectively, are then used to calculate

and y

TABLE I. Intensity-dependent refractive-index coeffi-
cient X" and third-harmonic coefficient X

" for helium. ~

Frequency
(a.u. )

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0 ~ 0426
0.0427
0.045
0.050
0.055
0.060
0.0619
0.0620

Wavelength
(A)

14 513
7 257
4 838
3 628
2 903
2 419
2 073
1 814
1 703
1 699
1 613
1 451
1 319
1 209
1 172
1 170

X

(a.u. )

35.84
36.13
37.05
38.66
41.11
44. 64
49. 62
56.75
67. 27
74. 84
75. 17
83.75

112.60
176.36
503. 92

14700.91
—19 114.01

X

(a.u. )

35.84
36.71
39.66
45. 32
55. 50
74. 28

113.14
217.16
802. 32

127 117.53
—31 816.55

Zero-order Hartree-Fock Ref. 19; first-order Har-
tree-Fock wave function obtained by method of.Ref. 18.

then lead to a set of coupled algebraic equations
for the linear variational parameters A,(k) and B,(k)
and a set of equations for Ao(k) and Bo(k), respec-
tively.

A Fortran program written by the authors is
used to calculate the matrix elements and obtain
solutions to the linear algebraic equations. The

IV. RESULTS

The numerical results presented in the tables
and graph are given as functions of the frequency
v, expressed in atomic units, and is related to ur

by the usual relation v = &u/2v. Thus in Table I,
y" is presented for v =0 (static field} to v=0. 0620
a.u. The pole in g" at approximately 0.0620 a. u.
corresponds to one-half of the Hartree-Fock energy
difference 1s - 1s2s. The experimentally deter-
mined wavelength corresponding to the energy dif-
ference between the 1s and 1s2s levels is 600. 5 A

whereas our calculated value corresponds to 5&6 A
or about a 3/0 discrepancy.

In Table I we also present y "for v=0 to v
= 0.0427 a. u. The pole at approximately 0.0426
a.u. corresponds to one-third of the transition fre-
quency corresponding to 1s - 1s2p. We calculate
the wavelength difference between these two levels
to be 567 A and experiment gives 584 A or again
a 310 discrepancy.

Figure l shows plots of y"/y and y /y as func-
tions of v, where we represent y" and y3" at zero
frequency by y. Our result for the zero frequency,
or dc, hyperpolarizability y is 35.8 a.u. The
normalized plot of y~"/y essentially overlaps the
result of Sitz and Yaris for helium. This means
that the Hartree-Fock result for X

" is just shifted
by a constant factor from their more accurate cal-
culation. The ratio of the frequency-dependent
linear polarizability a(v) to the zero-frequency re-
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TABLE II. Intensity-dependent refractive-index coefficient X" and third-harmonic coefficient X
" for helium at low

frequencies-comparison of static second-order function approximation to frequency-dependent second-order function

calculation.

Frequency
(a.u. )

0.000
0.005
0.010
0.015
0.020

X"
(a.u. )

35. 84
36. 13
37.05
38.66
41.11

X

static
approximation

(a.u. )

35.84
35.90
36.07
36.35
36.76

difference

0.0
0. 6
2. 6
6. 0

10.6

X

(a- u. )

35. 84
36.71
39.66
45. 32
55. 50

X3"

s tatic
approximation

(a.u. )

35. 84
36. 13
37.02
38.69
41. 51

10

difference

0. 0
1.6
6. 7

14.6
25. 2

suit, u = 2. 32 a.u. , is also plotted in Fig. 2.
Our Hartree-Fock calculation, employing six

linear variational coefficients, yields 35. 8 a.u.
for the zero-frequency hyperpolarizability of He.
Sitter and Hurst ' recently obtained 36.0 a.u. for
the static Hartree-Fock hyperpolarizabOity of
helium by directly solving the Hartree-Fock equa-
tions using a self-consistent field technique. Both
of these results are seen to be about 27% below the
accurate calculations of Sits and Yaris (42. 6 a. u. ),
Gr asso, Chung, and Hurst22 (42. 8 a.u. ), and

Buckingham and Hibbard' (43. 10 a.u. ).
In Table II we present the low-frequency results

of the "static second-order function approximation"
calculations of y" and g3" for helium. These re-
sults are obtained by inserting the zero frequency
functions P (+ 2) and g~(0) into the expressions for
y" and y ". For zero frequency,

Therefore, in order to perform this calculation we
need only obtain Q (0) for zero frequency. The
frequency dependence of X" and X3" is then governed
by the frequency dependence of P'(+ 1). The re-
sults are reasonably accurate for optical frequen-
cies.

V. SUMMARY AND DISCUSSION

The discrepancies between the present results
and those of Sitz and Yaris are mainly due to the
inherent inaccuracies of the Hartree-Fock model.
On the other hand the Hartree-Fock calculation
possesses the feature of being general in that atoms
of a particular type are treated very similarly
using the same formalism. Thus the main dif-
ficulties in applying the present methods to larger
systems result from larger computational prob-
lems such as the need to compute more integrals

and to solve larger systems of linear equations.
The method of Sitz and Yaris is not readily applic-
able to atoms other than hydrogen and helium.

Despite the errors in the present methods (c.a.
17' for v =0) two interesting successes are to be
noted. First, the Hartree-Fock formalism when

applied to helium predicts the first poles in y" and

X
" to within 3/p of the experimental values. Sec-

ond, the ratio X~/y essentially overlaps the more
accurate curve of Sitz and Yaris. Thus if one
knows y from static measurements, X "can be ac-
curately estimated from the Hartree-Fock fre-
quency-dependent calculations. In this connection,
the Hartree-Fock calculations should provide re-
liable estimates of the error made in comparing
measured frequency-dependent susceptibilities
with results computed for the static case.

Finally, the static second-order function approxi-
mation seems to be very useful in that the results
were quite close to the frequency-dependent sec-
ond-order function calculations of y" and y "for low

frequencies. The advantage of this method is that
we need only solve the static second-order equa-
tions and the frequency-dependent first-order equa-
tions to obtain reasonably good nonlinear suscep-
tibilities for low frequencies. In addition, the
static function approximation is valid for functions
more accurate than the Hartree-Fock type. This
appears to be a good method for obtaining the fre-
quency-dependent nonlinear susceptibilities of
larger atomic systems and possibly molecular
systems.
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The three independent coefficients in the magnetic-dipole hyperfine Hamiltonian cannot be
determined by measurements of the hfs constants of the two atomic states 3d4s Deg2 zy2.
However, the interaction between these states at a high magnetic field shifts the resonance
frequencies for transitions between magnetic substates of either state, and the necessary
additional information for evaluating the coefficients may be obtained by observing these fre-
quency shifts. Such measurements, together with more accurate low-field determinations of
the hfs constants, lead to ratios of the coefficients in the dipole hfs Hamiltonian in agreement
with a recent theoretical prediction. Nore precise values for the electrong factors are also
reported.

I. INTRODUCTION

The lowest term of the neutral scandium atom is
'D, which arises from the 3d4s' configuration. The
atomic ground state is 'D, ~, and the metastable
'D, ~ state lies at an excitation' of 168.34 cm '.
Both levels are rather pure I.S states.

The atomic-beam magnetic-resonance technique
was used by Fricke et al. in 1959 to measure
the hyperfine structure of both the 'D3/2 and 'D„,
states in the only stable isotope (Sc", for which
the nuclear spin is I= T7). In these measurements,
the magnetic-dipole and electric-quadrupole hyper-
fine-interaction constants A and B were measured
in each state (diagonal hfs), but direct observation
of hyperfine-structure effects due to interactions
between the states (off-diagonal hfs) was not at-

tempted. Similar measurements have been made'
on a number of radioactive isotopes of scandium
in order to measure the spin and moments of the
nuclear ground states.

More recently it has been shown4 that the mag-
netic-dipole hfs Hamiltonian consists of three
parts, each with a different tensor character.
Since the relative importance of these parts is in-
fluenced by such effects as configuration interac-
tion, it is of interest to measure not only the total
value of A but also the relative contributions of the
three parts separately. Because diagonal hfs
studies lead only to 4 values for the tuo states
D3 & and D„„ they are not sufficient to identify

the three contributions to the dipole hfs Hamiltoni-
an separately. Several authors' have used off-di-
agonal hfs studies for such investigations in other


