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High-resolution measurements of S photodetachment near threshold are interpreted on the
basis of an intermediate [p (3P) +eQ =0)] P complex which dissociates into jj-coupled constit-
uents. The e-S interaction is represented by doublet and quartet scattering lengths g and a~.
Relative cross sections are calculated in terms of electron energies, and of az and a~. There-
by we generalize to a multichannel process the scattering-length theory of cross sections near
s-wave thresholds. Many features of the experimental data are accounted for. Predictions
are made on the spin-polarization effects of circularly polarized light.

I. INTRODUCTION

The photodetachment cross section of S near
threshold has been recently measured' with high
resolution, clearly separating the various fine-
structure components. Preliminary considerations
might lead one to expect that the cross section
should rise at each threshold, according to the
Wigner law, with relative coefficients in the ratio
of the statistical weights of the corresponding levels.
The experiment does show such Wigner-law behav-
ior at four of the six fine-structure thresholds that
lie in the observed energy range. However„ it also
shows additional. structure which not only masks
the other two thresholds but leads to dips in an other-
wise expected monotonic increase of the cross sec-
tion. Further, the "step heights" at the observed
thresholds are not in simple statistical ratios.

The experimental report sketched a way of ex-
plaining the observed step heights by considering
the final state as a complex (e+8) in L,S coupling
and assuming that, upon dissociation of the complex,
each of these I.S states splits evenly into the alter-
native fine-structure levels of S. Stimulated by
this suggestion and by a recent paper~ on the anal-
ysis of the photoabsorption spectrum of H2 by a
method of "frame transformations, "we have under-
taken a similar analysis of the photodetachment
problem working out in detail the dissociation of the
complex into alternative channels. We derive ana-
lytical expressions for the intensities which repro-
duce the observed step heights and we present a
preliminary numerical fit of these expressions to
the experimental data which is reasonably good over
the entire energy range. Some of the detailed struc-
ture of the data is not reproduced but only a. pre-
liminary numerical analysis has been attempted.
This paper intends mainly to serve as a framework
for further experimental and theoretical work. The
possibility of observing additional interference
structure in the cross section and of obtaining polar-
ized electrons through the use of either circularly
polarized light or magnetic selection of the S in

the initial state will be mentioned.
We will consider negative ions with the configura-

tion P'(P»2 3/2). Besides S, this class includes
0, a system of great interest to astrophysics and
//hich has been studied experimentally' (though with
lower resolution) and theoretically. ~

The detached electron can be in either an s or a
d wave. The Wigner threshold laws for these l
values are, respectively, o~E" and E', where
E is the excess energy above threshold. For a
narrow energy range above threshold, the d-wave
contribution may therefore be expected to be negli-
gible compared to the s wave. (Photodetachment
into the d channel is suppressed by the centrifugal
barrier seen by a low energy /= 2 electron; the
barrier also manifests itself in the near-zero quan-
tum defect for d electrons in S. A modification of
the threshold law for d electrons is considered in
Sec. VI. ) We will focus primarily on the range
where only s channels are important. Further,
we can restrict ourselves to the lowest term, 3P,
of the residual S atom because the next term lies
=1 eV higher. These restrictions are reasonable
for the energy range =0.15 eV covered by the ex-
periment.

In the absence of fine structure, the cross section
for photodetachment into an s channel depends, near
threshold, on the wave number k of the detached
particle according to the simple formula k/(1+ ksaS). '
Here the factor k corresponds to the Wigner law
E" and the parameter a in the denominator is the
scattering length which characterizes the electron-
atom interaction at zero energy. In essence, this
paper extends the k/(1+ k a ) law to a many-channel
problem where the threshold is split by fine-struc-
ture interactions.

II. ANALYSIS OF PHOTODETACHMENT BY FRAME
TRANSFORMATION

On the basis thus outlined we consider the proces!

1/2, S/2+ k I ( 2, 1,0)

Figure 1 shows a level scheme of the various fine-
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FIG. 1. Sketch of fine-structure levels of (e+0) and
(e+ S) systems. Numerical entries between levels are
energy separations in cm ~.

structure components for S and O . One expects
to see six fine-structure thresholds, the lowest being
Pj g2

- Pa. At any photon energy above 2. 0175 eV,
which corresponds to this particular transition in

sulfur, one or more of the six transition channels
are energetically allowed. Such allowed channels
are called "open" whereas energetically forbidden
channels are called "closed. " Each of the six
thresholds (arrows in Fig. 2) marks the opening
of an additional channel, which was closed below

that energy.
We seek expressions for the relative intensities

of the transitions in terms of two parameters,
namely, the doublet and quartet scattering lengths
for s-wave e+( P) scattering. This connection be-
tween photodetachment and electron scattering
arises because one can picture both processes as
p"ssing through an intermediate state of a complex
(e+ atom). The final part of both processes is then
identical, with the complex passing from a regime
in which the electron is close to the atom to one in
which it recedes to infinity. Hence photodetachment
involves "half of a scattering" and depends on the
same parameters that are relevant to scattering.
These parameters may therefore be extracted either
from the photodetachment data or from independent
experimental or theoretical information on electron-
atom scattering. In fact, there exists a program
of close-coupling calculations designed to give these
scattering lengths. Alternatively, the par ameters
may be extracted by extrapolation from discrete
spectral data along the series isoelectronic to the
negative ion.

In the language of "frame transformations, " the
detachment process can be pictured as follows.
Consider either a P»3 or a P,&2 state of S. When
the photon is absorbed, it results in the formation
of a complex (e+ S). At this stage we can think of
the electron as being close to the S and hence tightly
coupled to it-a region where I.S-coupling prevails
as it does in the negative ion. We regard a„and a„
the doublet and quartet scattering lengths, as eigen-
parameters of the e-S interaction relevant for char-
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FIG. 2. Photodetachment spectrum of
S . The continuous curve is experimental,
the circles are values calculated in this
paper with tentative parameters az = 3.5,
a~= —10 a.u. , t =1.6. The six fine-struc-
ture thresholds for transitions PJ& Pj
are marked by arrows and labeled J' j.
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acterizing the complex in this region. ' While the
electron remains close to the S atom we say that
it is in "region A. " The state of the e+ S system
in region A is initially a doublet as the state of S
from which it is formed. As the electron separates
from S we say that the system passes into "region
B"where it breaks up into alternative "dissociation
channels" which correspond to the alternative fine-
structure levels of Sand are accordingly represented
in jj coupling. A main element of a photodetachment
process near threshold is the connection between
different representations of the state of the complex,
namely, the eigenchannels in LS coupling in region
A and the dissociation channels in jj coupling in
region B.

When all dissociation channels are open (i. e. ,
all the fine-structure transitions are allowed), the
doublet-state wave function of region A extends un-
disturbed into region B; here it is expanded into
jj-coupled states to permit application of proper
normalization and boundary conditions at infinity.
These conditions determine the relative intensities
of fine structure components. However, if some
of the dissociation channels are closed, the electron
cannot move to infinity along them and is reflected
back into region A and rescattered into an open dis-
sociation channel.

Based on the above picture, the derivation of in-
tensity expressions breaks into iwo parts. The
first part is the determination of the amplitudes of
the LS multiplet components with different J(J=6
+f) of the complex formed on absorption of the pho-
ton. The second part involves the calculation of the
amplitudes for transition to the different jj states
starting from these LS amplitudes. Each part can
be further resolved into separate steps. This anal-
ysis permits us to resolve the matrix element for
each particular photodetachment transition into a
number of factors.

The probability amplitude of the transitions of
interest are proportional to the matrix elements of
the electric dipole operator %. We indicate the com-
ponent of 0 corresponding to a particular light polar-
ization by P~'~, (in tensorial natation) and its matrix
element by

(j' pP)fm„ I sf,m,
I

P"',
I
p'('P) z'M') .

Here j and m& are quantum numbers of the residual
S atom (j=0, 1, 2); j,= —,

' and m, pertain to the s
electron escaping with wave number k, and J' and
M pertain to the initial S ion (J = —,', -',}. Capital
letters are used for quantum numbers of S and of
the e+ S complex. The wave function of the escaping
electron is understood in (1}to be normalized per
unit energy range. The form of the dipole operator
0 need not be specified, as we shall see.

In the calculation of the matrix element (1), the

radial integration would extend only over the inner-
most part of the region A described above. There-
fore the integration should be carried out appro-
priately with final-state wave functions adapted to
the structure of the (e+S) complex in region A,
that is, with wave functions corresponding to the
state symbol (p'( P)s(P) JM I . Here we have placed
a bar over the channel symbol s to indicate adoption
of an energy-independent normalization for the de-
tached electron wave function in region A. If we
normalize this wave function to a fixed value near
the atomic nucleus, its values throughout region A
will be practically independent of the escape energy
over the narrow energy range (=0. 15 eV) of interest
in this paper. [In essence the size of region A is
defined by the very requirement that the radial wave
function of the excited electron be energy indepen-
dent throughout it. ~] We need not spell out the nor-
malization in this section. Accordingly, we repre-
sent the matrix element (1) by expanding it in terms
of region A eigenchannel states, in the form

p (p ( P )j m&, ksj,m,
I p pP)s ( P) JM)

x (P'('P}s PP) JMIPn', IP'(P) J M ) (2)

where J takes the values —,
' and —,'.

Calculation of the first factor of (2), which rep-
resents a transformation coefficient (overlap inte-
gral), is the main task of the frame transformation
theory and will be carried out in Sec. III. The
second factor of (2) is worked out by standard pro-
cedures of theoretical spectroscopy. First, appli-
cation of the Wigner-Eckart theorem separates the
dependence on magnetic quantum numbers

(P'('P}s PJMIP ' IP'('P)a'M')

x (J 1 gM
I
J M lq), (3)

where the last factor is a Wigner coefficient and
the preceding one a reduced matrix element. The
dependence of this matrix element on J and J can
be further factored out by a recoupling transforma-
tion' in the form

(p'('P)8 ('P) ~II P"'~l j '('P) ~') = Qgg & (4)

Here we have called Q«. a numerical factor which
is expressed in terms of a 6j coefficient and is
given by
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where the columns (rows) on the right-hand side
are labeled J = —,', s (J = —,', —,). We have also in-
dicated by

B= (P'('P)s'PIIPn'IIP"P)

an invariant matrix element which is common to
all of our transition amplitudes and therefore need
not be calculated in this paper.

III. TRANSFORMATION COEFFICIENT

The calculation of the first factor of (2) will pro-
ceed as follows. First, we identify the essential
features of the wave functions of the states

I p ( P)s( P) JM) and I p4( P)j m&, ksj,m,) which per-
tain, respectively, to regions A and B. (The wave
function dependence on the radial coordinate r of
the s electron is one of the essential features. )
Then we shall construct the superposition of states
of region A which extrapolates for increasing r into
a specific state of region B. Each of the desired
transformation coefficients is the Hermitian con-
jugate of one coefficient of the superposition. The
potential due to electric polarization of the sulfur
atom by the detached electron is not treated ex-
plicitly here for the sake of simplicity; this is done
in the belief that it does not affect the structure of
the calculation even though its effect is notnegligible.

For values of r lying oufside tks sulfur atom but
seithin the limits of region A, the radial wave func-
tion of an s electron of near-zero energy is approxi-
mately linear. We represent this wave function by
r-a, where a indicates the scattering length and is
the only parameter that depends on the interaction
between the electron and the atom inside the atomic
radius. However, the value of a depends on the
total spin S of all electrons of the e+ S complex
(S= —,', —,), that is, on the symmetry characteristics
of their combined wave function; thus we have two
values of a which we call as, or, individually, a~
("doublet" ) and a, ("quartet" ), respectively. Setting
the coefficient of (r —as) at unity fixes the energy-
independent normalization of the states of (e+ S)
which we have labeled s. The range of linearity
of this radial wave function is limited by the con-
dition k(r —as) «1, where k is the electron's wave
number and is +0. 1 a. u. in our problem.

The radial wave function of the detached electron
is to be combined with another factor which we in-
dicate simply by X~„. This factor represents the
complete wave function of the sulfur atom in a SP
state, with its electron spins coupled to that of the
detached electron to form a ~s'P state with total
quantum numbers J and M. The structure of this

wave function need not be described because only
its angular momentum coupling matters for our
problem. We also omit explicit notation of the anti-
symmetrization of the coordinate r with the coordi-
nates of the other electrons and we write the wave
function of Ip4PP)sPP) JM) as

X~~„(r—as) (7)

For larger values of r, in region B, the radial
wave function of the detached s electron depends on
the wave number k. This wave function, normalized
per unit energy range, has the form (2/vk)"s
x [c sinkr —d coskr], where the coefficients c and
d can be adjusted to fit appropriate boundary con-
ditions. The value of k(in a. u.) is fixed by the en-
ergy balance condition

—,
' ks+ E& (P4 sP) = kv+ Es. (Ps P) (s)

where hv is the incident photon energy and E~ and
Ez. are the S and S fine-structure levels. Since
photodetachment proceeds incoherently for the two
values of J', the calculations will be separate and
we indicate a solution of (8) by k& with the under-
standing that it is also a function of v. With regard
to the remaining factor of the wave function, we con-
sider it first for a state of region B where the s
electron and the sulfur atom are jj coupled with
quantum numbers JM, I P4( P)j, ksj„J'M). We call
this factor 4 ~~„and write the wave function as

&'~z„(2/vk~)'~s [c& sink p —d~ cosk~r]. (9)

This wave function pertains to a single dissocia-
tion channel of the (e+ 8) complex, but the various
dissociation channels are coupled through the (e, S)
interaction. Accordingly, any realistic state is
represented in region B by a superposition of wave
functions (9) with different values ofj. The state
which we call I p pP)j, ksj„JM) with j =j is repre-
sented by the superposition which fulfils the so-
called "ingoing wave boundary condition" for the
channel j; this condition requires the coefficients
of all outgoing waves e"s" to vanish forj &j . The
wave function of this state must also be represented
in region A by a superposition of wave functions (7),

(A) s (4)=+s Xzs(r- as) Asj (10)

The effects of (e, S) interaction are incorporated
here in the scattering lengths as. The coefficients
A'~ remain to be determined by application of the
ingoing wave boundary condition after extrapolation
into region B.

Extension of the wave function (10) into region
B begins with the expansion

X~~ = Qq 4zs U gs (11)

whose coefficients U&~s' represent an orthogonal
recoupling transformation, from jj to I.S (Eq. 13.14
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of Ref. 8) and are independent of M. The trans-
formation matrices are 2p j

3=/

+p

354 l6'
j=O

where the columns in the I i are labeledS= 2, 2 ~

The matrices coincide with those for coordinate
rotations by 24'6' and 35'16', respectively, as
illustrated in Fig. 3. (Note that the triangular con-
ditions restrict j to two values for a given J. )
Substitution of (11)changes (10) into

~// [r+2 0/2'Azy —P2 U/'z~) a2A2/ ] . (13}

Comparison with the form of (9) for k/r«1 shows
that (13) extrapolates into the superposition of re-
gion B wave functions

9p
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I
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I
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I

24' 6

)$2

k -)/ [sink ygzN f f s f fs sf

- cosk/r +2k/ U/'2 'a2A z/ ] (14).

The coefficients cf and df are now expressed in

terms of the A».
The next problem is to determine the coefficients

(g)
A» which fulfil the ingoing wave boundary condi-
tions. To this end we rewrite (14) in terms of ex-
ponentials

(2/)/k )" —.[e"/"k -" P II'~'A—
f J'N f s fs sf

with

e-(2/rk -1/2$ g(z) 4A ] (15)

B/z' = U/2'(1 —ik/a2)(2/)/) " (16)

When both channels are open, the boundary condi-
tion requires the coefficient of the outgoing wave
e"f" in the brackets tobe 1 for j=j and p for jWj,
1 e ~,

(g(2)-1) k 1/2 (18)

When one of the channels is closed, its k value
is imaginary according to (8) and will be indicated
by kf ———i~f; the j value for this channel will be
called j/ . With this notation the e'2/' in (15) be-
comes divergent e"fc". The requirement that the
coefficient of this term vanishes is expressed by

(17)

The solution of this system of equations is expressed
in terms of the inverse of the matrix (16),

FIG. 3. Recoupling diagrams for transition from LS-
coupled states (dashed lines) to jj-coupled states (full
lines) of (e+S) complex.

the boundary condition (17) with j, ((j. In fact, the
electron can only escape in the open channel, whose

j value will be called j,. Altogether the boundary
conditions for the case of one closed channel are
still represented by (17), with j =j, , k3-= k/ and

kf = —
iaaf . This system has a single solution As~',

which is again given by (18}, with analogous adapta-
tion of symbols. Incidentally, in our case of a
single open channel with ingoing wave normalization,
the coefficient ratio of exp(- ik/ r) represents the

0
reciprocal of the 1 &1 scattering matrix, i.e. ,
(S '}» = e-2'd; thus we obtain the scattering phase
shift 4 from

-2(d Q (g(z)) 8(g(z)-)) (g( 1)4II(z)-() (19)

Equation (19), which represents the unitary S '
matrix for open channels as a product of a complex
non-unitary matrix, B*, and the inverse of its com-
plex conjugate is familiar from the theory of Jost
functions. For single-channel s-wave thresholds
the phase shift is given in terms of the scattering
length (2, by e~(d= (I+ ika)(l —ika) ' Equation. s
(16) and (19) generalize this expression to the case
when the threshold is split by fine-structure inter-
actions. The spirit of the method of "frame trans-
formations, " involving the definition of 4' "' with
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suitable boundary conditions at r= 0 and passage
into + ' with correct asymptotic behavior, is very
close to that of Jost's treatment of scattering theory
and leads naturally to the formulation of the entire
problem in terms of the Jost matrix, B. Close
connections also exist with the "phase-amplitude
method" (see Ref. 6a) and will be considered else-
where.

One minor step remains to attain the objective
of this section, namely, the calculation of the trans-
formation coefficient (P PPj)m&, ksj,m, IP PP)s
(sP)JM). We have calculated coefficients A s~'

with the following property: When these coefficients
are introduced in the region A wave function (10),
this wave function extrapolates at large r into a
wave function 4 ' normalized with ingoing wave
conditions for the exit channel with j=j. Accord-
ingly, these coefficients are represented by a trans-
formation matrix element

Az&- ——(p pP)j sJ Ml p4pP)s ps''P) JM). (20)

The desired transformation matrix element is sim-
ply the product of the coefficient A,',~'~ and of the
Wigner coefficient that decouples the final-state
angular moments j and j,= 1/2 of (S+ e),

(P4pP)j m~, k&sj,m,
l p pP}spP)JM)

= (j m;,
'

m, l j—,
' JM) A'„~z'& . (21)

IV. CROSS SECTIONS

The cross section for a specific photodetachment
transition is proportional to the squared matrix
element (1). Substitution of (2), (3}, (4), and (21)
gives this squared quantity in the form

l~~ s(~ja~. l j 2d)M|~~'~ @«'D( ~+1) "'
x (d'»Ml & M'lq}l'

(We omit any further distinction betweenj and j.)
In this section we consider only the cross section
summed over the spin orientation states of the S
atom and of the electron. This summation elimi-
nates the first Wigner coefficient in (22} by ortho
normality and draws the gz„outside the square
sign, thus eliminating any interference between
the contributions of alternative values of J. In ac-
cordance with the experimental conditions of Ref. 1,
we also set q= 0 (linear polarization of incident
light) and average over M (random orientation of
incident ions}. These operations reduce (22) to

-', (2d'+ 1)-'ll' Q, l
A&;,',

l 'q„,&

where N ~ indicates the determinant of the matrix
(z)B)s '
Explicit formulas have been obtained for the en-

ergy dependence of the cross sections thus summed
and averaged. Different expressions apply to spec-
tral ranges in which different channels are open.
All cross section formulas will be given in terms
of a basic cross section o = (6v /61)D (v/c), where
v/c is the photon wave number in cm ~. [Centimeter
units should also be used in the calculation of the
dipole radial integral D, except for the radial wave
function of the final state only. This wave function
is understood to be dimensionless, i.e. , in a. u. ,
in D and is normalized to unit asymptotic slope as
in (7). The factors k, in the following cross-sec-
tion formulas also remain in a.u. ]

Range between 16273 and 16670 cm '. Here only
the channel P,&~

-'P~ is open and only the inter-
mediate state J= —,

' contributes to it. Thus we have
j=j,=2 and j,=1. The cross section is

o f(k2) + g(ks) (a~ —a,)~|+ ~ (25)

which leads to a divergence of do/dE- —~, 'do/d~,
+ ' ' at Kg=0, provided a, &a,.

Note that above this threshold we expect 0 c k,
and do/dE~k, ' very large. The cross section
(24) joins to this infinite slope behavior smoothly
for a~( a, , but with a downward "Wigner cusp" for
a~ & a,. There is a hint of dips corresponding to
such threshold cusps in the data of Ref. 1; indeed
a, seems to exceed a, according to both the numeri-
cal fit described in Sec. V and to the analogous
e+ 0 data where a„= 1.66 and a, = 1.31 a. u.

Region between 16670 and 16847 cm '. Two chan-
nels Pl)2 P2 and P~ia 'Pi are open while 'P
-'Po remains closed. The cross section 0, receives
a contribution from J= —,

' only. We find that

5k2(1+ k' a, )
[1-k, k2a, a~] + [k, (a~+ 5a,)/6+ ks(5a~+ a,)/6]

(26)

5ks(1 —~„a,}
[1—y, (a~+ 5a,)/6] + ks [(5a~+ a,)/6 —x, a~a, ]

(24)

The factor k~ represents the dominant threshold be-
havior predicted by Wigner's law, but the remaining
factors still depend on energy through k~ and Kg.

The dependence through v, becomes singular at the
approach to the next threshold (j= 1) as one verfies
by expanding (23) into powers of v, . The expansion
has the form

I 1 —ik», a, I

3(2d'+1) ' v ' ln I'

2IX Uaz g, saba @zz' (23)

On the other hand, the cross section o., receives
contributions from both J= —,

' and J= —,'. The former
is a function of the open channel wave number kz,
the latter of the closed channel ~0,
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1+k' a4i

[I —kgkgaqa ] + [k, (a, + 5a,)/6+ k2(5a, + o,)/61

8(l —Koa,)
[(—g, (,~ 2a,)/s[' ~ a, [(2a,~,[/s —,a, ,l I

'

(27)

Region above 16847 cm '. Here all channels from

Pg/2 are open. The cross section 02 is still given

by (26). The first term in the braces of (27) also
remains unchanged, whereas the second one changes
at the threshold for Po. We have

1+k2 a,
[1—k, k2a, a, ] + [k, (a, + 5a,)/6+ ks(5a, + a,)/6]

8(1+ ko a, )
[( —I (, ,[~ ~ [(.,(,~ 2,)/3 ~ k, (2a, ~,)/3]')

(28)

and, in addition,

4(1+ k, '~s)
[1 —kok, a~a, ] + [ko(a~+ 2a,)/3+ k, (2a~+ a,)/3]

(29)

Transitions from the Ps/2 level of S . Thus far
we have given cross sections for transitions from
the P»2 level of S . To these we must add inco-
herently the contributions of transitions from the
lower level P3/2 These contributions differ from
those calculated above in the following respects:

(a) The wave numbers k, (or ~,) at each photon
energy have different values for J = —,

' and —,', in ac-
cordance with (8).

(b) Differences of the factor Q«, 2 of (23) cause
the following changes. The cross sections oz, Eqs.
(24) and (26), are multiplied by 5; the cross section

Eq. (29), is multiplied by —,'. In the expressions
(27) and (28) for o„ the first term in the braces is
multiplied by 5 and the second one by —,'.

With these modifications, (24) applies between
16755 and 17152 cm ', (26) and (27) between 17152
and 17329 cm ', and (26), (28), and (29) apply above
17329 cm '.

V. ANALYSIS OF THE DATA

In Sec. IV, we have derived relative cross sec-
tions for all the transitions in terms of the two
parameters a„and a, . In the case of the photode-
tachment of 0, we have accurate values of a~ and

a, from close-coupling calculations of e+ O scatter-
ing. For S no such calculation has been carried
out but it is hoped that results will be available
soon. 9

The cross sections for photodetachment for Pg/g
and P3/~ must be combined to construct a theoretical
curve for the total of detached electrons. If the

S beam were in thermal equilibrium in the high
temperature limit, the factor (2J + 1) ' in (23) would

be simply cancelled by the statistical weight of the
two levels of S . Since this limit is probably not

attained, we multiply all cross sections for the P»z
level by an adjustable parameter t. This parameter
would represent a Boltzmann factor if the S ions
emerged from a source in thermal equilibrium at
a finite temperature T. This factor depends on the

energy difference of the I' levels of S which amounts
to 482 cm ~ and is thus equivalent to To= (kc/k}482
= 700'K on a temperature scale. On this basis t

would be represented by e o . The value t=1.6,
which gives good agreement with the data discussed
below, implies T = 1400'K; a value that is regarded
as reasonable by the authors of Ref. 1.

Determination of a~ and a, by fitting of the theo-
retical formulas to experimental data is conditioned

by various features of the theory. First, consider
the behavior of the cross sections (26), (28), and

(29) at energies far above thresholds for which the
differences among the k& have become negligible.
Here each cross section is approximately propor-
tional to k/(1+ k~a, e} and thus independent of a,.
This algebraic expression reaches a maximum at
k= a~-' after which it starts to fall. Earlier photo-
detachment data' on S, with poorer resolution than
in Ref. 1 but carried out to larger energies above
threshold, show that the cross section is still rising
at an energy 0. 5 eV above threshold. This infor-
mation sets only an upper bound on a~, I a~I & 5 a.u.
We can also estimate this parameter from experi-
mental data on the bound states of elements isoelec-
tronic to S . In fact, arecentpaper" has considered
such a Z extrapolation along isoelectronic series
to get parameters defining an effective model po-
tential for each Z. Using these parameters, we
estimate a~ = 1 a. u. , a result which is probably
only a crude estimate.

Consider now the spectral range near the thresh-
olds, where all k& or ~& are «1. Since a~ is not a
large number (in a. u. ) and assuming that a, is not
large either, all products ka or ~a in the cross-
section formulas are small. Each cross section
0; is then essentially the product of o, of k& and of
a numerical coefficient, and it hardly depends on
a~ and a,. This simple structure of the approximate
cross section yields quantitative predictions for the
ratios among the crudely defined "step heights"
which one observes at the various thresholds. These
step heights are, in fact, just the numerical, coef-
ficients in the cross-section formulas. Their pre-
dicted ratios are given in Table I together with ex-
perimental values drawn from Ref. 1 and with con-
trasting predictions based on statistical factors.
The prediction obtained in this paper appears sat-
isfactory if one takes t = 1.6 as noted above.

The cross section slopes dom/dE and do, /dE be-
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TABLE I. Step heights for various transitions.

S
s P2

2

Pf Pp P

2

Pf 3Pp

Statis tical
ratios

0.6 0.2 1.2 0.4

Experimental
1 2 3 0 5 7 7 6 1 5 4

results

This paper 1.8 0.8 5t 1.St 0.4t

come singular at the thresholds for o; and 00, re-
spectively, as noted in Sec. IV. The coefficients
of these singularities do depend on a„and a,. Hence
experimental study of the cross sections near the
singularities should determine a~ and a, in principle.
In practice the total variation of the cross sections
near these singularities is small and current ex-
perimental accuracy seems inadequate for the pur-
pose.

Under these circumstances we have constructed
a plot of the total cross section, shown in Fig. 2,
which reproduces many of the experimentally ob-
served features using the tentative parameter val-
ues: a~=3. 5 a. u. , a, =-10 a. u. , t=1.6. In spite
of its general agreement with experiments, the
theory fails to reproduce some of the oscillations
and other details displayed by the experimental
data, particularly in the range of 17200-17400 cm '.
The preceding discussion indicates it might be im-
possible to fit these additional features within the
limited frame of the present calculation. Accord-
ingly, the partial fit in Fig. 2 is presented mainly
as a framework for possible extensions of theory
and experiment.

VI. POLARIZATION AND INTERFERENCE STRUCTURE
IN PHOTODETACHMENT

In this section we consider aspects of photode-
tachment which emerged from attempts to interpret
the unexplained features discussed in Sec. V and
which may be relevant to future experiments. It
appears to us that, apart from known threshold ef-
fects, any structure of the cross-section spectrum
should derive from interference between different
contributions to photodetachment.

Long-range forces between e and S, disregarded
in previous sections, can change the threshold law
for photodetachment. In particular, the polarization
potential leaves unaltered the s-wave threshold law
but for all other partial waves it gives' a k depen-
dence for the cross section instead of the usual

Hence the amplitude of d-wave detachment
from S may not be altogether neg1. igible compared
to the s-wave amplitude. The particularly impor-
tant terms due to a non-negligible d wave are the
cross terms with the s wave. These interference

TABLE II. Analytical structure of partial cross sections
for Pi]2 P2 3

0
1

—1
0

1

1

1

1

—F+ —G -H2 I
3 3
~3 F+-,' G+H
y F+g G+H
—F+ —G-H1
3 3

1
2
1 0

—,
' F+q G-H
) F+f G+8

terms can manifest themselves only in the angular
distribution. The experiment of Ref. 1 employed
a "4m detector" and thus averaged over the inter-
ference terms. However, experiments that are be-
coming feasible may detect anisotropies of the photo-
electron angular distribution and might thus show
the effects of this interference.

Interference may occur between the contributions
of J = —', and 8= —,

' states of (e+ S) to the cross section
0,. This interference is wiped out in the averaging
over final spin orientations of e and S, as noted at
the beginning of Sec. IV, but is preserved under
appropriate conditions that select initial and/or
final states with particular quantum numbers M,
q, m„and m. Notice that the relative signs of
the Wigner coefficients with J= —,

' or ~ in (22) depend
on seemingly irrelevant permutations of the factors
in the additions of angular momenta. Owing to this
dependence, the interference between terms with
J= —,

' and J= 2 persists only when the initial state
possesses some nonzero helicity parameter. This
point is illustrated by the following examples of
partial cross sections obtained from (22) rather
than from the spin-averaged formula (23).

For this purpose we indicate the two terms in the
braces of (27) by E and G. The first term E rep-
resents the contribution to o; of transitions through
the 8= —,

' state of (e+ S}while the second term G is
due to J= —,'. We indicate by H an interference term
which appears in partial cross sections and which
differs from the geometric mean (EG)~1 owing to
the complex character of the amplitudes A', &&', . The
analytic form of H is not given here but can be de-
rived from (18) and (22). Table II gives expressions
of the partial cross sections (mm, l &, IM q} for var-
ious combinations of quantum numbers, subject of
course to m+ m, =M +q.

Table II (a) pertains to linear polarization of the
incident light, identified by q= 0 with respect to an
axis of quantization parallel to the linear polariza-
tion. The cross section (27} is defined as the sum



THEORY OF PHOTODETACHMENT NEAR 1759

of the four partial cross sections listed, divided

by the statistical weight (2J + 1)= 2. The same re-
sult, with cancellation of the interference terms,
is also obtained by summing over m, at constant
M or by summing over M at constant m, . There
is, however, a correlation between M and m, ,
showing that a spin polarization of the detached elec-
tron would result from the use of a spin-polarized
S target. The degree of polarization thus achieved
equals [(—',)(F- G) —2K]/(F+ G) times the degree of
target polarization. Note the symmetry of Table
II under sign reversal of all magnetic quantum
numbers, which reflects invariance under time re-
versal.

Constrast Table II (a) with II (b) which pertains
to circularly polarized light. This light is charac-
terized by setting q= 1 with respect to an axis par-
allel to the incident light beam [and thus different
from the reference axis of Table II (a)]. Here
again the sum of all four rows, divided by 2, re-
produces the cross section (2I). However a differ-
ent result is obtained by summing over ~, at con-
stant M' or by summing over M at constant m, .
That is, the total cross section for photodetachment
by circularly polarized light depends on the spin
orientation of S; alternatively, the detached elec-
trons will be spin polarized irrespective of the spin
orientation of S-. The degree of spin polarization

amounts here to [(—,
' }(5F—2G) —2K]/2(F+ G}. These

results are analogous to those predicted and ob-
served recently for the photoionization of alkali
atoms by circularly polarized light'3; the Cs effect
is also associated with the interference of J= —,

'

and J = —,
' channels.

Thus far we have discussed the P»z -'P, transi-
tion because of its greater complexity. The other
transitions will also yield electron spin polarization
by incident circularly polarized light even though

no interference occurs between different J channels.
We give here the breakdown of the total cross sec-
tion oa [Eq. (24)] into partial cross sections
(mm, ~ calM q), because this cross section applies
to a fairly large spectral range where all other
cross sections vanish,

(I a I oaI a I) = so oa ~ (2 a I oal a I}= Fo oa ~

(2O)

The degree of polarization of the detached electrons
equals -0. 5 for unpolarized S .
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