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Cross sections are computed for the elastic and fine-structure excitation scattering of

singly ionized carbon atoms by low-energy (less than 0. 1 eV) hydrogen atoms. A close-
coupling formulation is employed and the scattering equations are solved in a coupled-angular-
momentum representation. The correct energy defect between the C'(2P) fine-structure
levels is included. For the first time, both spin-change and long-range electrostatic cou-

pling terms are explicitly included in the scattering equations. The calculated O'-H excitation
ross section varies from 4. 87x]0 cm at Q. 0] eV to 2. 86x]Q cm st Q. 085 eV, a

maximum of almost 5. 60 x10 cm occurs near Q. 015 eV. The spin-change coupling, de-

scribed herein, is found to be much more important than the long-range electrostatic cou-

pling at all energies considered.

I. INTRODUCTION

Recent surveys'~ have emphasized the impor-
tance of heavy-particle collisions in astrophysics.
In particular, calculations of the fine-structure ex-
citation cross sections of C('P), C'(~P), 0('P), and
Si'(~P) atoms in collision with slow H(~S) atoms
have indicated that in the interstellar medium these
reactions have large rate coefficients. 3- Such col-
lisional excitations and the subsequent forbidden
radiative decays provide a significant cooling mech-
anism for interstellar gas.

Each of the theoretical investigations cited above
has included the simplifying approximation that the
excitation processes are elastic, i.e. , that the
energy differences between fine-structure levels

are small in comparison with the center-of-mass
kinetic energy of the colliding atoms and conse-
quently may be neglected. Temperatures corre-
sponding to the excitation energies (47= 4E/k~,
where ke is the Boltzmann constant) of the C, C',
0, Si, and Si' ground-state fine-structure levels
range from 23 to 411 'K. It is evident that in in-
terstellar space, where the temperature is typically
125 'K, ' these fine-structure excitation collisions
are highly inelastic events and thus the approxima-
tion of elastic scattering may be quite inappro-
priate. Furthermore, in all previous work the as-
sumption has been made that the scattering is dom-
inated entirely by the spin-change process ""or
by the orientation-dependent electrostatic interac-
tion. '6 Up to the present time there have been no
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calculations employing formulations general enough
to determine the relative importance of these two
"1nteraet1ons. "

In this paper the scattering of singly ionized car-
bon atoms by slow hydrogen atoms is considered
in detail. For the first time, both the electrostatic
interaction and the spin-change interaction are in-
cluded in the same calculation. A close-coupling
formalism is used to compute the C'( P)-H( S)
elastic and fine-structure excitation cross sections.
Inclusion of the spin-change interaction in a close-
eoupling treatment requires detailed knowledge of
the relevant molecular potential curves (see Sec.
II). The C'-H collision was specifically chosen for
our investigation because of the availability of these
curves. " The scattering equations are derived
and solved numerically in a coupled-angular-mo-
mentum representation and the fine-structure
splitting of the C'('P) state is correctly accounted
for.

Our results indicate that the spin-change inter-
action is the more important one, at least at en-
ergies considered here (E & 0. 086 eV or T & 1000 K).
Consequently, the O'-H spin-change excitation
cross sections computed by Smith' and by Wofsy
et al. are in better agreement with our calculations
than those computed by Ca,llaway and Dugan, who
included only the electrostatic interaction.

The remainder of the paper is organized as fol-
lows. In Sec. II the close-coupling formalism is
briefly reviewed a.nd then a.pplied to the C'-H scat-
tering problem. The coupling matrix elements for
the spin-change and electrostatic interactions are
then derived and simplified by Racah algebra tech-
niques. The numerical methods used to integrate
the coupled equations are described in Sec. III. At
this point the CH' electronic curves are also intro-
duced. In Sec. IV the C'('P)-H('S) elastic and
fine-structure excitation cross sections are pre-
sented and discussed. The reaction rate coefficient
for the excitation process is also given. Finally,
a detailed derivation of the spin-change coupling
matrix elements is given in the Appendix.

If~t~(~) = E~(~)4(~),
with a similar equation holding for atom B.

The Schrodinger equation satisfied by the wave
function 4' describing the relative and internal mo-
tions of A a,nd B is

[ —(1j2 p.)Vs + H„+Hs+ V]4' = E4', (2)

(i~+1)+lg=g +]8=J . (3)

In this coupled representation the total wave fune-
tlon 0' may be expanded 1n terms of coupled ang lar
basis functions

I' ~~ = Q (SOLI j~m~j JM)g~(j8m~)'g". . .
m

where p, is the reduced mass of the colliding atoms,
R is the separation of their nuclear centers of
mass, V is the electrostatic atom-atom interaction
potential energy, and E is the total relative energy.
Since t/„( o) and gs(P) are members of complete
sets of eigenfunctions, + may be expanded in terms
of the antisymmetrized product functions g„(&)gs(P).
However, a simple antisymmetrized product rep-
resentation is not the most convenient one. The
total Hamiltonian of the scattering system is in-
variant with respect to spatial rotations and so the
total angular momentum J commutes with the
Hamiltonian of Eq. (2), and in fact commutes with
each term of this Hamiltonian. As a result, the
matrix of the interaction potential V is diagonal in
a coupled ( JM) representation.

We choose to couple first j, the total angular
momentum of A. in state n, a,nd l, the angular mo-
mentum of relative motion, to yield g; and then
couple g and jz, the total angular momentum of B
in state P, to yieM J. Thus, we have

11. THEORY

A complete discussion of the close-coupling for-
malism and its application to atom-atom collision
problems has been given elsewhere (see, for ex-
ample, Mott and Massey, "Chaps. 12-13); we in-
clude here only the essential points. Atomic units
are used throughout.

Consider the collision of two a.toms A and B. Let
H„and Jf~, P„(n) and g~(P), and E„(n) and E~(P) be
the respective Hamiltonians, antisymmetrized
eigenfunctions, and eigenvalues for the isolated
atoms, with & and P being appropriate sets of quan-
tum numbers. Then we have

and where (j,m, j2m2 I jsm, ) is a Clebsch-Gordan
coefficient, I', (R) is a spherical harmonic, and
A is the orientation of the internuclear axis R. The
incident-beam direction is chosen as the polar
axis.

The radial function f. . .g(B) describes the rela, —

tive motion of atoms A and B. For brevity we shall
denote the set of quantum numbers (j j~lP) by the
index y, and then write the particular radial func-
tions appropriate to the initial condition yo as
f„(R). The coupled equations which the f,„satis-rro rro
fy are obtained from the Schrodinger equation (2)
using familiar procedures. These equations are
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dR
—

R
~ ~ f-( )

d f(l+ i)
L 0

where

and where the coupling matrix element is
VJ' (R) f dR-I [ivr)'JAI Vfv/Nj

(8)

Now at energies of interest here all of the excited
states of hydrogen are inaccessible during the col-
lision. It can be shown, however, that including
all of these states in the coupled equations provides
an effective interaction potential v for the scatter-
ing of the carbon ion. "' This effective potential
is due to the virtual excitation of the ground-state
hydrogen atom by the carbon ion and, in fact, is
well represented by the second-order energy cor-
rection for the hydrogen atom perturbed by the ion.
A straightforward perturbation calculation yields"

the integration being performed with respect to all
coordinates but R. The fact that Vyy~ is indepen-
dent of M simply reflects the rotational invariance
of V.

The close-coupling approximation consists of
restricting the infinite summation in (7) to a cer-
tain few atomic states $„(o') and )t)e (P). We now
turn to the specific problem of low-energy scatter-
ing of C'(~P) by H( S). The following discussion
of the coupling matrix elements will make clear
which atomic states should be included in our cal-
culations.

The dominant force between two atoms distant
enough that their wave functions do not overlap
arises from the electrostatic interaction. It is well
known that, if either of the two atoms is neutral
and possesses a spherical charge distribution (S
state), the long-range electrostatic interaction en-
ergy vanishes to first order. ' Consequently, if
we include only the S ground state of hydrogen in
the equations (7) and neglect exchange terms, all
of the long-range electrostatic coupling matrix
elements are identically zero.

v(R, r)=—,(( —4 —
P( rR)v —,(2 —4Pr(r R)1)

', + O(R '), (io)

v(R, r) = Q, v, (R, ~)P, ( r ~ R),

coupling matrix elements may be evaluated by the
methods of Bacah algebra, with the result'

where n» is the 2 -pole polarizability of hydrogen,
r is the coordinate of the C'(2p) electron. and
P~(r ~ R) is the Ath-order Legendre polynomial.
Except for the additional term —n4/2RG the above
expression is identical to that used by Callaway and
Dugan.

It should be emphasized that in the coupling ma-
trix elements the second-order interaction energy
v(R, r) replaces the vanishing first-order term
(4(is) i v i 4(is)&.

Writing v in the more general form,

V„'„,(R)= p (gag-, a~em)(g gp, —,o~gM)&y„~v~g, , , )
BR'5R

=3 (g, g ) (, )[(2/+ l)(2l + l)(2'+ l)(2j + i)] Q ( —)" „(R) 00000011p l l8

=Q vt, (R)q), (jig, j'f'8'), (i2)

say, where

j1 j2 j3 and j1 j2 j3
m1 @22 Bl3 j4 j$ j6

are 3-j and 6-j symbols; the index j now repre-
sents the total angular momentum of the carbon
ion, and the vt, have been averaged with respect to
the C'(2p) orbital.

The utility of our coupling scheme Eq. (3) is ap-
parent in Eq. (i2). The quantities q)„are diagonal
in g and 5R, independent of 9R, and independent of

Also, we see that here only even values of X

contribute nonvanishing coupling terms.
The coupling matrix elements V„„.must be mod-

ified at small internuclear separations to allow for
the possibility of electron exchange. To do this we
adapt the spin-change mechanism described by
Dalgarno'7 and Dalgarno and Budge'8 to the close-
coupling formalism. Briefly, in a spin-change col-
lision the internal angular momenta of colliding
systems may change because of the possible ex-
change of electrons with different spin orientations.
In the formulation of Dalgarno, where spin-orbit
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and spin-spin interactions in the molecule are
omitted, the scattering is elastic in the molecular
representation where A, S, and Ms are the total
orbital angular momentum (projected onto the body
axis R), total spin angular momentum, and its pro-
jection (onto R) of the CH' molecule in the state
x(ASM. ).

If the energy defect between atomic fine-structure
levels is neglected, the elastic scattering amplitude
f(ASMR, ASMR, R) is related to the amplitude
f(j m 2o', jm2o;R) for the transition (jm~ o)
—(j m' —,'o') by the unitary transformation'"

f(j'm' ,'o', jm-,'o;ff) = g-&j'm' ,'o'l ASM, )-
ASAfs

xf(AsM, AsM;R)(AsMRl jm-,'o) . (13)

When the atomic states are also quantized with re-
spect to the body axis R, the matrix elements of
this transformation are simply recoupling coeffi-
cients, viz. ,

(jm-,'ol AsM, )

= (im ooliA)(im 'msl &m)(&m»olsM&) (14)

Equation (13) provides a crude physical interpre-
tation of the spin-change process: The C' and H
atoms, initially in states (jm) and (—,'o), respec-
tively, approach each other adiabatically, their an-
gular momenta coupling to form particular CH'
molecular stationary states X(ASM&); then, after
scattering elastically, the atoms separate and each
molecular state is "uncoupled, "yielding mixtures
of final atomic states (j m ) and (—,'o ). This in-
terpretation suggests the following prescription for
including the spin-change process in the close-
coupling formalism. We begin with the coupled
equations (7} and retain only those coupling terms
arising from the ground-state configurations C'(~P)
and H(2S). Dropping the constant total angular
momentum jz= —,

' of the hydrogen atom from the no-
tation, the coupling matrix element becomes

v,'„,(R) =(r,',",
l
v

l r,'.,", , )

=g (jmlm, l8siI)(toit-,'ol zM)(j'm'I'm, 'l 8'3II')(g'3it'-,'o'l gM)

'&I'-, (R)t, (j )|ci«-'.)I vl v -;(R)s,«(j' ')a(l ')),

where the summation is over all projection quantum
numbers except M.

Now the antisymmetrized product function
P .(jm)Q( —,'o), quantized with respect to the inci-

C
dent-beam direction, is related to the antisymme-
trized product function P, (jm)P (—,'o), quantized
with respect to the body axis, by the relation

4„(im) A (-'o)

=r, D'-. (PR ~R o)D. (PR ~R O)4',.(i m)AH(lo)

=& f~- (R)D;. (R)4,.(jm)e (-'o),

this recoupling is valid at al/ internuclear separa-
tions R. On substituting (16) and (17) into (15), the
integral over the configuration space of all elec-
trons becomes

(x(AsM, )l vl x(AsM, )) .
If we neglect at this point the C'(2P) energy defect
and spin-orbit and spin-spin terms in the interac-
tion V, all in keeping with the spin-change forma-
lism described above, it follows that V is diagonal
in the (ASM~) representation and, for a given A and

S, is independent of Ms, and that the above matrix
element may be approximated by

(x(AsM,,)l vl x(ASM, ))
where the coefficients D are elements of the rota-
tion matrices. ' Further, the wave function
P, (j m) P„(—,

' o) is related asymptotically to the mo-
lecular stationary states X(ASM&) by the recoupling
transformation (13),

-=&~s(R)

= E~R(R)+ vR —( x(AsMR)
l
K,+~

l
x(AsMR))

=E~s(R)+ VR-tE~( P)+En( S)] . (is)

.(jm)p„(-,'o) - Q X(ASM, )(ASM
l
jm-,'o) .

~s~s

(i7)

We now assume for the sake of simplicity that

Here, E~R(R) is the electronic energy of the molec-
ular state X(ASMR) and V„ is the Coulomb interac-
tion of the two muclei. Equation (18} is correct
asymptotically [for a given C'( P,) level], and
should be reasonably accurate at small internuclear
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separations since the quantity

( X(ASMs)
I Xc yeas I

X(ASMs))

is not strongly R dependent. For consistency we
use Ec,( P, ~s) in Eq. (18) throughout our calcula-
tions, and allow for the energy defect by using the
correct h, in the scattering equations (7).

Upon combining the results Eqs. (16)-(18), sub-
stitution into Eq. (15) yields

( &",, I

Y
I
&,") ~ ) = & v .(R)(jmim(l &6Tl)

~(grail-,'cl »)(j'm'i'm, ' 8'mr'), (8 'st —.c
I »)

x(jm —,'ol ASM )&ASMsl j 'm' —,'o')

x( Y, , (R) D'- (R)D,'-. '(R) [ Y,. ~ (R)D-. ~ (R)D;... (R)),

(19)

where the summation is over A and S and again over
all projection quantum numbers except M. In the
Appendix this expression is shown to reduce to

( r,'.„VI
r,'. ,", , , ) = Z v„(R)P (j78,j 'l'&'), (20)

AS

where the coupling coefficient is
I

( (j)8j (() )=(2S+1)((Rj~ 1)(2j ~ 1)(2(+l)(2( ~ 1)(2()~ 1)(2(( ~ 1)]'~'( —)
'~ ~ 2 (2a 1)(2)~ ()( )abc

Because here S= 0 or 1, the summation indices a
and b are restricted to the values 0, 1, and 2;
in addition, from the summation with respect to
mi„c is restricted to the values 0 or 2.

Thus, as the atoms approach each other along
the various possible potential energy curves, the
coupling terms Eqs. (20) allow for electron ex-
change in each molecular state X(AS) via the angular
momentum recoupling characteristic of spin-change
collisions.

To incorporate both the spin-change and the long-
range electrostatic coupling terms in the scattering
equations in a consistent manner, we take advantage
of the fact that the v~s(R) tend asymptotically to
the common value vo(R). We note also that the
spin-change coupling coefficients summed over A

and S give"

~ P~s(fi&,i 'i'&') = 6(j,i')6(i, l')6(~, &')

v, (R), = v, (R)(1 —e '"~" ), (26)

where the value n=16, chosen arbitrarily, is used
throughout. The sensitivity of the cross sections
to different values of p in the range 6 ~ p ~ 10 is
very slight, as shown later.

Finally, using the results of Eq. (12), (20), (23),
and (25) the scattering equations take the explicit
form

l(l+ 1)
dR2

'
Rs +hj f j),'j, jo)0'jo(R)

g v~s(R)P~s(il»j l &')
AS

is rapidly cut off, since in this inner region it is
effectively contained in the vAs. In our calculations
vz is modified to

=co(il&,i l &'), (22) + v, (R)q, (jib,j 'l'8') f, , g ... s (R) . (26)

so that the spin-change coupling matrix element
behaves asymptotically as

(23)

v~s(R) —= vo(R) for all R~R„. (24)

From Eq. (22) we observe that there is no spin-
change coupling for R —R . Then for R & R~, v2

Consequently, our prescription for including
both types of coupling in the scattering equations
is as follows. At some intermediate value R=R,
where v, » v~ and where all vAs have approached
nearly the same value, we match the v» to vo, re-
qul1 ing

Examination of the coupling terms in Eq. (26) re-
veals that for each value of J, there are 12 coupled
differential equations. Fortunately each set of 12
equations separates owing to parity conservation
into two smaller sets of six, one containing only
even partial waves l, the other, only odd partial
waves. These are subsequently referred to as even
and odd parity channels.

Scattering cross sections are calculated from the
asymptotic form of the solutions f,„(R). At large
separations R the coupling matrix elements are
effectively zero and, fo~ each J value, the matrix
of solutions f has the form 0
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f (R) = J(R)Ai +K(R)Aa,

where

(27) TABLE I. CH ~', ~, ~', and 'll potential energy
curves. Data are from Refs. 9 and 10.

Z „(R)= 6(p, , v)k„Rj, (k„R),

N „(R)= —6(p, v)k Rn, (k~R),

(28)

(29)

K» ——6(4, v)k» (30)

it follows that the R matrix for a specific J value
is given by

R'=Z'"(W W )Z-'".
2 1 (31)

The cross section Q(j, j) for the C'('P) fine-
structure transition j—j may then be computed
from the expression '

k;, . (2j+1)(2) ~ I "'"I '
o

j, and n, are the spherical Bessel functions of the
first and second kinds, and Ay and Ag are constant
matrices of coefficients.

Defining a momentum matrix with elements

1.0
1.5
1.7
1.9
2. 0
2. 1
2. 2
2. 3
2.4
2. 5
2. 7
2. 8
3.0
3.5
4.0
5.0
6.0
7.0

10.0

'Z'(a. u. )

—37.284
37 ~ 337

—37.427

—37.499

—37.580

—37.636
—37.692

—37.743
—37.748

—37.793

—37. 046
—37.767
—37.855
—37.898

—36.907
—37.612
—37.701
—37.474

—37.815

—37.821

—37.819

—37.916
—37.916
—37.913
—37.909

—37.778
—37.782
—37.785
—37.785

—37.805

—37.781

—37.770

—37.769

—37.891
—37.878
—37.846
—37.823
—37.803

—37.797
—37.797

—37.785
—37.782
—37.775
—37.769
—37.760

—37.754
—37.753

3II(a.u. ) 'Z'(a. u. ) 'II(a. u. )

the R and T matrices being related by

I' = 2fR'/(I —fR') . (33)

The factor of 2 in the denominator of (32) is the
constant statistical weight of the ground-state hy-
drogen atom.

III. NUMERICAL PROCEDURES

Explicit knowledge of the potential energy curves
of CH' states arising from the ground configura-
tions C'(aP) and H(aS) is required to compute the
spin-change coupling matrix elements. For the
'Z' and 'II states, we have used the data given by
Moore, ' and for the Z' and II states, the data
communicated by Browne. ' All of these data are
listed in Table I.

For our purposes, each of the four potential en-
ergy curves is appropriately increased or de-
creased a constant amount at all R values so that
asymptotically each one has the value of the total
C'( P)+ H( S) separated atom energy, computed by
Clementi to be —37. 792 a. u. Then the curves
v~~ are found simply by subtracting the separated
atom energy from each potential energy curve.
A Lagrangian interpolation scheme is used to obtain
values of the v» at each point in the numerical
integration.

Now in the calculations, the CH' interaction po-
tentials v» are assumed to approach each other
and match at some intermediate point R . The
matching is accomplished by providing a linear fit
for each adjusted potential between R = 5ap and the
chosen match point R & Bap.

In all of our computations the value R = 6ap was
used. The sensitivity of the cross sections to

larger values of R is discussed in Sec. IV; how-

ever, we expect it to be small because even at
R = 6 it turns out that the 'Z', 'll, and 'll potential
energies are altered only very slightly. The al-
tered repulsive 'Z' potential energy n('Z') is
changed from its adjusted value of 0. 000 a. u. to
the value —0. 00216 a. u. = v, (6). Since all four in-
teraction potentials should be attractive in the
asymptotic region, such alterations are not con-
sider ed unreasonable.

The quantity

&~~') =(C, (@)I~'I y. (2j)) =2.6892, (34)

which appears in the long-range interaction poten-
tials v„(R) of Eqs. (12), is computed from Clem-
enti's atomic-wave-function data.

The integration of the coupled equations (29) is
performed numerically using the Numerov algo-
rithm. ' For this algorithm the integration is
started by specifying each solution at two succes-
sive integration points. The CH' interaction po-
tentials v~~ are highly repulsive at small internu-
clear separations, and consequently the solutions

f,„are unstable if the initial integration point is
yyp

at or very near the origin. (This problem is con-
sidered in some detail by Allison and Burke. a') In
addition, large differences may exist among the
diagonal coupling terms Vyy at small R values, re-
sulting in significantly different classical turning
points for scattering channels with small / values.

Various schemes were devised to avoid numerical
difficulties, while at the same time starting the in-
tegrations as close to the origin as possible. The
method settled upon consists of starting each solu-
tion f~„esp ratealy at R, where the diagonal term
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U„=2p. V„(R„)—= 2p V»(R„)+ a
l(l+ 1)

y I

(35)
TABLE IIL C -H total cross sections (aI). {j',j)

indicates the transition C+ ( I'&) C'( I'&s).

TABLE II. Center-of-mass energies for C'-H
colbsions. C'( &) energy defect is shown as 4&, M,
and &T.

E (eV)

(&E= 0.0079)
0.0100
0.0125
0.0150
0.0175
0.0275
0.0500
0.0850

(M'= 0.9961)
l. 255
l.569
1.882
2. 196
3.451
6. 275

10.67

(&T= 92. 1)
116.0
145.0
174.1
203. 1
319.1
580.0
986.4

first becomes less than some prescribed value Uo.
For consistency the solutions f„., generated

Yo

through off-diagonal coupling terms V». are reset
to zero at each integration point as long as U,. & Uo.
A typical value of Us is 50. The sensitivity of the
cross sections to different values of Uo is noted in
our discussion of the results; because of the cen-
trifugal barrier f(l+ 1)/R, this sensitivity should
decrease with increasing l.

Having been started in this way, the numerical
integration is continued into the asymptotic region,
R,„~100. Integration step sizes that provide a
good compromise between speed and accuracy are

4R=O. 01 for R —6.4,
~R = 0. 02 for 6. 4 & R ~ 26.4,
4R = 0. 16 for 26. 4 & R,„.

These step sizes correspond to approximately 20

of the average effective de Broglie wavelength in
each region.

Next, the R matrices are found by matching the
asymptotic solutions to spherical Bessel functions,
as in Etl. (27). The actual procedure is discussed
elsewhere. "' By computing R matrices at further
integration points the convergence of the solutions
may be ascertained. In addition, some measure
of the numerical error may be obtained by examin-
ing the asymmetry of the R matrices. In all cases,
the dominant (largest in magnitude) off-diagonal
R-matrix elements agree to at least 1 part in 1000.

Finally, the T matrices and then the cross sec-
tions are calculated from Eqs. (36) and (35).

IV. RESULTS AND CONCLUSIONS

The C'-H scattering cross sections have been
calculated for seven center-of-mass energies E
ranging from 0. 0100 to 0. 0850 eV. These values
and the corresponding values of k = 2t E and T( K)
=E/ks are given in Table II. The C'(sP»a)

1.255
1.569
1.882
2. 196
3.451
6. 275

10.67

2478
2271
2138
2055
1623
1305
1177

417.2
268. 4
210.2
165.8
110.5
68. 7
56. 5

174.0
196.0
198.4
181.1
157, 0
115.6
102, 4

3989
3174
2571
2462
1986
1442
1392

-C'(sP, ~,) threshold is included also.
In order to reduce the amount of computation, the

scattering equations were, at each energy, solved
for channels of both parities but only even J ~ 30,
denoted J= 0(2)30, and beyond in steps of 5, i. e. ,
J=35(5)50. Now for J=0, there are just two chan-
nels with a given parity, for J=1, five channels,
and for J «2, six channels, Hence, the formula
we use to estimate each total cross section is

Q= Q(o')+ Q(o )+ 2 + [Q(J')+ Q(J )]J=2(2)30

+5 Z [Q(J')+Q(J )j, (36)
J=ss(s) so

Q(odd J)= ~ [Q(J')+Q(J )1=64 94
J=1(2)19

The difference between these two values is an in-
dication of the error incurred by the use of
Eg. (36).

Figure 1 depicts the partial cross sections Q(J')
and Q(J ) for elastic {—,', —,') scattering at 0 = l. 255.
The oscillatory behavior, characteristic of heavy-
particle collisions, is typical of the C'-H elastic
cross sections at all energies considered.

The excitation cross section (—,', —,') at )'t = 1.255
is plotted vs J in Fig. 2. The peaks and valleys
in the excitation cross section in general coincide
with those in the elastic cross section. This is not
surprising since, at small nuclear separations, the
off-diagonal coupling matrix elements V», (R) are
frequently as large as the diagonal ones.

where Q(J') and Q(J ) are, respectively, the sums
of the partial cross sections of even and odd parity
channels having a total angular momentum J. Total
cross sections at each energy, computed from Eq.
(36), are presented in Table III.

To estimate the accuracy of the above procedure,
the partial cross sections Q(J) at )'t = l. 255 were
also computed for the odd values J =1(2)IS. We
find that for the excitation process 'I'1/2 I'3/2,

Q(even J) = Z [Q(J')+ Q(J )j=66.4ao,
Js 2(2)20
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l50

(lg lga)

IOO-

OJ 0
C3

50—

FIG. 1. Partial elastic (2, 2) cross1 1

sections (ao) for even (+) and odd (-)
parity scattering channels plotted vs
&, for the incident energy k =1.255.2=

IO 20
I I l I

Figure 3 shows the partial excitation cross sec-
t' at the highest energy considered, k = 10.6 .67.
The oscillations are not so pronounced here because
only even-J-value partial cross sections have been
computed and plotted. Of course, the increase in
!P allows more partial waves (higher Z values) to
contribute significantly to the total cross section.

A principal objective of this investigation is to
determine the relative importance of the two cou-
pling mechanisms described earlier. To this end,
we repeated the calculations at k~= 10.67 for
several even-parity channels, including only the
spin-change coup]. ing matrix elements, ~. e. ,

=0 In Fig. 4 partial exci.tation cross sectionsgp
—— . n 1

aredobtained in this approximation (SC) are compare
with those of the full calculation (LRSC), which in-
clude both long-range and spin-change coupling
terms. The two coupling mechanisms interfere
with each other in a complicated manner, and it is

clear that in our formalism spin-change coupling
is much more important. Additional tests indicate
that this conclusion is correct throughout the en-
ergy range considered in our investigation. Fur-
thermore, this observation provides an explanation
of the sharp cutoff in the partial excitation cross-
section distributions evident in Figs. 2 and 3.
Since the spin-change mechanism vanishes beyond
R=R, only those scattering channels with l's, and
hence 2's small enough to allow significant penetra-
tion of the centrifugal barrier can measurably con-
tribute to the total excitation cross section.

It was noted earlier that all of our calculations
were performed with R = 6. 0. The interaction po-
tentials e» obtained from the data given in Table
I are very close at this point and there seems little

(3/P. , I/2) ~+) k =
I 255

( 3/2, !/2 ) k = I0.67
\

& (-)I

~o IOtJ

0 IO

IO

J
20

3FIG 2 Same as Fig. 1 for partial excitation ~2, 2~ ~

~ 9cross sec

aeons

{Qo).

FIG. 3. Partial excitation (2, 2) cross sections aons g)
for even (+) and odd (-) parity scattering channeIs plotted
vs J, for the incident energy k =3.0. 67. On1y cross sec-
t for even J values have been compute pd and lotted.
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AI 0
C3

SC

symmetric 8 matrices. From data such as those
given in Table IV we estimate that the error in the
total cross sections due to our integration proce-
dure is less than 5/g.

W'e also performed three other checks on the sen-
sitivity of our results, all involving alterations of
the interaction potentials. The long-range interac-
tion potential of Eq. (10) is based on the second-
order interaction energy e' ' for C'( P) and H( S)
at large internuclear separations. The latter is
given by'

I

IO I2
I

l6 18 20

FIG. 4. Comparison of the partial excitation cross
sections at A =10.67 computed including both long-range
electrostatic and spin-change coupling terms (LRSC) with
those computed including only spin-change coupling terms
(sc).

justification for using a larger value of A . How-
ever, in light of the above comments we repeated
the computations at A =2. 196, which is near the
excitation cross-section maximum, for Z' = 0(2)22
using the match point R = 8.0. Again, a linear fit
was provided for each curve v&~ between R= 5. 0
and 8 = A . The r esulting total cross sections are
Q(-,', —,') = lQVOa'„Q(-,', —,') = 194.Qa', , (Q-,', —,') = 2759', .
Comparing these values with those given in Table
III we see that the differences are of the order
of 10%.

We have also investigated the sensitivity of our
results to the starting points for the numerical in-
tegration of the scattering equations. These points
are determined by the parameter Uo [cf. Eq. (35)J.
In Table IV results obtained by using Uo=-50 and

Uo = 10 for the case k~ = 1.255, J' = 1(2)9 are given.
I isted are the averages

where the zeros represent the ground states C'('P)
and H(~S), and the summations are over both dis-
crete and continuum states. Equation (10) is, how-

ever, only second order in H. The resulting in-
teraction potential is then carried only to first order
ln C ln Eq. (12) by averaging the iong-range inter-
action v with respect to the C"( P) orbital. This
does not result in the correct Eq. (38) because all
C' excited states have been neglected. The energy
differences in the denominator of Eq. (38) are
roughly equal, suggesting that some terms in v may
be too large by approximately a factor of 2. This
is not true for the entire interaction potential, how-

ever, since the leading terms of e'~' and of v agree,
both being given by —oz/2A'. However, the vz

k' (a.u. )

IO

200 I-

(37)

which measure the asymmetry of the 8 matrix and
hence the accuracy of the numerical integrati. on,
and the partial excitation cross sections. As J in-
creases we find that smaller values of Uo must be
used to maintain good symmetry but also that the
cross sections become less sensitive to the spe-
cific value of Uo chosen. After extensive testing
we chose the values U, = 10, 25, 50 for various
ranges of J and 0 . The specific choices used in
the calculation of the total cross sections given
in Table III are U~= 50, for J —8 and all k, and for
J&8 and k'&10; U, =25, for J&8 and 5&4'~10„
and UO=10, for J &8 and k~~ 5. These choices yield

N o
C3

IOO-
C3

500 IOOO

FIG. 5. Comparison of the total C'-H excitation cross
sections calculated by Smith (S-DR), Ref. 7, Callaway
and Dugan (CD), Ref. 6, and Wofsy, Reid, and Dalgarno
(WRD), Ref, 8, with the results of the present investiga-
tion (WL).
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TABLE IV. Dependence of ~-matrix symmetry and
excitation cross sections with respect to Uo. kp= 1.255.

+

1
3
5
7
9

0. 0012
0. 0296
0. 0172
0. 0470
0. 2912

V, =50

3.217
3.572
6. 868

11.84
14.28

0. 0006
0. 0012
0. 0018
0. 0072
0. 0076

Uo ——10

2. 271
4. 635
7. 678

10.92
15.17

term could be too large. For this reason, the
C'-8 total cross sections at k = 2. 196 were com-
puted with va -,'v2 The excitation cross section
changed less than 1%, and the elastic cross sections
less than 5/o, reaffirming our earlier conclusion
that the long-range interaction v2 does not strongly
affect the scattering cross sections. In addition,
varying the cutoff parameter p in va over the range
6ao-10ao produced no measurable changes in the
cross sections. And finally, in order to ascertain
the importance of the only repulsive potential (the
CH' ~Z' state), we multiplied v( Z') by —,

' at all
8 & 5ao. Total cross sections at k~ = 2. 196 calcu-
lated with this potential differ by less than 6% from
those reported in Table III. Thus, combining these
results with those of the preceding paragraphs, we
estimate the C'-H cross sections listed in Table
III to be correct to within 15%, with respect to the
formalism presented in Sec. II.

In Fig. 5 we compare our results (Wi ) for the
C'-H excitation cross section with those reported
by Smith, ' by Callaway and Dugan, ' and by Wofsy
et al. a We recal'l the Smith's results (S-DR) are
obtained from a, correction to the elastic orbiting
approximation calculation by Dalgarno and Budge,
and do not include the specific forms of the CH'
potential energy curves. The results of Callaway
and Dugan (CD) are obtained from an impact-pa-
rameter approximation by considering only the long-
range interaction, neglecting the true elastic scat-
terings, and assuming the excitation collision to
be elastic. The cross section reported by Wofsy
et al. (WRD) is computed using the elastic spin-
change formalism (described in detail by Smith' ).
Furthermore, Smith, Callaway and Dugan, and
Wofsy et al. multiply their cross sections by the
ratio of the final to initial relative velocities to take
approximate account of the energy defect between
the C'( P/) levels.

Considering results such as those illustrated in
Fig. 4, which indicate the importance of the spin-
change process, it is quite reasonable that our cal-
culations agree more closely with those of Wofsy
et al. and with Smith. We investigated this possibly
fortuitous agreement further by recomputing the
total cross sections at k = 10.67 with ~k = 0 and

v2= 0 to simulate the WED calculation. In this way,
we obtain Q(b, ka = 0, va = 0) = 96. 64&Pc, which differs
by only 6% from the value given in Table III and by
only 5% from the value reported by WRD, and which
is about 18/o lower than that calculated by S-DR.
Thus, at least at this energy, the approximations
&k =0 and v&=0 have only a slight effect on the re-
sults of the close-coupling calculations. At lower
energies, of course, the approximation ~k =0 is
expected to be worse.

In addition to the above-mentioned investigations,
total cross sections were calculated at k = 10.67
with the spin-change coupling terms omitted. The
spherical potential vo was transformed at small B
to an admixture of CH' interaction potentials, as
in our full calculations. The resulting excitation
cross section, Q (no spin-change coupling) = 3. 13a„
is more than an order of magnitude sma. lier tha.n
the value given by CD. It is difficult to give spe-
cific reasons for this large discrepancy, but one
point in particular should be made. In their im-
pact-parameter formulation CD only considered the
nonspherical interaction potential v2. The spherical
term vc, which does not couple the C'( P) fine-
structure levels, but which largely determines the
trajectories of the atoms at large internuclear
separations, is neglected.

We conclude our presentation of results with a
brief discussion of the rate of coolingof interstellar
matter due to the radiative deexcitation of C'( Pa/z).
A polynomial fit to the total C'-H excitation cross
section was obtained and the cooling-rate coefficient

~o+(2 y Q ) =« f «[uf(u, T)@3/2, t /2(u)j (3O)

calculated at several temperatures. Here,
ue = (2ttE/it)', and f(u, T) is the Maxwellian veloc-
ity distribution function for the gas at a tempera-
ture T. These rate coefficients are listed in Table
V together with the total coo1ing- rate coefficients

Ao= Xc(2, 0)+ Ae(2, 1) (40)

for 0( Pz)+ H excitation collisions calculated by
WHD.

Since the two rate coefficients are roughly com-

100
125
150
200
300
500

1024Ac+

6. 53
7, 73
8. 74

10.1
ll. 7
13.8

1024'

0. 898
1.50
2. 16
3.45
5. 84
9.62

TABLE V. Cooling-rate coefficients X (erg cm sec )

for the radiative deexcitation of C' ( P, /t) and O(~P) =0( P&)

+0( Po) after O'-H and O-H excitation collisions. {Oxygen
data are from Ref. 8. )
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parable, the relative importance of the two fine-
structure cooling mechanisms in a given situation
depends upon the relative abundances of neutral
oxygen and ionized carbon.

It is unfortunate that there are no experimental
results with which to compare the calculated cross
sections. The lack of data for this and other simi-
lar fine-structure excitation processes in atom-
atom collisions, however, emphasizes the need for
precise theoretical calculations.

There are various ways in which the calculations
we have reported may be improved. It would be
desirable to ascertain what effect a transformation
similar to Eq. (17) but R dependent would have on

the results. It would also be preferable to devise
a better method for starting the numerical inter-
grations. We hope to include these improvements
in future investigations.
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APPENDIX

In this section the spin-change coupling coefficients f}}}~(jl8,j I 8 ) are reduced. From Eqs. (19}and

(20) we have

p,'.(igj I'8')=2 (jmfm, l8~)(8om2olm)(j'I'I'm, 'l8'~')(8'sit'-. 'o' ~)(im-,'olAs~, )(AS~~I j m' ', o')-

~(Y~. (R)D;.(R)D ."(R)
l
Y, .;(R}D'-....(R)D.-..'. (R}),

where the summation is to be performed over all projection quantum numbers Iz 5& m, m, rnm'oo'rnm'o. o 'M~.
Evaluating first the integral over 8, we make use of the following relationships':

2X+1 1/a
F„(A}=

( D„",'(R}, (A2)

D„(R)D~ ~ (R) = P (2l+ 1) p, D" '(R)
/vn v rn m n

(A3)

dRD 1 (R)D2 (R)D3 (R) 4~ 1 2 3 1 2

2
(A4)

Substituting Eq. (A2) and using Eq. (AS} three times we obtain

(Y, ,
D- D;,

l
Y; D-. .D;;)= ( —) '(2l+ I)'~ (2l'+ I) ~ P (2a+ l)(2b+ l)(2c+ I)( —)

the summation being with respect to a&&™bPPcy.
Now substituting Eqs. (A5) and (14) into Eq. (Al) and using 3-j symbols throughout, we employ the iden-

tities

c
A i2 j3 i1 j2 j3 Q ( )l)+tp+t, +

g 2+ A 2 f3 f1 j2 f3 I1 f2 js
1 2 3 1 2 3 n1nPn3 1 2 3 1 mQ +3 n1 +P

(A6)

A j2 is 4 i2 is' ~(js, j&')|'(~&,~')
m m mi m2 m3 m1 ma

1 3
2j3+1 (A7)

to sum first over rn'o-'lL' and mo. 3R, then over rn'o'm& and mom~, then over M~npand MnP, dividing by
2 J+ 1, and finally over m, m„yielding the desired result, Eq. (21).
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We utilize the analytic atomic independent-particle model (IPM) of Green, Sellin, and
Zachor as a basis for calculating generalized oscillator strengths for the single-particle ex-
citations of Ne, Ar, Kr, and Xe. First, we establish averages of the experimental energy
levels to arrive at single-particle states. We then adjust the two parameters so that the IPM
potentials accurately characterize these excited-state energies. Using the wave functions
associated with these potentials and the Born approximation, we calculate the generalized os-
cillator strengths for excitations to p ns states. A very complex nodal structure is apparent
at large values of momentum transfer and a rapid decline in magnitude occurs after the second
node. We may accurately characterize the results up to the second node with a convenient
analytic form which leads to analytic total excitation cross sections. We use available optical
oscillator strengths to normalize our results. The systematics and regularities of the param-
eters for various Rydberg series are discussed and approximate scaling laws are given.

I. INTRODUCTION

In a series of studies, ' ' simple two-parameter
analytic independent-particle-model (IPM) potential
has been found to provide a good representation
of electron-atom interactions. The data used in
adjusting these two parameters have been deter-
mined by experiment or by using the results of
Hartree-Fockv (HF) or Hartree-Fock-Slater' (HFS)
descriptions of the atom. In this work we explore
further consequences of this simple realistic model
by carrying out calculation of inelastic excitation
cross sections for rare-gas atoms, giving partic-
ular concentration to systematic properties which

are needed for applied problems.
We deal primarily with the rare gases Ne, Ar,

Kr, and Xe despite the fact that there is a scarcity
of experimental data with which to test our results
or to readjust our parameters in the potential.
However, our work is approximately consistent with
the available experiment and the attempts to utilize
the few available HF excited-state wave functions.
It is hoped, therefore, that this work, which covers
a greater number of cases and a far more extended
range of momentum transfer, might provide a
guideline which will stimulate further measure-
ments on rare-gas excitation cross sections and
more rigorous calculations. These are needed not


