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radiative component a,&
and a radiative component

&u&&. Since v» = I~,l, /N„Table VIII gives e„
=0.011+0.005 at Z=93 and +$3 0.009+0.005 at
Z = 96. The radiative component of the total CK
yield f» thus appears to be about 2% of the total.
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Ground-State Energies of the He Atom and the Li' Ion in the Faddeev Approach
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The ground-state energies of the He atom and the Li ion have been calculated using the
Faddeev formalism. For the off-shell two-body collision amplitude (t matrix), Sturmian-
function (SF) as well as Coulomb-function representations have been employed. For the He
atom, calculations have been performed retaining 1s, 1s and 2s, and 1s, 2s, and 3s states
in the SF representation for the two-body t matrix, whereas only the 1s term has been re-
tained in the mixed-mode (MM) representation. For the Li ion, computations have been
done after retaining terms up to 2s in the SF representation and only the 1s term in the MM
representation. The results obtained by retaining only the 1s term are in marked disagree-
ment with the experimental values in both representations. It is noticed that the results for
the MM representation are almost as much below the experimental values as those for the
SF representation are above. The results for the MM representation are slightly better than
those for the SF representation. This is seen more clearly in the case of the Li' ion. The
results in the SF representation are found to be in good agreement with the experimental find-
ings after inclusion of the 2s term.

I. INTRODUCTION

A rigorous mathematical formulation of the non-
relativistic three-body problem with pair interac-
tions has been given by Faddeev. ' For local po-

tentials, the theory involves the solution of a set of
coupled integral equations in at least two continuous
variables. In the case of Coulomb potentials, Ball
et al. and Chen et al. have used separable expan-
sions for the off-shell two-body collision amplitude
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(f matrix) with Sturmian-function and also Coulomb-
function expansion bases. The representation in
which Sturmian functions are used in the expansion
of the t matrix for every pair, both attractive and

repulsive, has been termed the Sturmian-function
(SF) representation. When Coulomb functions are
used for the attractive pairs and Sturmian functions
for the repulsive one, the representation is called
a mixed-mode (MM) representation. Single-vari-
able integral equations are obtained when these
separable representations are used for the t ma-
trix. Thus these authors have given a practical
method for solving the Faddeev equations with Cou-
lomb potentials and have computed the energies of
the H bound state and its resonant states, as well
as the s-wave phase shifts in the e -H elastic colli-
sion. Rajagopal and co-workers' have carried out
calculations for the ground-state energies of some
three-particle Coulomb systems, retaining only the
1s term in the SF representation. Calculations for
the binding energy of the ground state of He atom
have been performed by Banerji et al. using the
one-state and two-state approximations in the SF
representation.

In the present work, calculations for the ground-
state energy of the He atom have been extended by
including the 3s term in the SF representation of
the two-body t matrix with a view to studying the
convergence of the result with the inclusion of
higher states. The method has been further applied
to calculate the binding energy of the Li' ion in the
two-state approximation. We have also applied the
formalism due to Chen et al. for the calculation of
the binding energies of both the He atom and the Li'
ion in the MM representation with a one-state ap-
proximation, and the results have been compared
with those for the SF representation. For the He
case we obtain six one-dimensional coupled integral
equations when terms up to 3s are retained in the
expansfon for the t matrix. These equations when
converted into a matrix equation give rise to a ma-
trix of large dimension when quadratures with a
suitable number of points are used in the evaluation
of the integrals. Thus, although the Faddeev ap-
proach is exact when all the states are included, an
upper limit for retaining terms in the expansion,
i.e. , for increasing the number of coupled integral
equations, is set up. When the number of coupled
integral equations becomes very large, it becomes
formidable to tackle such equations even with pres-
ent-day fast computers.

II. MATHEMATICAL FORMULATION

q,"'(p, q, s) = c,"'(p, q, s)+Z (&„',"(s -q')/
nn1

X.'I'(q, s)=n.'g'(q, &)+ + dqg K.'I,".'g ~ (q, qg,'&)
n', t', J&l 0

with

x X„'!I,(q„s) (I = 1, 2, 8), (2. 2)

U)g

K„t'„g (q, q j l s) = dpi' B,', & '(q, p„q„s)X". i (s —q&)
Lgy

„d.I'(Pg, & —q ) 4 "I~ (Ps s -q~)
[1—X„'!I.(s —q,')]

(2. 3)

'q t (q 8) = 5 f dqy fg( dpyB()' (q Py qg
g', f8f

x y„',"(p„s-q') C g! '(P„q, , s), (2 4)

(-)" [(2I+1)(2I'+1)]"'

x Pg((g, ) Pg, ((u~), (2. 5)

and the limits of integration given by

II~~=(ooq~+q) /!)U2 2

(2. 6)
I «g

= (&e q y q)'/P(p-
and all other symbols have their usual meanings.
In Eq. (2. 1) the SF expansion of the t matrix

f"'(P P'&) =& {~"'(B)/[1—l "'(&)])

x q.", '(p, E) q.", '(P', E) (2. 7)

has been employed for every pair of particles.
In the MM representation the two-body t matrix

for an attractive pair is expressed in terms of the
orthonormal set of Coulomb wave functions g„,(nP)
which satisfy the Schrodinger equation

(p'- &.) 4.g(np) = - v ' f, dp"P' I'g(p, P') P.i(np'),

(2. 8)

[1—x„",''(s —q')]] y„',"(p, s —q ) X„'I'(q, s), (2. 1)

where C,"'(p, q, s) represents the amplitude in which
particle i acts as a spectator, p„'I'(p, E) is the
eigenfunction of the Lippman-Schwinger equation
for the Coulomb potential with the eigenvalue
X„'I'(Z), and the functions y„'I'(q, s) can be deter-
mined from the set of coupled single-variable inte-
gral equations

In the SF representation, following Ball et cl. ,
we may express the off-shell three-particle colli-
sion amplitude 4,"'(p, q, s) in which the ith pair of
particles undergo final-state interactions as

with the orthonormality relation

f,"g„,( p) nt!„.,(n'p) p'dp= 5„„,.
Thus for an attractive pair we have

(2. 9)
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f (()(p Pt .B)

= V(p, p')+-'&(+. [(p — .)(p' — .)/(B — .)]
&&({. (nP) ({.,(np'), (2 10)

where the Coulomb potential V, (p, p') can be ex-
pressed in any one of the following ways:

V, (p, p') = ——,'&( Z„ (p' - ~„}(}'„,(np) g„,(np') (2. lla. )

=--'v G (P' -~.) 4.,(np) 4„,(np') (2. lib}

= --.'s R [(p'- ~.)+(p"-~.)] 4.&(np) 0„&(np').

(2. 11c)

The prime on the summation sign indicates summa-

tion over the discrete states and integration over the

continuum states. Using the expression (2. lla) for
the Coulomb potential, we then obtain the three-
particle amplitude as

2 ~(i)
(p, q, s) =4& (p, q, s)+ %2' (i)S —&a

x g„'I'(np} X„',"(q, s). (2. 12)

For the repulsive pair we have employed, as be-
fore, the SF as the expansion basis for the two-

body amplitude. Choosing, for definiteness, the
third pair (i.e., particles 1 and 2) to be repulsive,
and pairs 1 and 2 to be attractive, Chen et al. '
have shown that in the MN representation the

functions X'„",(q, s) satisfy the set of coupled single-
variable integral equations

X„&'(q, s)=&}„I'(q,s)+Q Z f dq& &(» ((I q &s) X & (q &8)+ Z f dq3 ( & (q, qs;s) X'„.'&.(qs, s)
n'l' j&jg)&s n'i'

X & (q s) = n. & {q s)+ ~ ~ f dqp K„('„,&, (q, q& 's) X„& (q J s }
n' i' g &3

(i = 1, 2), (2. 13a)

(2. 13b)

with
) Ui 2 2 2 (g)

&(„&'„,
& (q, q&,

.s}=—— dp&B»l (q, p&, q~; s)(( &) v (~ 2 ((&) . (PJ+qf s)(PJ ' } (() (/)
(y) s

" 4.r (np() &(l"
&

(n'P&»
8 Cn' qf~ Ljy

(2. 14a}

Uj3 2 2
(i,3) . 2 (j 3) 3+qS S (3) 2 (i) (3) 2((('.

&
~ (q, qe, s)= dp3B»l (q P &q3z& }s(3& z} X„&.(s —q&) (}„& (np, ) 4„„,(pg 8 —qg),

L js 8 S

(2. 14b)
Us) 2 (g)

(3.» . ~ " 2 (s,g) (3) 2 (J)
&(n(,'n & (Aqsis)= — "Py»' (q, pg, qg,'s) (g&

", (t&„& (p„s —q )&(&„.& (n'p~),
S —6„—q~~Ls

(2. 14c)

fo dq& fi 'dp&B&t:"(q, pg, qg, s)(p&+q& —s}4.''&'(np()@i"'(P& qs s}
l', jAj

i = 1, 2 (2. 15a)

n'&'(q, s)= ~ f, dq,'f,",", P,'B," '(q, p„q~;s)4„"('(p„s—q )4I!'(P&,q&, s).
l ~

(2. 15b)

X.o'(q s) = X'„'0'(q, s). (2. 16)

Thus the three coupled integral equations for
X„', (q, s), i= 1, 2, 3 are reduced to a pair of coupled
equations.

III. RESULTS AND DISCUSSION

For bound states, the inhomogeneous parts in the

To consider the effect of spin we must multiply
the kernels K by a factor which, however, is unity
for our systems. For two spin--,' identical parti-
cles, t is zero for even l if the spin of the pair is
S = 1, and t is zero for odd l if S = 0. Further, since
the ground states of both the systems He and Li' are
zero-total-angular-momentum states, restricting
ourselves only to the l = 0 state expansion, we have

integral equations for the X's are dropped. The
limits of integration in these equations are changed
to —1 and +1 by the transformations

1+xi 2 1+x
1 —xi' 1 —x (3.1)

and the usual Gauss- Legendre quadrature is used
to recast the integral equations into a matrix equa-
tion of the form

Ax= 0. (3.2)

The ground-state energies are found by searching
for the energy at which the determinant of the cor-
responding matrix A is zero.

To test the efficiency of our transformations for
change of variables and also to test the convergence
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TABLE I. Magnitudes of the ground-state energies of the He atom and Li ion (in units of e /ao) obtained by using the
Faddeev formalism.

System 1s

Present results
SF representation

1s+2s 1s+2s+3s
MM representation

1s

Vari ational
results of

Stewart (Ref. 9)
Experimental

values

He 2. 532 95
6. 186 43

2. 925 73
7.232 51

3.045 04
~ e ~

3.267 09
8. 187 68

2.9037
7.2799

2, 9040
7.2811

Reference 10.

problem, we have carried out our computations by
using 12- and 16-point Gaussian quadrature for the
SF and MM representations, respectively, and have
checked the results by increasing the number of
points to 16 and 20, respectively. The results are
found to remain unchanged up to five decimal
places.

In Table I, we have tabulated our results for the
ground-state energies of the He atom and Li' ion in
the SF and MM representations with different de-
grees of approximation, and have compared them
with the variational results of Stewart and the ex-
perimental findings. ' For the He atom, it has been
noticed that the retention of the 1s term alone in the
SF representation leads to a value of the ground-
state energy far above the experimental result.
For the H case, on the other hand, the same ap-
proximation yields the ground-state energy as
—l. 0516 Ry, which is 93% of the total contribution.
Therefore, inclusion of the 1s term alone in the He
problem is not at all sufficient. Vfhen the 2s term
is included in the expansion, we obtain the result
—2. 925 73e /ao, which agrees very closely with the
experimental value —2. 9040e /ao, although slightly
overshooting it. Retention of terms up to 38 gives
the value —3.045 04e /ao, which is slightly lower
than the previous value obtained with the inclusion
of the Is and 2s states. Thus we notice that as we
go on including terms up to 3s in the expansion for
the t matrix, the results get gradually farther dis-
placed from the exact value, in the same direction.
Hence, the oscillatory behavior observed in the
case of H by Ball et al. is not manifested here.

Unlike Rajagopal and co-workers, '6 we have found
that the MM representation does yield convergent
results as the size of the matrix is increased. In
the MM representation with the 1s state alone in the
expansion for the t matrix, our result for the He

ground-state energy is almost as far below the ex-
perimental value as the corresponding result in the
SF representation is above it. For the Li'-ion case
also, we notice that our result for the ground-state
energy with the 1s state alone in the SF representa-
tion lies far above the exact one. On inclusion of
the 2s state, the ground-state energy falls down to
—7. 232 51e /ao, in close agreement with the exper-
imental value —7. 2811e /ao. In the MM represen-
tation, inclusion of the 1s state alone gives the Li'
ground-state energy as —8. 187 68e /ao, which is
also below the experimental value, as observed in
the corresponding He problem. The MM represen-
tation with the 1s state alone gives, however, a
better result than the corresponding SF representa-
tion, for both He and Li' ground states. This is
more pronounced in the Li' case. It will be inter-
esting to test the convergence of the results in the
MM representation as more and more states are
included in the expansion for the t matrix. Further
investigations on the resonant states of the He atom
are in progress.
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