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which corresponds exactly to the analogous rela-
tion in the case of resonant one-photon excitation,
and expresses, via Eqs. (16), dW/dt as the rate

of change of internal energy (E,dn, /dt+ Eodno/dt) of
the atom plus a term representing energy loss due

to collisions.

~See W. Heitler, in The Quantum Theory of Radiation,
3rd ed. (Oxford U. P. , London, 1957), Chap. 4, for an

outline of the basic (perturbation) theory of multiphoton
processes.

~See B. R. Mollow [Phys. Rev. 175, 1555 (1968)] for
a quantum-mechanical analysis of two-photon absorption
which is valid for (weak) fields with arbitrary statistics.

he multiphoton case has been discussed in similar terms
by G. S. Agarwal, Phys. Rev. A 1, 1445 (1970).

A comprehensive review of the experimental and theo-
retical literature on multiphoton processes is given by
A. M. Bonch-Bruevich and V. A. Khodovoi, Usp. Fiz.
Nauk 85, 3 (1965) [Soviet Phys. Usp. 8, 1 (1965)].

4A. Gold and J. P. Hernandez [Phys. Rev. 139, A2002
(1965)] have discussed the possibility of observing both
one- and two-photon transitions between the same pair of
levels, due to phonon-assisted parity mixing.

'R. Karplus and J. Schwinger, Phys. Rev. 73, 1020
(1948).

The two-level problem has been discussed for the case
of one-photon transitions by B. R. Mollow, Ann. Phys.
(N. Y.) 52, 464 (1969); Phys. Rev. 188, 1969 (1969); and

Phys. Rev. A2, 76 (1970).
T. Oka and T. Shimizu [ Phys. Rev. A 2, 587

(1970)] have observed strong two-photon excitations in

the microwave region. Their discussion of the process,
which is based on pure states, leads for the simple
models they consider to results similar to ours.

The analysis presented here applies equally well, with
minor changes in notation, to the case of rf-induced transi-
tions between Zeeman sublevels in a strong magnetic field
(Ref. 3). In that case diagonal matrix elements in the
interaction Hamiltonian will be present whenever the rf
field has nonvanishing components in the direction of the
constant applied field.

8In effect what we are requiring is that the process un-
der consideration be a bona fide two-photon process, and

not simply a succession of one-photon processes.
Time-independent perturbation theory does, on the

other hand, lead to Eq. (19) for the frequency shift if
the incident field is treated quantum-mechanically, and
is represented by a single highly excited mode of oscil-
lation.

It should be noted, however, that for atomic relaxation
mechanisms other than the particularly simple one under
consideration here, the field may indi~ectly affect the
atomic populations n& for jo 2 (as well as the quantity
n&+np), sincealtering the ratio n&/np would in generalhave
the effect of producing a net decay rate to (or from) the
other states of the atom.
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The ground state of a many-particle boson system is studied for two closely related limits:
the uniform I.imit and the weak coupling limit. The former is defined by 0. =1-g(0) «1 and
the latter by 8 =(N-Np)/N «1, where g(r) is the radial distribution function and Np is the mean
occupation number of the zero-momentum state. In the uniform limit the variation-perturba-
tion approach based on (a) the method of correlated basis functions and (b) the series expan-
sion in powers of + is found to be equivalent to the field-theoretic treatment given by Brueck-
ner (for the charged-boson gas) in the weak coupling limit. In particular, it is shown that the
variation-perturbation energy obtained for the uniform limit in the momentum representation
is identical through second order to the ground-state energy evaluated for P «1 by summing
one- and two-ring diagrams in the Bogoliubov occupation-number representation. The charged-
boson gas and the one-dimensional boson system with a p-function interaction are considered
to examine some of the interesting features of the uniform-limit procedure.

I. INTRODUCTION

In recent years, the ground state of a many-body
boson system has been studied with a great variety
of approximation methods. In particular, the field-
theoretic techniques in conjunction with the Bogoliu-
bov canonical transformation' have been widely em-
ployed in the development of exact theories for
many-body boson systems —such as the hard-sphere

boson gas at low density ' and the charged-boson
gas at high density. " These procedures are based
on the Bogoliubov weak coupling limit' defined by
the condition that the major fraction of the particles
are in the zero-momentum state (i. e. , nearly
complete Bose-Einstein condensation into the state
0=0). Under this special limiting condition the
Bogoliubov canonical transformation enables one to
carry out the exact and complete summation of one-
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ring diagrams for evaluation of the leading term of
the ground-state energy. Also, as pointed out by
Brueckner' (for the charged-boson gas), the domi-
nant correction term to the energy is obtained by
summing two-ring diagrams using the perturbation
theory in the Bogoliubov representation.

On the other hand, an alternative approach devel-
oped by Feenberg ef al. has also found its extensive
applications, in particular, in the problem of liquid
He, leading to results in semiquantitative agree-
ment with experimental observations. The start-
ing point of this approach is the introduction of the
Bijl-Dingle- Jastrow (BDJ) trial wave function for
the variational description of the ground state. Such
a special form of the wave function would not, of
course, be able to represent the exact eigenfunction
of the many-body Hamiltonian in general. It is
quite interesting that in this variational formulation
one is approximating the wave function in the con-
figuration space, whereas in the Bogoliubov repre-
sentation one is approximating the Hamiltonian in
the occupation-number space. Thus, the two meth-
ods seem to approach the same problem from basi-
cally different points of view.

In the variational method, the primary task is to
find the optimum (BDJ) wave function which mini-
mizes the expectation value of the Hamiltonian. Un-
fortunately this cannot be done exactly and analyti-
cally in general. However, if the value of the radial
distribution function at the origin differs little from
its asymptotic value unity (this is called the uni-
form limit), then the quantity representing this
small difference can serve as an expansion param-
eter for the exact description of the variational
ground state and the optimization problem becomes
more amenable to solution. ' Moreover, in this
uniform limit the leading correction to the variation-
al energy ean be evaluated exactly by the perturba-
tion theory which takes into account the components
absent in the BDJ wave-function space. '"

It is the purpose of this paper to clarify the rela-
tionship between the two substantially different
methods by showing that they both lead to identical
results through second order' in the weak coupling
expansion for the ground-state energy. " The two
methods are discussed in Secs. II and III; in Sec.
IV the energy expressions resulting from these two
different approaches are shown to agree exactly
through second order. Section V is devoted to ap-
plications of the variation-perturbation formalism
to the high-density charged-boson gas and the one-
dimensional boson system with the 6-function in-
teraction, and finally in Sec. VI some of the inter-
esting features of the variation-perturbation method
in the uniform limit are discussed.

II. OCCUPATION-NUMBER FORMALISM

%e consider a system of N bosons interacting in

a box of volume 0 through a two-body potential v(r).
The Hamiltonian in second-quantized representation
is

a oaf+ 2& . 2 V(k)ai'+fai"-faf "a1' ~

+ 2 poV(k)(a„-a ~+a„-a f)),
Hq=Hyq+Hx ~

(lb)
t

Hx7, =(po/0) V(k)(a-„afa1. "„+af -„a-„a-„),

Hx = (2&) 2 '
V(k)(a~" a f ~ai ~ -iax-1'

Pr, , jf.
'

t t
+ax'aj 'ai' -i af ~ -1),

Hs = (20) ~ V(k)af'+f ai" oaf ~ af
t

jf. ,R', i"
with p =N/0, pp=Np/AThe pri, me on the summa-
tion for H„means that terms appearing in H (m &n)
are to be excluded.

The dominant contribution from H„yields an nth-
order term' for the energy in the weak coupling
expansion; thus the first-order term of the energy
is obtained by summing one-ring diagrams using the
Bogoliubov canonical transformation, which diago-
nalizes the dominant part of the Hamiltonian (i.e. ,
Ho + H7), The results first obtained by Bogoliubov
can be written as

E(l ring) = E,(1 ring) +E2(1 ring) + ~ ~ ~, (2)

E7(1 ring) = —
3 e(k) d k, (&)

1 [ [1 —S(k)]
4 277 p

P [1-S(k)]'[1+S(k)]E2(1 ring)=
( )s e(k)

( )
dk,

(4)

N -No 1 [1 —S(k)]
N 4(217) p S(k)

where

where
V(k) = f v(r)e'"'dr .

Under the Bogoliubov condition of weak coupling, the
operators ao and ao are replaced by the c number

No, where No is the number of particles in the
zero-momentum state. It proves convenient to re-
write the Hamiltonian of Eq. (la.) as a sum of four
different parts:

H = Ho+H, +H2+H»

Ho = 2 NpV(0),

H7 =5 ( [k k /2m + poV(k)] a"„ax
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S(k) = [1+4mpV(k)/k k j '~2,

e(k) = k 'k'/2m S(k)

(6)

(7)

are, respectively, the leading term of the liquid
structure function in the uniform limit' and the
Bij1-Feynman energy for an elementary excitation. '
In the weak coupling limit P «1, the coupling (or
expansion) parameter is ordinarily proportional
to P.

The importance of two -ring diagrams a,s the pri-
mary contributor to the next leading term in the en-

ergyy

expansion was discussed in the case of the
Coulomb potential by Brueckner, ' who recognized
that both terms H~ and H&& of the Hamiltonian con-
tribute to the energy in second order. To evaluate
the (leading) contributions from Hx and H», which
are not diagona. lized by the Bogoliubov canonica. l
transformation, we can follow Brueckner's proce-
dure by applying first - and second-order perturba-

tion theory in the Bogoliubov occupation-number
space, taking the diagonalized H0 +H& as the unper-
turbed Hamiltonian and Hz and H» as perturba-
tions. 5

The contribution from the X vertex may be ob-
tained directly from results derived in the pair theo-
ry by Girardeau and Arnowitt; from Eqs. (21}-(24)
of Ref . 15 one finds the leading term for the X vertex

N 7, „y(k)4 (k')[1+/(k)Q(k )]
2(2v)6p J [1 —$~(k)][1 —P (k')]

(8)

where k ' = k —k and the dominant part of (i.e. , the
Bogoliubov approximation for) the function Q(k) is
related to S(k) by

g(k) = [1 —S(k)]/[1 +S(k)] .
Thus, expression (8} may be rewritten as

E»= g .g)I i II [1 -S(k)][1—S(k )][1+S(k)S(k )][1—Sa(k )] . (10)

The term arising from the YX vertices is found from Eqs. (B9) and (B10) of Ref. 16 to become

N [ dkdk (V(k)[1 —P(k)][/(k )+P(k")]+(symm. terms)P
6(2 )' (e) [1 —4, (k)][1—g'(k'}][1 -4, (k")]

N d kd k I II 2

6[4(2v) ] S(k)S(k')S(kii) ( } ( —(S c) —S(k)S(k )S(k )((a/S) —(Se))]

where

(f) =f (k) +f (k') +f (k"),

E=EO+Eg+Ep, Eo= gNpV(0),

E, =E~(1 ring), Ez=Ez(1 ring)+Ex+Er„.
(12)

In Sec. IV thip result will be compared with the
variation-perturbation formula obtained in the
uniform limit.

III. VARIATION-PERTURBATION METHOD IN
UNIFORM LIMIT

In this section we consider the uniform-limit
formalism, which is mainly (but not entirely}based
on the variational analysis in which the ground state
is described by the BDJ trial function

N N -1/2
@o= g exp[-'. &(r$,)] II expU(r „)dr/2. ..N

f& j m& ff

F(k, k', k")+(symm. terms)

=F(k, k, k )+F(k, k, k)+F(k, k, k ) .
Therefore, the exact ground-state energy to second
order is

where U(r) is the correlation function determined
by minimizing the expectation value of the Hamil-
tonian. In this variational approach, however, the
radial distribution function

g(+$2) N(N —1)p 'f @Od1'g4. ..g

or, equivalently, the liquid structure function

S(k) = 1+p J e"'[g(r) —1)dr,
is used as an indirect variational function, and the
quantity n = 1 -g(0) plays an important role as an
expansion parameter in the development of power
series for various quantities depending on the par-
ticle density and the two -body potential such as
P = (N No)/N and the gro-und-state energy.

The results of such a variational analysis in the
uniform limit (o'«1) are given in Refs. 6, 9, and
10; they include

+E +e ~ o

E2„=2N[4(2v) p] f dkdk'e(k)S(k)[l -S(k)]

& [1 —S(k')j[1 -S(k")], (14)
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o.'-=1-g(0) =[(2»)'p] ' f [1-S(k)]dk+ ~ ~, (15)

with E0, E„s(k), and t(k') as defined in Sec. II.
The procedure also yields a formula for J3 identical
to Eq. (5).

The leading correction term to the variational
energy was derived (and applied to liquid He ) by
Davison and Feenberg, who realized that the dom-
inant contribution to the correction arises from the
three-phonon component which is absent in the BDJ
wave-function space. Their result, obtained by

applying second-order perturbation theory in the
phonon space, is found from Eqs. (6), (23), and

(31) of Ref. 8 to reduce to

dkdk
6[4(2»)' ]' S(k)S(k')S(k") (e)

x [S(k)s(k')S(k") (2 (e) —(S&))

—(S ) (S& ) + 2 (S'e )] ' . (16)

Thus, the variation-perturbation formula derived
in the uniform limit may be written as (to second
order)

ot and P is known explicitly. In the special case of
the Coulomb potential in the high-density limit, the

two limits are equivalent since they are related by
n = 4P+0( P') [see Eq. (38)]. However, there is no

such a general relation known at the present time.
At least, it is clear that they are not equivalent in

general. For example, in the hard-sphere boson

gas, Q. =1 and P«1, ' while in the one-dimensional
boson system with a repulsive 5-function interaction,
a «1 and expression (5) for p diverges logarithmi-
cally at small momenta (Sec. V).

Therefore, in the problem of the high-density
charged-boson gas the two expressions, (12) and

(17), for the energy must agree exactly (if both
formulas are indeed correct). On the other hand,

in the general case of the weak coupling limit and/or
uniform limit, it is not clear whether or not the two

approaches should also lead to identical results.
The remainder of this section is devoted to the proof
that these two procedures do indeed lead to identical
results for the energy.

First, to simplify the expression for E, of Eq.
(12) we write Eqs. (4), (10), and (11) as

E = Ep+Eg+E2, E2= Epv +Epp (17) E2(1 ring)= 6N[4(2») p] f I2(1 ring)dkdk', (18a)

The agreement of Eqs. (12) and (17) through first
order is obvious; the agreement in second order
is discussed in Sec. IV.

We conclude this section with some remarks on

two points. First, it must be pointed out that the
variational energy formula (13) was derived by
varying the indirect variational function S(k) freely,
i.e. , without taking into account the constraints on

S(k). However, it has been shown that the variation
with respect to the direct variational function U(r)
leads to identical results through third order in the
uniform limit. The second point is that the per-
turbation energy (16) was evaluated using the convo-
lution approximation" for the three-particle distri-
bution function p"' (1, 2, 3), but it is easy to show
that this approximation gives p' ' (1, 2, 3) correctly
through O(of ) and hence Eq. (16) is the exact ex-
pression for the leading term of the perturbation
correction generated by the three-phonon vertex.
These remarks appear to establish Eq. (17) as the
energy formula exact through second order in the
uniform limit.

E» = 6 N [4(2») p] f I» d k d k ',

Erg= 8 N [4(2») ] f Iy~dkdk

(18b)

(18c)

where

I2(1 ring) =6[S(k)S(k')] 'e(k)[1 —S(k)]2

x [1 —S(a')]' [1+S(k)], (19a)

I» = 3[s(k)S(k )S(k )] '[1 —S(k)][1 —S(k )][1—S(k )]

x([1 —S(k)][1—S(k ))+[S(k)+S(k')]] [1+S(k )] t(k ),
(19b)

[(&) —(S &) —S(k)S(k )S(k )((e/S) —(Se))]
s(a)s(a' )s(a")(e)

(19c)
We introduce the double-arrow sign to indicate
"equivalence" in integrating over variables k and
k, i. e. , A(k, k, k ) —B(k, k, k' ) means

IV. PROOF OF EQUIVALENCE f A(k, k, k )dkdk'= f B(k, k, k ')dkdk' .

Then, rearranging terms in Eqs. (19a) and (19b)
and recalling the relation S(k)e(k) =I k /2m, one
finds

(20a)

The relationship between the two procedures
based on different limiting conditions e «1 and

P «1 may be easy to find if the connection between
I

I2(l ring) 3[S(k)S(k )] '[1-S(k)] [1 —S(k )] ([S(k)e(k)+S(k )e(k )]+[&(k)+E(k )]j
3[S(k)s(k')] [1 —S(k)] [1 —S(k')] S(k ')e(k )+3[S(k)s(k')] ' [1 —S(k) ] [1 —S(k')] [(e) —e(k")],
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I»= —3[$(k)$(k )] [1 -S(k)] [1 -$(k )] $(k )E(k ) 3[$(k)$(k )S(k )] [1 —$(k)] [1 —S(k )] z(k )

+3[S(k)S(k )$(k )] ' [1 —S(k)] [1 -$(k')] [1 —$(k )] [$(k) +$(k )] [1+$(k )]e(k ) ~ (20b)

Noting that I» of Eq. (19c) is symmetric in k, k', and k, we now obtain a similar symmetric expres-
sion for the sum of Eqs. (20):

Iz(l ring)+I» —Zq+dz+Zz,

J, = 3[$(k)S(k )] ' [1 —S(k)]' [1-S(k )]'&&)=-3j,(k, k, k )—j~(k, k, k ) + j,(k, k, k) +j,(k ', k, k')

(21a)

—4 — ~ (S)(—
) ~ 9 —4(S) S(k)S(k )S(k")(—) (4), (21b)

J = 3[S(k)S(k')S(k")] [1 —S(k)] [1 —S(k')] [1 —$(k")]e(k")

—[$(k)S(k )$(k )] [1 —(S) +S(k)$(k')$(k")((1/S) —1)] [&z) —&S) &e ) +&St) +$(k)$(k')$(k")&z/S) ],

Jz = 3[S(k)S(k )S(k )] ' [1 —$(k)] [1 —$(k )] [1 —S(k )] [S(k) +$(k )] [1+$(k )]e(k )

[$(k)$(k )S(k )] '[1 —(S)+S(k)$(k')S(k )((1/S) —1)] [(S)&e) —&$(z) +(S)(St ) —(S e)] .

(21c)

(21d)

The results of Eqs. (21c) and (21d) follow through intermediate steps similar to those of Eq. (21b).
Evaluating the sum J&+J~+J~ one finds that many terms cancel each other, resulting in

Iz(l ring)+I» ] [S(k)S(k')S(k")] —2(l/S)+ 8 —4($)) &e)

+(1/S) [(S)&Se) —(S e)+$(k)$(k')S(k") (e/S)] . (22)

Iz(1 ring) +I»+I„„—Iz„+Izz+ 2I, , (24a)

Iz =12$(k)e(k)[I —S(k)] [1-S(k')][1 —S(k")],
(24b)

I, = —[$(k)S(k')S(k") &e)] ' [S(k)S(k')$(k' )

(2&e) —&Se))-&S)&Se)+2&S'e)] 4 (24c)

I, = [4 —(1/S) —2($) +S(k)$(k )$(k )] &e)

+ [1/$(k)$(k')$(k") —2 (1/S) + 4 —(S)]&S & )

-k[&$) (1/S) —3] (Sg)+ &e/S) +(S z) . (24d)

It proves useful to rewrite Eq. (19c) as

Irz ——[S(k)S(k )S(k )] [2 (S E) —&e )] + 2 &e/S) —2&Sf )

+(e) '($(k)$(k )$(k )[&z/S) —&Se)]z

+ 2 (S'e) [(Se) —&z/S) ——,
' (S'e ) /S(k)$(k')S(k ))}.

(23)

After some straightforward, but rather compli-
cated, algebra it is found that the sum of Eqs. (22)
and (23) becomes

t

Thus we now have [see Eqs. (14) and (16)]

z I(I [4(2») p] f Iz„d kd k' = Ez„,

()%[4(2») p] J Izzdkdk =Ezz )

(25a)

(25b)

and consequently the identification of Eqs. (12) and
(17) would be established if

J I,dkdk =0, (26)

we find, after some algebraic manipulation, that
Eq. (24d) can be written as

which, amazingly enough, happens to be the case,
as is shown through Eqs. (27)-(30).

By employing the identities

&$)&$~) —&Sz~) =$(k)$(k') $(k")[&I/$)&~) —&~/»1,
(27a)

(S)($ z) —(S t) =$(k)S(k )S(k )[&1/$)(Se) —&e)),
(27b)

&S')&Szz) —&S'a) = $(k)$(k')$(k")[&$)&1/$)&Sz)

—($)&6) —(1/$)(S e) —&$6)], (28)
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I,=Lq+L2 (29a)

L, = 2[S(k)S(k )S(k' )] ' [(1 —2(S) +(S ) )(S E) + 2(S e) —(S a)] +4[(S e) +(SE)(2 —(S))+-', S(k)S(k )S(k")(e)]

=lg(k, k', k") +lg(k, k", k)+l, (k, k, k') 3lg(k, k, k )

= 3[S(k)S(k )] [1 —S(k)] [1 —S(k')] [2S(k )t (k )],
L2= [(S)/S(k)S(k )S(k ') —4 (1/S)+(S)(1/S)+9 —4(S)+S(k)S(k )S(k )(1/S)) (Se)

3[S(k)S(k )] '[1 —S(k)] [1 -S(k')] (Se),

(29b)

(29c)

or finally

I,—3[S(k)S(k )] '[1 —S(k)] [1 —S(k')] [S(k )e(k") —S(k)e(k) —S(k )e(k )]

= —3(K /m)[S(k)S(k )] [1 —S(k)] [1 -S(k )] (k ~ k'), (30)

from which follows immediately the desired relation (26).
We now remark that the expression for E2~ given by Eq. (16) can be put in an alternative (and probably

more useful) form. Using such a form, let us first summarize results by rewriting the variation-per-
turbation formula (17) in a rather complete form:

E = Eo+Ej,+E2g +Epp,

E() ——g NpV(0),

N [1 -S(k)]
4(2v)'p S(k)

(31a)

(31b)

(31c)

Em„——
[ s 2 dkdk (s(k)S(k)[l —S(k)][1—S(k')][1 —S(k")],8() 42 3 2

-, [1 —S(k)] [1 —S(k )] [1 —S(k )]
6[4(2v) p] J S(k)S(k )S(k ) (t )

(31d)

x 2 — Se (31e)

with S(k) and e(k) defined by Eqs. (6) and (7), respectively. The derivation of Eq. (31e) from Eq. (16) is
not difficult if one employs the relation of Eq. (27a) and another relation

s(s)s(s')sts") ( )&((-s)a)-( ') =(( —s(s))(( —s(s'))((-s(s")) (( ) (s~)-( (
'
)

(32)

V. APPLICATIONS

Our discussion so far has been presented without
assuming any particular form for the potential v(r);
we have only assumed (tacitly) that the Fourier
transform V(k) exists and that the interaction is
mainly repulsive so as to give a positive value for
S2(k) in Eq. (6). In this section we apply Eqs. (31)
to two particular systems which allow straight-
forward evaluation of the ground-state energy.

already been carried out by Brueckner' in the oc-
cupation-number representation [Eq. (12)]. Here
we present numerical results obtained using Eqs.
(31). The summary on the equivalence of the two
approaches in the case of the charged-boson gas
has been reported in a recent letter. For com-
pleteness, we may briefly outline the procedure
based on Eqs. (31).

The Fourier transform of the Coulomb potential is

A. Charged-Boson System at High Density V(k)=4ve /k, ks(0; V(0) =0, (33)

The calculation for the charged-boson system has the vanishing of V(0) being due to the neutralizing
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positive charge ba, ckground. Introducing convenient
dimensionless quantities

r, =(3/4wp)'/ (me /tt ), t=-,'(we mp/hz) t/4k,

(34)
(t) = tz(1+t')-t/z, (t) = (1+t')

q, (t) = ~(t)[1 —o(t) ]'/o(t),

t),„(t, t', t")= ~(t)o(t)[1 —o(t)][1—o(t')][1 —o(t ")),
(as)

[1 — (t)l' [1 — (t')]'[1 — (t")]'
o (t)o (t') o(t")(4o)

we find from Eqs. (5)-(7), (15), and (31) the follow-

ing results for various quantities, with energies in

Ry (me'/2k z):

arose from the close numerical agreement between
the two values. '

B. One-Dimensional Boson System

We consider a system of N bosons interacting in

a one-dimensional space of length L through a re-
pulsive 6 -function potential

v(x)=2cs(x), c &0 or V(k)=2c . (43)

The variational energy given by Eq. (13) was eval-
uated in Ref. 21; its derivation is briefly repeated
in the following calculation. Here the dimensionless
quantities are defined as (with p =N/L)

y = (c/p)(2m/0'),

t = h (8 m p)c
'/z k,
tz)-t/z

~(t) =
I tl (1+t')'",

and definitions of Eq. (35) are also useful. Then,
Eqs. (15) and (31) yield the following results, with
energies in units of tt /2m:

n = )'„, [1 —o(t)] t'dt +12)t/4

»'(4) r '",O(„z/z t
3(12)'/4 '/

2rz/4 I" [1-o(t)]z z

(12)'"w J, o(t)

6(12)1/4 3/2 + s

(36)

n = (2/w)y'/z f [1 o(t)]dt+ ~—~ ~

= (2/.)y""O(y),

Ett/N= p y

E, /N=-(2/w)p'y'" f t/, (t)dt

= —0. 4244 p'y'~',

Ez„/N=(2w') 'p'y'f „f t)z„(t, t, t )dtdt

(45)

(46)

(47)

n = 4P+O(r, / ),
E, /N = —2(12)"' 'r"' f tl (t)t'dt

(38) = 0.065 45 p y (48)

E &/zN= —(24w )
'

p y f f„t7z4(t, t', t")dtdt'

= —0. 8031K,' ',
Ez„/N=(2w ) f t}zp(t t, t )dt dt

(ag)
= —0.0001027 p y (4g)

= 0.028 026, (4o)

E/N= p y [1 —0.4244yt/z+p. p65 35y+O(yz/z)] .
(so)

E„/N=-(24w')-' f ti„(t, t', t")dt dt '

= —0.000 532 3, (41)

EIN= —0.8031/r, +0.02749+0(rz 4) . (42)

The second-order term of Eq. (42) differs slightly
from Brueckner's numerical result EjN= 0.028p;
the discrepancy must be due to small errors in-
volved in the numerical integration(s). We may now
remark that our analysis certainly clarifies any
doubt concerning the possibility of E&= E2„, which

It is easily seen that the integral for the leading
term of P [Eq. (5)] diverges logarithmically at low
moments. . [Similar logarithmic singularities found
in the integrals for Ez(1 ring), Er, and E„„are
discussed in Sec. VI. ] The divergence of the inte-
gral for P presents some difficulty in arguing about
the validity of the Bogoliubov theory based on the
condition P«1. On the other hand, the method
based on a «1 does not suffer from such a disad-
vantage and consequently the equivalence of the two
approaches seems to validate the Bogoliubov theory
(at least in this respect)



GROUND-STATE ENE RGY OF A MANY-PARTICLE BOSON SYSTEM 1677

VI. CONCLUDING REMARKS

I2(1 ring)- 6[S(k)S(k )] 'e(k), (51a}

In the applications of the variation-perturbation
formula in Sec. V some of the elegance of the uni-
form-limit procedure begins to be apparent; in

particular, the evaluation of the second-order term
for the energy is straightforward, with no indica-
tions of any difficulty such as singular integrals.
The situation is, however, somewhat different if
the formula given by Eq. (12) is applied. To see
this point, first we observe that the liquid structure
function always vanishes at the origin [i.e. , S(0) =0]
and hence for small momenta the integrands given

by Eqs. (19) become

E2 (1 ring)/N= 0. 212207,

(E»+Erg)/N= 0. 184713

(53a)

(53b)

It is interesting, however, to note that the major
fraction (87%) of E2 (1 ring) is still canceled by

E»+Er„ in the sum E2 (1 ring)+(E»+E„„).
On the other hand, it is easily seen that contribu-

tions to integrals for E2„and E» are very small at
small momenta, since the integrands become, as
k-0,

and E» are also logarithmically divergent for small
momenta, but Ez (1 ring) and the sum E»+E„„are
finite' ~~.

I» 3[S(k)S(k )S(k )] 'E(k )[1 —S(k) -S(k )], (51b}
I2„—4 (Se), (54a.)

Ir, ——[S(k)S(k')S(k")] '(&) . (51c)
I~~- —[S(k)S(k )S(k )(e)] '[2(S'e) —(S)(S&)]' .

(54b)

E2(1 ring) p y dtdt
4 ~ It'I (52a)

E» p y ~ dtdt p y )dtdt
N

= 8" „ off'i 4" J if'i (52b)

E» p'y' dtdt
N 8»' J

(52c)

We note that, two types of singularities appear in
Eqs. (52). The more (or doubly) divergent terms
cancel each other in the sum E»+E„„, whose (less)
divergent contribution is, in turn, canceled by the
contribution from E2 (1 ring), thus resulting in the
finite value for E2.

In the charged-boson gas, integrals for both Ex

In the one-dimensional boson system with the 0-
function interaction, we have o(f) =&@(t)- it l for
k- 0 and the integrals in Eqs. (18) diverge logarith-
mically at small momenta, the singular contribu-
tions being

Finally we remark that the perturbation correction
E2~ generated by the three-phonon vertex appears
to contribute only a very small fraction to the sec-
ond-order term E2, its contribution (in second or-
der) being about 1.9/p in the charged-boson gas and
0. 16% in the one-dimensional boson system with the
5-function interaction. In the case of one-dimen-
sional boson system, the fair agreement between
Lieb and Liniger's exact numerical result and the
variational result E = Ep+Ej+Eg over the range
0 ~ y 6 may be partially explained by the smallness
of the perturbation correction E». In the problem
of liquid Hec the perturbation correction E3~/N
= —0. 76 'K evaluated by Davison and Feenberg' is
about 10.6/o of the experimental value E/N = —7.2 'K
determined at the equilibrium density p = 0.0218 A ';
it must be remembered, however, that ~ = 1 in this
case and that the second-order perturbation formula
given by Eq. (31e) is not exact since in the deriva-
tion of the formula use has been made of the con-
volution approximation for the three-particle dis-
tribution function p' ' (1, 2, 3).
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