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that produced from ionization by Kr radiation at

116. 5nm, which provided electrons with up to 1.3-eV
energy. NO~ was not observed in either case, and
the NO," currents were equal within the experi-
mental precision of 10%, which strongly indicates
that the reaction producing NO," is not of marginal
energetics. This finding is consistent with the pro-
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duction of NO," through reaction (18); however, it
does not support the production of NO,™ through
reaction (16’’) and, as a consequence, the relative
absence of NO~ remains at this time to be satis-
factorily explained. In pursuit of the solution to
this dilemma other possible explanations are being
investigated and will be reported as appropriate.

*Present address: Department of Chemistry, Hendrix
College, Conway, Ark. 73032.
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Resonant two-photon absorption is discussed for the case in which the exciting field may be

intense enough and near enough to resonance to cause appreciable saturation.

A single pair

of levels in an otherwise quite general atom is assumed to satisfy the appropriate resonance
condition, and equations are derived governing the time evolution of the associated 2x2 sub-
matrix of the full atomic density matrix. Atomic relaxation is treated explicitly. The analy-
sis, which treats both inversion-symmetric and inversion-nonsymmetric cases within the same
general formalism, is developed systematically, the necessary approximations receiving care-

ful discussion.

The results are analogous to those for the corresponding one-photon process,

but with a shift in the resonance frequency proportional to the intensity of the exciting field.
This frequency shift is not identical to the one calculated by time-independent (second-order)
perturbation theory, and becomes large when the energy of an intermediate state of the atom
approaches the mean of the energies of the active states.

In this paper we shall treat the process of two-
photon absorption'=? in the case in which saturation
effects may be appreciable. We shall treat the in-
cident field classically, and assume it to oscillate
harmonically at a frequency very nearly equal to
7-! times one-half of the energy separation of a
single pair of atomic states. Intermediate states,
i.e., states which are coupled to both of the active
states (the active states themselves, it should be
noted, may behave in effect like “intermediate
states” in inversion-nonsymmetric cases®) are
treated in full generality. The only restriction

placed on them is that their energies are required
to lie far enough from resonance to exclude appre-
ciable one- and two-photon field-induced transi-
tions from the active states. The time-dependent
atomic density operator is developed as a suitable
linear combination of harmonics of the field fre-
quency, and atomic relaxation is treated explicitly.
We show that the elements of the 2X 2 submatrix
referring to the pair of active states obey equations
formally analogous to those which arise in the more
familiar one-photon process,® % ®put witha field-in-
tensity —~dependent shift in the resonance frequency.
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This effective shift in the energy separation of the
levels in question emerges directly from the solu-
tion of the time-dependent problem, and differs
significantly from the shift predicted by time-inde-
pendent second-order perturbation theory.

Let us consider an atom with energy eigenstates
I7) and corresponding eigenvalues E;, where j=0,
1, 2, .... The atom is assumed to be coupled to
an incident electric field, in the dipole approxima-
tion, by the interaction Hamiltonian

H(t)=-1- E@), 1)

where the dipole moment operator % is allowed, in
order to allow the possibility of inversion-nonsym-
metric cases,? to have nonvanishing diagonal as
well as off-diagonal matrix elements.” The electric
field E(¢) is assumed to oscillate at a fixed frequen-
cy w and to be polarized in the direction specified
by the unit vector &g

B =(1/V2)2,[8(t)+8*®1)],
8(t)=8 e 1t .

(2a)
(2b)

For simplicity, we shall assume that the atomic
relaxation process is specified by the strong-colli-
sion model® (other relaxation processes may be
treated in an entirely straightforward manner).

The matrix elements of the time-dependent atomic
density operator are then governed by the equations

d . —~
<Zi—t +iWje + K)p,k(t) -K G,hn‘?)

=i[<g(t) + &% (t)]io[}\jm Pmi(t) "ij(t))‘mk] ’ (3)

where k is the collision frequency, ﬁ§°’ is the
(thermal) probability of finding the atom in the state
Ij) immediately after a collision, and the quantities
wye and Ay, are defined as

wp=(E; -E,)/I, (4)
M= (Uyp- 29/ . (5)

In the resonant two-photon excitation process we
wish to consider, the exciting field induces appre-
ciable off-diagonal elements of the density operator
which oscillate at frequencies in the neighborhood
of the frequencies + 2w, as well as inducing appre-
ciable changes in the slowly varying diagonal com-
ponents 7,(f). In addition, small nonresonant terms
are induced at frequencies which differ by + w from
the resonant components, i.e., at frequencies near
+w and + 3w. We define a,(#) as the term in py,(¢)
with Fourier components in the neighborhood of the
frequency +2w, and 8§ (¢) and £} (#) asthe terms with
components near +w and +3w, respectively, so
that we may write

a;, () = e84t @, (0) , (6a)
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() =e Bl (8), (6b)
B2 () =e B (@) , (6¢)

where @,,() and B3 (¢) are slowly varying functions
of time. The Hermiticity of p(¢) then implies that
its matrix elements are given by the relation

p”(t)= 6;); ﬁ](t) + [ajk(t) + a:j(t)]

+BR @+ B*W]+ B+ B7*D]. (D)

Let us substitute this expression for p,k(t) into
Eq. (3) and then make the appropriate resonant
approximation, i.e., equate separately to each
term on the left-hand side only those terms on the
right-hand side which oscillate at nearly the same
frequency. We find in this way that the functions
7,(t), a;(t), and B (¢) are governed by the differ-
ential equations

(% N K)(ﬁj(t) _aW)
=38*(1) é B (1) = B () Ayl +c.c. ,  (8a)
m=0

<% +iwgg+ K>a,,,(t) = if;o{x,m[é(t) ) (1) + 8* (DB (1)]

=~ [8(O8;) (1) + 8* (DB ()Nt ,  (8D)

(2142 +iw,+ x) B (1) = i 8(D)Ny, [7(t) - 7, (2)]

i85 (D) f_,o Dy Qg () = g (DAe] ,  (92)

(5 # i )2 O=160 Dymans(® - (O]

(9b)

At this point we shall make the assumption that
the two-photon process under consideration induces
appreciable transitions only between a single pair
of states, which we shall call | 0) and /1) (without,
however, implying any ordering in energy between
either one of these states and any other state |j)
for which j>2). The energy separation between the
states 10) and | 1) is thus taken to be approximately
equal to twice the energy 7w of one field quantum,
so that we have

wy o= (Ey —Ey)/E=2w , (10

a relation which we assume to be well satisfied for
the pair of states in question, but not for any other
pair of states in the atom. It is apparent then from
Egs. (6a) and (8b) that the only appreciable (posi-
tive) double-frequency component in the density
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matrix is the one for which j=1 and £=0. Calling
this component simply o(f)[= a,4(t)] we may make
the approximation

a;,(8) = 8,16, a(t) (11)
in Eqs. (9). We find then that the functions B3 (f)
obey the equations

( 9 sy k) 85 (0= i6(ONELD ~7y(0)

+i8%(t) (V1805 — B;10ge) a(t) , (12a)

((?t + Wy, + K)B(*)(t): 18 (1) (A 41005 = 051005) af?) .
(12Db)

The 2X 2 submatrix of the full density matrix
which refers to the states 10) and /1) has, in addi-

tion (possibly) to small nonresonant components pro-
portional to e* {¥f~ e*'@10¢/ 23 o *3i0Ex pr3iurgt/ 2 the

appreciable resonant components #,(¢) = py(#),
ig(£)= p go(t), a(f)=py4(t), and a*(#)=pyu(¢). The
resonant components obey, according to Eqs. (8),
the differential equations

(jt + K> (my (8) - (0))

—zé‘*(t [xl,ﬁ () =B O]+ coc. , (13a)

<% + x) (7o () =7s®)

=i8*(t) L[st"’ ) =B85 () Aol +c.c. , (13b)

(5 +iwno ) 2 =15 D (8088 )+ 81 553 0)
=0

~[8@BS () + ¥R (D INg . (13¢)
The driving functions B(¢) and $*(¢) in these rela-
tions play a role which is in fact very similar to
the role played by the amplitudes of the intermedi -
ate states in second-order perturbation-theory
calculations of two-photon absorption. It is nec-
essary, in order to reduce the problem to one
referring only to the states 10) and 1), to make
a further assumption, essentially equivalent to the
assumption that the intermediate states are virtual
rather than real: We must assume that no appre-
ciable one-photon field-induced transitions take
place from either one of the states |0) or 11) to
any other state of the atom.® This is simply the
condition that the quantities | E; - Ey| and | E; - E||

are not too close to the energy %w of a field quantum,

and it guarantees that the intermediate amplitudes
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3(#) in Eq. (13) will be small. We must assume,

in particular, that the relations
- wl >k, (14a)

(14b)

\ Wik

|wge —w| > | 2010 - |
are satisfied for all w;, for which either j or & is
Oor 1. K we also assume that the frequency band-
widths of the functions #(f) and a(¢) in Eqs. (12) are
small compared to |w,, — wl (the condition required
to justify this assumption is discussed later), then
we may easily show that Eqs. (12) can be solved for
B,(:)(t) simply by making the approximations

B D) > —iwBy (1)~ — 3w B (t)

dt
"’(t ~ = 3iwB P (B~ - 3wy B2 (t) .

The functions B/ () are thus given at any time by
the relations

- 1 _ —
Bj(k) (#) =<m> {g(t))\jk[nk(t) - nj(t)]

+EX(H) (1805 — B,10 ) ()}, (152)

B;;?(ﬂ =<—1£—> g(t) (7\115013 - 511)\ou) a(t) 3
Wip —2W

10
(15b)

for all pairs of indices j and % satisfying the off-
resonant conditions described above. Since these
conditions are by hypothesis valid for all of the
functions on the right-hand sides of Egs. (13), the
functions B(f) may be eliminated entirely from the
problem, thus reducing the Eqs. (13) to a form in
which only a(f) and the occupation numbers 7;(¢)
appear explicitly.

1t is equally true, although it is not apparent from
the foregoing discussion, that the contributions from
the occupation numbers 7;(¢) for j> 2 vanish identi-
cally when Eqs. (15) are substituted into Eqs. (13).
Equations (13a) and (13b), for example, when the
functions g (#) in them are obtained from Eq. (15a),
take the simple form

d
(dt + x) (1) = 7") = —igs 8*¥¥(t)a(t) +ig,82(H) a* (1) ,
(16a)
d
(dt " ") (o) -7 Q) = igh E*3(t) a(t) - ig, 82 (D (t)
(16b)
where the complex parameter g, is defined as
L
=), —1L 17a
&2 j=0Wjo — %ww ( )
=i 7\11)\{0 N (A ’;A_QQ))\IO (17b)
j=2 Wjp — 2Wyg 2Wi1g
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Equations (16) for the occupation numbers 7%, (¢) and
7o(t) have the same form as the ones which arise
in the analogous one-photon process, but with the
positive-frequency part of the driving field §(¢)
replaced by &%), and with the dipole matrix ele-
ment connecting the two states in question replaced
by g., the effective “two-photon matrix element”
that appears in perturbation-theory treatments of
two-photon absorption. '+

That essentially the same analogy holds for the
equation governing the time dependence of a(f) can
be verified by substituting for the functions B(#)
in Eq. (13c) the values given by Eqs. (15). Again
we find that the contributions from the terms pro-
portional to 7;(¢) for j>2 cancel out, and the equa-
tion for a(t) is found to be, in direct analogy to the
one-photon case,

<dit +i(wyo+ Bwyg) + x) a(t) = —ig,8%(t) [ () -7g(t)] ,
(18)

where g, is the parameter defined by Egs. (17), and
the field-intensity—dependent frequency shift dw,,

is given by the relation
I I 2! 2
Swig=-2| 8o|® T (—z”——‘%‘- —zﬂ—_%g’—) . (19
0

wj1 ~3Wip Wjp—

This expression for the shift in resonance frequency
resembles the result one would obtain by calculating
the energy shifts for the states 10) and 11) by
means of time-independent second-order perturba-
tion theory, replacing the driving field by its rms
value. The result given by Eq. (19) is significant-
ly different from the time-independent result, ® how-
ever, in the presence of the term §w?;~ w? in the
denominators. This difference is especially im-
portant if the energy of an intermediate state |;)
lies near the mean of the energies E; and E, [while
not, of course, violating the conditions (14)], the
value for 6w, given by Eq. (19) becoming singular
in the limit E; ~ 3(E,+E,). Singularities also ex-
ist, it should be noted, both for E;~ E, + 3#iw,, and
for Ej" EO - %h’wm.

The equilibrium solution to Egs. (16) and (18) for
the occupation numbers 7%, and 7, is

102
-y = K%+ (wyg+ gwfo -2w)%+ Q2 @ -af'),
(20a)
y-n = — (7 -7, (20b)
where , is the two-photon transition rate
Q= 2g5| &o|* . (1)

It is worth noting that just as in the case of reso-
nant one-photon transitions, the exciting field in
the two-photon case does not alter the trace of the
submatrix referring to the pair of active levels,
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ive., Ay+7g=n+7®. This relation is a simple

consequence of our assumption that no resonant
one-photon transitions take place from either of
the states 10) and | 1) to any other state. In fact,
if we extend this assumption so as to apply to any
pair of states, i.e., if we assume that Eqs. (14)
hold for all pairs of indices j and k, then Eqs. (15)
also hold quite generally, and we find by substitut-
ing Eq. (15a) into Eq. (8a) that for j>2,

. Q0 -791-0, (22)
and hence that in equilibrium 7%,=% >, The atomic
populations for states other than |0) and 11) are
thus unaltered by the driving field in the approxi-
mation we are considering.?

That this approximation requires that an addition-
al condition be placed either on the energies of the
intermediate states or on the intensity of the driving
field can be seen by considering the exact equilib-
rium solution to Eq. (12a), without making use of
the conditions (14). In place of the factor [w,,,

- 3wyl in Eq. (15a), we then have the factor

(wyp —w = ik)™!, leading to a correction term in
B57) () approximately equal to (w — 3w;o+iK)/(w s — w)?
times the expression in curly brackets in Eq. (15a).
When this correction is included in the relation

(8a), we find that the correction to the occupation
numbers 7, (in equilibrium) is of order &2\2/

(wjp = w)®. We must therefore impose, in addition
to the conditions (14), the further condition

| wse = w| > |28, , (23)

which may easily be satisfied even when the values
of the relevant parameters lead to an appreciable
degree of saturation. It is worth noting that this
same condition (23) also implies that the parameter
Q,, which is essentially the frequency bandwidth
of the functions 7(t) and a(¢#), is small compared
with lw;, —wl, and hence is necessary to justify
the adiabatic approximations of Eqs. (15) in the
time-dependent case.

As a check on the consistency of our approxi-
mations, itisinteresting, finally, tocalculate the
rate at which the driving field does work. This quan-

tity is, by virtue of Eqs. (1), (2), and (5)~(7),
d
71%= aE(t) - trlp(t)ii]

= —ihw8* () 2o Mg BE () +c.c. (24)
k=0

the latter expression representing an average over

many periods of oscillation of the field. By sub-

stituting Eq. (15a) for 87 (¢) into Eq. (24) and

making use of Eq. (10), we find the relation

% =Tyl — g 8¥¥(1) a(t) +ig8%(Me* ()], (25)
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which corresponds exactly to the analogous rela-
tion in the case of resonant one-photon excitation,
and expresses, via Eqs. (16), dW/dt as the rate
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of change of internal energy (E,dn,/dt+ E ydny/ dt) of
the atom plus a term representing energy loss due
to collisions.

1See W. Heitler, in The Quantum Theory of Radiation,
3rd ed. (Oxford U.P., London, 1957), Chap. 4, for an
outline of the basic (perturbation) theory of multiphoton
processes.

’See B. R. Mollow [Phys. Rev. 175, 1555 (1968)] for
a quantum-mechanical analysis of two-photon absorption
which is valid for (weak) fields with arbitrary statistics.
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by G. S. Agarwal, Phys. Rev. A1, 1445 (1970).
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A. M. Bonch-Bruevich and V. A. Khodovoi, Usp. Fiz.
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‘A. Gold and J. P. Hernandez [Phys. Rev. 139, A2002
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the microwave region. Their discussion of the process,
which is based on pure states, leads for the simple
models they consider to results similar to ours.

The analysis presented here applies equally well, with
minor changes in notation, to the case of rf-induced transi-
tions between Zeeman sublevels in a strong magnetic field
(Ref. 3). In that case diagonal matrix elements in the
interaction Hamiltonian will be present whenever the rf
field has nonvanishing components in the direction of the
constant applied field.

®In effect what we are requiring is that the process un-
der consideration be a bona fide two-photon process, and
not simply a succession of one-photon processes.

8 Time-independent perturbation theory does, on the
other hand, lead to Eq. (19) for the frequency shift if
the incident field is treated quantum-mechanically, and
is represented by a single highly excited mode of oscil-
lation.

°It should be noted, however, that for atomic relaxation
mechanisms other than the particularly simple one under
consideration here, the field may indivectly affect the
atomic populations 7%, for j> 2 (as well as the quantity
%, +7), sincealtering the ratio 7;/7%, would in general have
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other states of the atom.
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The ground state of a many-particle boson system is studied for two closely related limits:

the uniform limit and the weak coupling limit.

The former is defined by o =1 —g(0) <1 and

the latter by g = (N —Ng)/N <1, where g(r) is the radial distribution function and N, is the mean

occupation number of the zero-momentum state.

In the uniform limit the variation-perturba-

tion approach based on (a) the method of correlated basis functions and (b) the series expan-
sion in powers of ¢ is found to be equivalent to the field-theoretic treatment given by Brueck-

ner (for the charged-boson gas) in the weak coupling limit.

In particular, it is shown that the

variation-perturbation energy obtained for the uniform limit in the momentum representation
is identical through second order to the ground-state energy evaluated for 8 <1 by summing

one- and two-ring diagrams in the Bogoliubov occupation-number representation.

The charged-

boson gas and the one-dimensional boson system with a §-function interaction are considered
to examine some of the interesting features of the uniform-limit procedure.

I. INTRODUCTION

In recent years, the ground state of a many-body
boson system has been studied with a great variety
of approximation methods. In particular, the field-
theoretic techniques in conjunction with the Bogoliu-
bov canonical transformation* have been widely em-
ployed in the development of exact theories for
many-body boson systems—such as the hard-sphere

boson gas at low density®® and the charged-boson
gas at high density. *% These procedures are based
on the Bogoliubov weak coupling limit! defined by
the condition that the major fraction of the particles
are in the zero-momentum state (i.e., nearly
complete Bose-Einstein condensation into the state
k=0). Under this special limiting condition the
Bogoliubov canonical transformation enables one to
carry out the exact and complete summation of one-



