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A comprehensive theoretical description is given for the effects of magnetic resonance on the
angular distribution of radiation emitted from oriented nuclear states. The formulation is made
in a general way. It may be applied to an ensemble of nuclei oriented by any method: For ex-
ample, nuclear reactions, angular correlations, and low-temperature nuclear orientation xnay

be treated. In fact the theory can also be applied to optical —double-resonance experiments.
Statistical tensors are defined to describe nuclear orientation in the "resonant" state. Inter-
actions of the oriented ensexnble with extranuclear fields are then considered, and the effect of
a radio-frequency (rf) field on the angular distribution of radiation is given. Two formulations
are given for the "pure magnetic" case, for which numerical calculations were done. One employs
an angular correlation formalism, following the evolution of the density matrix in the laboratory
frame S, while the other is more closely related to conventional NMR. In the latter approach
the transformation into the frame S'' ', wherein the statistical tensors are time-invariant, is
described in terms of a 'generalized torque equation" governing the motion of a unit vector along
the symmetry axis in S ". Both formulations are exact. Time-dependent distribution functions
are worked out in detail, with both fixed and random-phase angles between the rf field and the
initial symmetry direction. Fast oscillations due to the constant magnetic field are modulated
by slow oscillations due to the rf field. Tixne-integral curves were calculated. These show
great sensitivity to the rank of the relevant statistical tensor, to geometry, and to the phase of
the rf field. Multipole structure is predicted for certain geometries, with the resonance line
showing a number of maxima equal to the rank of the statistical tensor. Under certain condi-
tions two types of asymmetry are observable. A "transient" asymmetry appears for low-rf-
field values: This asymmetry is sensitive to the sign of the nuclear moment, but it disappears
in high-rf fields. Odd-rank statistical tensors can also give response functions with "persistent"
asymmetry that remains at high-rf fields. This is a parity effect and is not sensitive to the
sign of the nuclear moment. Effects of relaxation are also discussed briefly.

I. INTRODUCTION

Recent progress' 7 in nuclear radiation detection
of NMR (NMR/RD) has stimulated us to develop a
theoretical description of this method, which is
presented here. We have two principal aims: (i) to
provide a description that is sufficiently exact and
complete as to be immediately useful to anyone
planning experiments in this area; and (ii) to give
a unified description that stresses the essential
similarities in the various experimental techniques
that may be combined with NMR. The three such
techniques that we shall consider are nuclear orien-
tation, perturbed angular correlations, and angular
distributions following nuclear reactions. We denote
the combinations of these with NMR as NMR/ON,
NMR/PAC, and NMR/NR, respectively. Experi-
ments of these types have typical double-resonance
character, with the "effect" being observed by the
spatial multipole intensity pattern of the nuclear
transition rather than by its energy absorption. For
all experiments of this type it is desirable to achieve

a sizable degree of polarization or alignment of the
nuclear state such that it exhibits a nonisotropic
radiation pattern of the general form

it'(8) =Z, B„G„A„P„(cos0).
Here, B„is the orientation parameter, G, is the
perturbation factor, and A„is a parameter that
depends only on the nuclear transition. The three
methods mentioned above each apply to a certain
lifetime range: (a) NMR/PAC will involve states
with 10 ' & T«, & 10 ' sec; (b) NMR/NR applies to
isomeric states in the range 10 sec & Tg/p ~'minutes;
(c) NMR/ON requires T, &,

—hours, except for re-
orientation in intermediate states with T, /2 —Tg,
where T, is the nuclear-spin-lattice relaxation
time.

The origins of the NMR/RD field are diverse:
This fact has probably delayed its development.
Indeed, the basic knowledge and technology for ex-
periments of the types cited above were available
in 1960 or earlier: They only awaited being put
together. In 1952 Deutsch and Brown used annihi-
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lation radiation to detect NMR in positronium.
Brossel and Bitter had calculated NMR line shapes
for optical-double-resonance lines, in which atomic
excited states were oriented by optical pumping and
resonance absorption was detected by depolarization
of deexciting dipole radiation. Guichon, Blamont,
and Brossel' reported the effect in atomic mer-
cury in 1956. These experiments are very similar
to the NMR/HD methods, and it can be shown that
our theoretical description is sufficiently general
to include the optical-double-resonance work.

Two papers appeared in 1953 in which Bloem-
bergen and Temmer" suggested NMR/ON and
Abragam and Pound suggested NMR/PAC. Neither
of these suggestions was quite specific enough to
lead directly to a successful experiment, ' but they
laid the theoretical ground work for the two meth-
ods. Between 1953 and 1966 several very interest-
ing experiments were reported' in the general
area of NMR/RD. Unfortunately, they all depended
on rather special properties (such as p asymmetry,
gaseous samples, special lattices, etc.), and in any
case none of them was very close to the 1953 pro-
posals. Thus the applicability of NMH/RD was
rather limited.

With the success of recent experiments on both
solutes in host-metal lattices and free atoms, ' '
the scope of NMR/RD has become much broader.
The NMR/PAC, NMR/ON, and NMR/NR methods
have all been shown to work. An impressive num-
ber of resonances have already been observed. '
Although several discussions have appeared in which
theoretical aspects of NMR/RD were treated, 2' 3~

it is clear that the growth of the field calls for a
more general and thorough treatment, as given
below. In particular, the following points will be
carefully considered: line shape, power depen-
dence, rf phase, favorable geometries, and time-
differential effects.

Before considering the theory of NMR/RD, it is
useful to consider its range of application, and
particularly to define the limits of its applicability.
NMR/RD and conventional NMR are complementary
rather than competitive. In fact it is inconceivable
with present technology to do both conventional
NMH and NMR/RD on the same nuclear state. It
appears that NMR/RD alone is applicable to most
nuclear states of lifetime less than years. At the
other end of the stability spectrum the NMR/RD
methods might be able to produce observable ef-
fects for states having lifetimes down to 10 ' sec
or perhaps even shorter. It would, however, be
pointless to study such very short-lived states
(i.e. , ~ —10 ' sec) by NMR/RD, because the natural
linewidths would preclude measurements of higher
accuracy than that obtainable with time-integral
PAC. For slightly longer-lived states, in the
y & 10 '-sec range, time-differential PAC becomes

applicable. Using, for example, the stroboscopic
observation technique, ' time-differential PAC can
be made not only as accurate as NMR/PAC, but
actually a little better. This advantage arises be-
cause the stroboscopic method yields the Fourier
transform of the time spectrum, which is essential-
ly equivalent to an NMR line, but with no rf broad-
ening. To do NMR/PAC efficiently on the same
state would require, as we show later, a radio-
frequency (rf) field of sufficient intensity to increase
the linewidth by about a factor of 2. Therefore
NMR/RD offers no a Priori advantage of accuracy
for states in the 10 '-10 -sec range. It may,
however, be applied to cases inwhich the resonant
frequency is so high as to preclude fast timing, as
for ' RhFe. ' In any event NMR/RD is unlikely to
be of much value for states of lifetime y&10 sec
because of natural linewidth, or for states with
7 &10 yr for intensity reasons. For nuclear states
in the range 10 ' sec & 7. &years, NMR/RD combines
the advantages of NMR with the extremely high sen-
sitivity of single-quantum detection. In comparison
with conventional NMR, NMR/RD has much higher
sensitivity.

The essential equiva. lence of the three NMH/RD
methods is established and discussed in Sec. II,
and the density-matrix formalism is introduced.
General equations for perturbation of an angular
distribution by an rf field are derived in Sec. III.
In Sec. IV the "pure" magnetic-resonance case is
treated by another geometrical approach more
familiar in the NMR field. Section V presents a
discussion of several properties of the perturbation
factor. In Sec. VI the resonance behavior for
specific geometries is discussed. In Sec. VII the
influence of relaxation is treated briefly.

II. PERTURBATION OF ORIENTED STATES

A. Description of Oriented States

An ensemble of oriented nuclei may be prepared
in several ways. The absorption or emission of
unpolarized radiation in a direction k, by a ran-
domly oriented ensemble (ordinary source or tar-
get) produces an oriented ensemble of nuclei which
is axially symmetric about k, . Orientation of nuclei
can also be achieved through the interaction of ex-
ternal fields with either the (static) magnetic dipole
moment or the (static) electric quadrupole moment
at low temperatures. Dynamic microwave or optical
methods of nuclear orientation, which depend on the
emission and absorption of radiation in the electronic
environment of the nuclei, can also be used.

It is assumed here that the oriented ensemble of
nuclei possesses an axis of cylindrical symmetry,
which we shall denote by the unit vector k, . The
state of the oriented ensemble at the time of forma-
tion t = 0 will be represented by the density matrix
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p(0); with matrix elements (Im' I p(0)!Im) in the
representation I Im), where I is the angular mo-
mentum quantum number of the individual nuclear
states and m and m' are eigenvalues of I, with re-
spect to the quantization axis z. If z is parallel
to the symmetry axis k„the density matrix is
diagonal in the ! Im) representation at t = 0.

It is convenient to expand the density matrix p(0);
in terms of irreducible spherical tensors p, (0); of
rank A, the so-called "statistical tensors. "' The
statistical tensors are defined by

p, (0);=2 ( —1)'™(I—m'Im
~

Xq& (Im'
~
p(0)

~
Im) .

transformation,

P,' (0)f, = Po(0)f,ba, , (6)

and the orientation of the ensemble of nuclei of spin
I is completely described by the 2I parameters
po(0)f . Even values of X mean alignment of the"1
nuclear ensemble. The po(0); are identical (except

1
for a trivial factor) to the orientation parameters
B,(I) which are employed in the theory of nuclear
orientation. " ' Different sign conventions are
used in nuclear orientation theory. We shall adopt
the relation

B (I) = (2I+ 1) t p"(0)g (6a)

Using the orthogonality relation of the Clebsch-
Gordan coefficients (I m'Im I -Xq& this definition
leads to the multipole expansion of p(0);,

or

B~(I)=(2I+1) Z„(—1) ' (I—mIm~XO&P(m) .
(Im'

I p(0)
l
Im) =2, (-1)'™(I- m'Im

I &q&p."(0); .
(2)

The tensors p,'(0)~ are Hermitian in the sense that

(6b)
Here P(m) is just p, , a diagonal element of the
density matrix. The orientation parameters are
normalized such that

p,
' (o);= ( —1)'p', (0); (3) Bo(I)=1 if Z P(m)=1 .

p', .(0);, =Z, p,'(0);D,'" (z-z'), (4)

where the indices z and z' represent the quantiza-
tion coordinate systems. If the symmetry axis k,
is chosen as the quantization axis, p,"(0)p is in-a
variant under a rotation about k„i.e. , under the
transformation

D,'", ' (n, 0, 0) = 6„.e "
Hence, in this representation we have after the

Under a rotation R of the quantization coordinate
system by the Euler angles n, p, y which carries
the z axis into a new z' axis, z-z', the statistical
tensors transform according to the irreducible rep-
resentation D,',"!(z- z') of the three-dimensional
rotation group R':

The orientation parameters can be computed
from Eqs. (6) if the populations P(m) of the axially
symmetric m substates are known from the method
of orientation (e. g. , low-temperature orientation,
Coulomb excitation, nuclear reactions, etc. ).

For an ensemble that is oriented by observing,
in the direction k, = z, a preceding (unpolarized)
nuclear radiation X emitted from a (random) state
Io, the orientation parameters are similar (but not
identical) to the directional distribution parameters
A, (X) as defined in directional correlation prob-
lems. ' Consider a state of spin I oriented by the
observation of a preceding y radiation of multipole
components (v, L) [v = 8 (electric) or v = M (mag-
netic)] emitted in the decay Io- I. The orientation
parameters are given in terms of reduced emission
matrix elements (I ll j„A~~ '

I( I0),

B~(I) = 2 (- 1)'~' "F,(LL'IOI)(I II j„A,"!II &(Ill j„A,', '!I I &* ~~
~
(Ill )„A,"'

ll I,& ~

',
LfIL' s' L, r

(7a)

where F&, (LL IOI) are the F coefficients as defined, e.g. , in Ref. 36. For a pure-multipole y radiation (wL)
the B,(I) are simply

B~(I)= ( —1) F„(LLIOI). (7b)

The quantization (symmetry) axis for the B~(I) is of course the observation direction k~.
The orientation parameters of a state I that is oriented by the observation of radiation X other than y

radiation is given by

Bi(I)= (- 1)"2 (-1) '
b,(LL'; X)F,(LL'IOI)(III XII LI &(Oil XlL'!I Io&* 2 bo(LL; X) i (IIIXL II IO& ',

L ~ L L
(8)
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where the b,(LL'; X) and (I It XL tl Io) are the particle
parameters and the reduced matrix elements, re-
spectively, for the emission of the particle X with
multipolarity L and L'. The particle parameters
for p transitions usually include the reduced matrix
elements and the factor ( —1)"'~'~ .I

In nuclear orientation experiments the Parent
nucleus, a long-lived isotope, is oriented, and the
B,(I) may be calculated from knowledge of the am-
bient temperature and the Hamiltonian describing
the interaction of the nuclear moments with ex-
tranuclear fields.

Nuclear reactions produce an ensemble of nuclei
oriented relative to the beam direction. The orien-
tation is axially symmetric if the incoming par-
ticles are unpolarized and if the outgoing particles
are observed at 180' or not at all. The B,(I) pa-
rameters thus depend upon the detailed reaction
mechanisms. Often the assumption is made that the
population distribution in magnetic substates is
Gaussian, with maximum population in the sub-
state(s) that have minimum spin projection in the
beam direction.

itt p = [Z, p] = Xp —pae . (9)

The operators p and K must be defined in the same
reference frame.

Solutions of Eq. (9) are found by introducing the
time-evolution operator A(t), which represents a
time-dependent unitary transformation of the den-
sity matrix p:

p(t) =A(t)p(0)A(t)'. (lo)

The density matrix p(t) is a solution of Eq. (9) if
A(t) satisfies the Schrodinger equation

sA(t) = —-X(t)A(t) .

If the operator K does not contain the time t ex-
plicitly or if a reference frame can be found such
that K does not depend on t, the solution of Eq. (11)
is

A(t) = exp(- tXt/n),

and p(t} has the simple form

B. General Description of Perturbation of Oriented States

The central problem in calculating the influence
of an extranuclear perturbation on angular distribu-
tions or correlations is the computation of the time
evolution of the density matrix p(t) from a given
initial state p(0) for a specific perturbation Ham-
iltonian X:

p(o)-o(t) .
The time evolution of a density operator is given
by the von Neumann equation'

p(t) = exp( —i 3Ct/tt) p(0) exp(+ tent/tt) . (13)

In the angular momentum representation (Imj
using an arbitrary quantization axis z, Eq. (10)
takes the form

x &m'I p(0) lm)&ml A (t) lm) . (14)

In general, a representation is chosen in which
the time-evolution operators A(t) have a partic-
ularly simple form and the density matrices are
transformed into this representation if they were
given in a different representation. Because of the
simple transformation properties [Eq. (4)] of sta-
tistical tensors it is more convenient to express
the relation [Eq. (14)] in terms of the statistical
tensors p,". On the basis of the definition [Eq. (1)]
one obtains

p,"(t);= Z (-1)"'""'&I-m'Iml ~q)&I- m'Iml ~q&
q)), , tn', fft

x &m' A(t) I
m')&ml A'(t)

I m)p.'(o); ~ (16)

This equation can be written in the instructive form

p,'-(t); = Z G,"-,(t);*p,"(o);, (16)

The perturbation coefficients G',~(t)* which com-
pletely describe the effects of the extranuclear per-
turbation on, and the time dependence of, the en-
semble are simply the coefficients of the expansion
for the statistical tensors p,

"(t) in terms of -the sta-
tistical tensors p,'(0) that describe the ensemble at
t = 0. The complex conjugate of the perturbation
coefficient has been written in Eq. (16) in order to
have the same notation and the same explicit form
for G",„(t)as in the-earlier angular correlation
literature. 8 From Eq. (17) and the properties of
the Clebsch-Gordan coefficients the general sym-
metry relation

G;~(t)*= (-1)'"G,-, (t) (18)

can be derived. A comparison with Eqs. (3) and
(16) shows that the G~)(t) are actually the expansion
coefficients of the Hermitian adjoint statistical
tensors p,

" .
An ensemble of nuclei formed at the time t =0

with a symmetry axis k, changes under an extra-
nuclear perturbation into an ensemble that is given
at time t by the statistical tensor

where we have introduced the perturbation coef
ficient

G~~(t);= 2 ( —1) ' " (I- m'Im Iraq)&I —m'Iml Aq)
nfl

x &m A(t)
I
m)&m'I A(t)

I

m')*. (»)
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p,'-(t) =Z G,-„(t);p'(0)„-,D,',"(k,—z),
X, q

(19)

p,'(t)f" =Z p (t);D,-".,-' (z-k, )
i

where Eqs. (4), (5), and (16) have been used. For
the representation axis z of p, (t); -and G~~(t); a sym-
metry axis of the perturbing interaction can be
chosen in order to have a particularly simple form
of the attenuation coefficient [Eq. (17)]. If the sta-
tistical tensor p~(t) that describes the perturbed en-
semble is to be represented in the original k, rep-
resentation, one has

G'-(t)(t = e ""P'S„-S„-. (a7)

The time-evolution equation (16) for a static mag-
netic interaction thus becomes

p,'(t)(( = e""p'p,'(o)(( (a6)

This equation is equivalent to the equation that de-
scribes a rotation of the quantization coordinate
axes about Ho through an angle n = —~ot:

orthogonality property of the Clebsch-Gordan coef-
ficients, the perturbation coefficient [Eq. (17)]
takes the simple form

D(1)( O O) -(qaS +(q&ap(S
ac' ac' 00 (a9)

C. Perturbation by Static Magnetic Fields

(ao)

The Hamiltonian that describes the interaction of
a static magnetic field Ho with the magnetic mo-
ment p = g I p„/8' of a nuclear state has the form

X= —p, 'Ho ~ (al)

It is diagonal if the direction of Ho is chosen as
quantization axis z, i.e. , Ho= Hoe„where e, is
a unit vector. Thus

&Im'IXI Im) = —Hp&Im'I )1, IIm&

= —Hp( —1)' ', (III p, II I)—m' 0 m

p, = tII t1, !Il) =
a ) I) ), (2 (III (1!II), (a3)

the energy eigenvalues are given by the well-known
expression

E„=(Im
~
3C

~
Im) = —

H 2 (1(m/I) = —g (1„Hpm= (dpi m,

(a4)

where g is the g factor of the nuclear state and p,
„

is the nuclear magneton. In this equation we have
introduced the Larmor frequency

m
Hp [(aI+ 1)(I+1)i)1/2 (III @II )s„~'

(aa)

where the Wigner-Eckart theorem and the explicit
expression for the 3-j symbol have been used. With
the conventional definition of the magnetic moment

Hence, if one writes the statistical tensor p,'(t) in
a representation with respect to a coordinate sys-
tem Sp(t) that rotates about Hp= Hpe, with the angular
velocity p)p (see Fig. 1), one obtains

p (o) ' (() ~ p (t)Hp'e 6 ' p (o)Hp
a'

(3o)

This equation is the quantum-mechanical equivalent
of the Larmor theorem, which states that the in-
fluence of a uniform static magnetic field Ho on an
ensemble of magnetic dipoles p. can be expressed
by using the description of the ensemble for HO=0
but with reference to a coordinate system that
rotates with the Larmor frequency ~0 about Ho.

If the ensemble has a symmetry axis k, the effect
of a magnetic field HD can be described by a rotation
of the symmetry axis k~ about Ho with the Larmor
frequency coo. This interpretation will be useful
in later discussions.

D. Perturbation by Radio-Frequency Fields

1. Time DePendent (Dif-ferential)
Perturbation Coefficient

The presence of a static magnetic field Ho causes

(dp = —g Hp(1~/I . (as)

In the (Im] representation, i.e. , H(, =Hpe„ the
evolution operator is diagonal;

&m~ii(t) m)=e 'P"S-... (a6)

and after summing over m' and m and using the
FlG. 1. Transformation from the laboratory frame S

into the rotating frame S'(t).
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a splitting of the energy levels of the nuclear states
[Eq. (24)]:

F. = h ropm, (31)

H(t)„=Hoe, + H, [e, cos(art+ n) + e, sin((d t+ 6)] .
(34)

The interaction Hamiltonian in the laboratory sys-
tem Sis

X(t) = - t H(t), (36)

e.g. , for a circularly polarized rf field

X(t) = g(p„/K)I(HQ, + H, [I, c—os(~t+ n. )

+ I, sin((dt+ n)]'I . (36)

where the quantization axis is parallel to Hp. An

rf field of proper frequency and polarization direc-
tion will induce transitions between the magnetic
substates and will alter the degree of orientation
of the ensemble of nuclei.

An rf field H~(t) is considered whose magnetic
vector is perpendicular to Hp, i.e. , it lies in the

xy plane. A circularly polarized electromagnetic
field is represented by the magnetic vector

H', (t) = H([ e„cos ( I
~

I
t + n ) + e, sin( I

~
I
I + n)],

(32)

where the index + or —indicates right or left cir-
cular polarization, respectively. The phase b, ac-
counts for the fact that the rf field has a particular
direction at t=0, when the nuclear state is formed.
If continuous rf is used with no "phase locking" one
has to average over the phase b, . The necessity to
introduce a phase angle distinguishes radiative
detection methods from continuous-wave NMR in
stable nuclei, where no time scale is defined by
either creation or decay of a nuclear state, although
an analogous time scale exists in pulsed NMR ex-
periments. Thus, for short-lived isomeric states
the lifetime represents a minimum "time window, "
which results in a characteristic linewidth even for
very long nuclear relaxation times.

For a linearly polarized (lp) field along the x axis
one has

Hp(t) = 2H, e, cos(I (d
I
t+ n) . (33)

Following the usual practice we may regard H„(t)
as being composed of right and left circularly po-
larized components H, (t) [see Eq. (32)]. Only the
component rotating with the same sense as the nuclear
Larmor precession can induce resonance. This
component is determined by the sign of the nuclear
g factor. Allowing for co to have the sign defined
by (d = —(g/ Igl ) i(d I we may write the resultant cir-
cularly polarized magnetic field acting on the nu-
clear state as

This expression follows from the fact that the ef-
fective magnetic-moment operator p, is proportional
to the total angular momentum operator I,

p =g ((J((/tf)& ~

By using the operator identity '

I cosg + I sing = e "»8 "I e"»' "
x x

(37)

(36)

the Hamiltonian [Eq. (36)] can be written in the form

Z(t) = —g (I „/e)[IIp,+ II, exp[ —ti, (~t+ t,)/a]

x I„exp[+iI,(~t+ n)/tf]) . (39)

U(t) (I (&a (+6) /-h

and the Hamiltonian X' in S' is

(4O)

~ ' = U '(t) X (t) U(t) —ia U'(t) (41)

The term —ih U's U/st, which must be added be-
cause the transformation is time dependent, cor-
responds to the classical Coriolis force.

The execution of the transformation [Eq. (41)]
leads to

R'=-g(p„/h)[(1 —~/(dp)HOI;+H&I&] . (42)

This "time-independent" Hamiltonian is not diag-
onal. It describes an interaction of the nuclear
ensemble with an effective magnetic field H, in the
x'z' plane of S':

H = [(1—(d/(u )'II'+ H']"' (43)

The direction z" of H, is given by the angle p with
respect to the z' axis [see Fig. 2(a)],

tanp= H, 1 ——Hp .
COp

(44)

Hence, by a further rotation V(P) of the coordinate
system S'(t) about the y' axis through the Euler
angle P the new z" axis is made to coincide with

The Hamiltonian [Eq. (39)] is expressed with re-
spect to the laboratory system S.

For the computation of the perturbation coefficient
G', -,(t); of Eq. (17) the matrix elements of the evolu-
tion operator A(t) [Eq. (12)] in the Iim); represen-
tation with respect to the laboratory frame S are
required. In order to apply Eq. (12), the Hamil-
tonian K(t) of Eq. (39) must first be transformed

to a frame of reference S' such that K' does not
contain the time t explicitly. This transformation
is accomplished by introducing a system S' that
rotates with the angular frequency cu about the z axis
of the laboratory system (see Fig. 1). This trans-
formation is represented by the time-dependent
unitary transformation operator
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i IZ

Z=Z
h

I He

FIG. 2. Transformations (a) from the
S' frame into the S" frame, with H as the
z" axis, and (b) into S"', a second rotat-
ing frame. The S" S"' transformation
transforms H, to zero in the S"' frame.

X

the direction of H, [see Fig. 2(b)]:

V(p)t~l V(p) e(IBB/ h~I jl&8/-h (45)

Air(t) ll&8/h BIBB/h
I

= exp{- i [m~t+ (m —m)A]}
The explicit evaluation of X"by using operator
identities similar to Eq. (38) gives x (m I

e-""'"A "(t)e""'"
I m) . (51)

X"= —g(P„/K)[(1—(u/&uB)BIIBB+ IIB]'/BI,„.(48)

This Hamiltonian is diagonal and has the matrix
elements in the angular momentum representation
[In};„

Using the closure relation Q„I n)(n I
= 1 twice, one

obtains

(m I A(t) I m) =2 exp( —i [m&a&t+ (m —m)6] }

with

&nlrb" In'& = E„5„„,= tt~,n5„„, (47) x &ml e-""'"ln &&nl A"(t) In&

(u, = —g(P„/)f)[(1—(u/(u, )BIIBB+II',]'/8 .
At resonance co = co„the energy splittings are given
by

x &nl e"" Im) . (52)

Since K" is diagonal in the representation (In};",
the evolution operator A "(t) is diagonal:

AE ——g Pg Hy —COgS 8 (48)

They are independent of Hp The solution of the
Schrodinger equation [Eq. (11)] in the system S"
is now given by

A"(t) = exp[- (I/n X"t] . (48)

(5o)

Since we want to find an expression for the ma-
trix elements (m I A(t) I m), the time-evolution oper-
ator A"(t) must be transformed back to the lab-
oratory system S:

A(t) = [ U(t) V(p)]A" (t)[U(t) V(p)]'

U(t) e-&/yB / 8 A (t) eel yB
/ 8 U (I O)

(nl A"(t)ln) =e "'"'"'5

Introducing the d functions (Ref. 33, p. 22)

D"'(O p, O)=d „'(p)=(mle.""'"In),

Eq. (52) can be expressed in the explicit form

(m
I
A(t) I

m)= exp[-i [mat+ (m —m)A]}

x Z„da'(p)d."„'(p)e """"

(53)

(54)

(55)

The operator Ut acts on the initial state and hence
must be evaluated at t = 0. The evolution operator
is now expressed in the angular momentum repre-
sentation (Im};:

&m
I
A(t)l m&= &m I exp[ —tI, ((et+A)/e]e '"""

Here, the relation d"„'*(p)= d"„'(p)has been used.
The perturbation coefficient that describes the

interaction of a circularly polarized rf field plus a
static magnetic field with an ensemble of nuclei
with spin I is now easily constructed from Eqs. (17)
and (55):

Gh~(t);= 2 ( —1)~'m™&I-m'Iml). q&&i-m'Iml Xq& d~'(P)d' '(P)d' ' (P)dg'„.(P) e '""
lith lith tlh ll

x exp [—i [(E„—Z„.) + q(un]t/It} (58)
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For a further reduction of this expression the perturbation coefficient is written in terms of the Wigner

3-j symbols instead of Clebsch-Gordan coefficients:

G,;it):"=](21 1)(22~ 1l]' ' Z ( —1l '"' "' (, )(, )m, haft, fl, fl

x d' '(p)d& '(p)da&, (p)d&, &, (p)
-«'-2& exp(

'
[(Z E, ) + q&t&h ]t/h ) . (57)

The summations over m and m can now be performed by using d" &(p) = ( —1) "d"'„(P)and the contraction
relation for the D functions (Ref. 33, p. 123):

D(l & (P)D(l) ( )
D&2)2, (p)m' —m q

'"' " n' —n P
(58)

and similarly for the sum over m. The result is

G't(t);=](21 ~ 1)(22 ~ 1)]' t ( —1l" (, )(, )d,' '(E)d '(l))e'"" exp( —'](2„—2„)2 2]t/2) .
n, n'

(59)

It is important to recognize that the perturbation
coefficient [Eq. (59)] is given in a representation
where the quantization axis z is chosen in the direc-
tion of Ho. A similar approach applies to any per-
turbation that is described by a Hamiltonian of the
form

+stat&2 ~ HE&(f) I (80)

where K.„«,is symmetrical about the z axis and

H~(t) is periodic and in the xy plane. For static
quadrupole interactions with axially symmetric
field gradients, however, each transition frequency
must be treated individually.

Throughout this discussion it was assumed that
relaxation interactions are negligible, i.e. , it was
assumed that all relaxation times are long compared
with the lifetime of the state of interest. The in-
fluence of relaxation phenomena will be discussed
in Sec. VII.

It should be noted that the perturbation coefficient
[Eq. (59)] describes the situation in which the cir-
cularly polarized rf component is rotating in a plane
perpendicular to the static field Ho. The sign of
co refers to the circular polarization of the rf field
that induces resonance. For a linearly polarized
rf field the sign remains undetermined. The en-
semble responds primarily to only one of the two
circular polarization components that constitute the
linearly polarized rf field, but it is only possible
to determine sehich component is responsible by
using the phase b, . The effects of the other com-
ponent have been considered by Lewis. (See also
note added in proof. )

2. Time-Integrated I'erturbation Coefficient

If the nuclear states under consideration have a
finite lifetime 7, the observation of the influence
of extranuclear perturbations on the ensemble is

limited to time intervals of a few 7 after formation
of the states at t = 0. If all nuclear states are observed,
independent of the actual time when they happen to
decay, the weighted average is observed, with the
decay factor e ' ' as weighting factor. Such a
"time-integrated" observation is described by the
integral perturbation coefficient

(81)"To
After performing the integration over the differential
perturbation coefficient [Eq. (59)], one obtains

C',,'-= [(2& +1)(2& +1)]"'Z (-1)"""
n, n'

d(x) d(A, )

1 i[(Z E ') + q ((&h ]r/h
1+[(Z„—E„.) + q (ok ]'(7/h )'

(82)

3. Role of Phases in Differential Perturbation
Coefficient

The phase n that was introduced by Eq. (32) de-
fines the state of the rf field at the time of the crea-
tion of the nuclear state, t=0. The phase angle 6
appears in the transformation [Eq. (40)j from the
laboratory frame 8 to the rotating frame S'(f) as
the angle between x and x' at t = 0 (see Fig. 1).

Two cases of phase relationships must be dis-
tinguished.

a. Random-phase distribution. When the rf field
is completely unrelated to the formation of the
nuclear state the phase distribution is random. This
situation corresponds to continuous-wave rf ex-



1634 MATTHIAS, OLSEN, SHIRLEY, TEMPLE TON, AND STE FFEN

periments with radioactive sources and accelerator
beams, where the nuclear states are produced con-
tinuously and without any time relation to the rf
field.

Since all phase angles b, are equally probable,
the corresponding perturbation coefficients [Eq.
(59) or (62)] must be integrated over the phase
angle. The phase 6 appears only in the factor
e '"" . Hence the integration over 6 reduces to
the integral

(1/2)() f e '"" dn=5 - .
D ei (ee)

Thus in random-phase observations only terms
with q = q occur.

b. I'axed phase angle. The fixed-phase-angle
situation can be realized in NMR/RD observations
because of the possibility of synchronizing the ori-
gin of time i =0 with H, (t) by, for example, phase
locking rf trains of proper length to accelerator
pulses in NMR/NR, or by sensing the phase and
sorting the data into bins in NMR/PAC experi-
ments. In these cases no restrictions apply to the
general form of the perturbation coefficient in Eqs.
(59) and (62) and the particular value of n that de-
scribes the experimental conditions must be used.

4. Perturbation Coefficient for Magnetic
Interactions

For equidistant splittings caused by a static mag-
netic field Ho the perturbation coefficients G'„t(f)
are independent of the spin I of the nuclear states
and terms with X 4% vanish. A proof of this state-
ment will be given and an analytical expression for
G',q(t) will be derived.

For a pure magnetic interaction one has [see
Eq. (47)]

E„—E„=(n —n')((), h = P(deb, (64)

and the summations over n and n in Eq. (59) can
be performed keeping p fixed. The orthogonality
property of the 3-j symbols results then in
(2)(+1) 6~. Hence, only terms with )(=)( remain
and the final result for the differential Gg(f) can be
written in the form

Gaa(i)
- etta|a-( (a-a)t) Q e (eeet ( d(l() (f))d(x)-(ie)

(65)

Gaa(~) Q f e+ q ) e-((a-a)4 d())(p) d(x)(f()1+[p —
]8 8 e et) et)

(66)

This expression for C,",(f) describes a periodic
pattern in which a fast oscillation e ""'is amplitude
modulated by slowly varying components e '~ "&'.

For the time-integrated perturbation coefficient,
one obtains

From this equation it can be seen that the pertur-
bation coefficient G~ is independent of the nuclear
spin I. This is true because no interference terms
with A & X occur. The physical reason for this is
that one deals here with pure magnetic interactions
which always give an equidistant splitting, i.e. ,
one basic frequency. Interference terms with X 4 X

would occur for quadrupole and combined magnetic-
plus-quadrupole interactions.

In the case of a random rf phase, the formula for
the perturbation coefficient is appreciably sim-
plified. Averaging over all phase angles b, leaves
only terms with q= q and Eq. (65) reduces to

Gaa(i) e ta~t Q-e (a~et -[d(x)()a)]2
p =-)t

In the following we note some useful symmetry
properties of G,",(i) that apply for n = 0.

The symmetry about resonance is to terms of
order (~ —uo)/(do «1

G~((t) —(t)0 & 0) = ( —1) G)) ((() —(do & 0) (66)

The symmetry of G,", with respect to a sign change
ln q and q 1s

Gaa ( 1 )a+aG-a-a (69)

W(k„km, t) =Z p (k„t)z e,"(k2); .
j, X

(71)

III. ANGULAR DISTRIBUTION OF RADIATION EMITTED
FROM PERTURBED ORIENTED STATES

A. General Expression

In this section we consider the angular distribu-
tion of some nuclear radiation &q that is emitted
from a perturbed oriented ensemble of nuclei. The
emitting oriented state at the time t is represented
by the statistical tensors of Eq. (19) or (20). The
quantization axis z for the representation of p ,(t);-
in Eq. (19) is the quantization axis for the repre-
sentation in which the perturbation coefficients
G,q(t) are most conveniently expressed.

The emission and observation of the radiation X~
in the direction k2 is described by an efficiency ma-
trix e(ka) or an efficiency tensor e,"(ka), which is
defined in terms of e(k2) by Eq. (1). The result of
this observation, i.e. , the angular distribution or
correlation of the radiation X~ with respect to the
symmetry axis k, of the unperturbed ensemble is
given by the trace

W(k„k2, t) = Tr[p(k), i); e(k )]2
where p(k, ) and e(k~) must be expressed in the same
representation, e.g. , in the z coordinate system.
Using Eq. (2) and the orthogonality of the Clebsch-
Gordan coefficients, Eq. (70) can also be expressed
in the form
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i Ho

4w B„(I)
1s 2r ) (3I+1)1/2 [(2Z 1)(QZ+1)]1/2

x A1(X2)Gh(t); Y„,(8» Q&) Yi y(8a~ $2) ~

(v6)

The angles 8, and (II), characterize the direction k,
with respect to the quantization axis z in system S
in which the perturbation coefficient G'„z(t); is rep-
resented (see Fig. 3).

For vanishing perturbation Eq. (17) reduces to

G'g(0); = 6,-,6„g, (77)

FIG. 3. Unit vectors k& and kz in the laboratory frame.

The efficiency tensors e~(k, ) are particularly
simple if a representation is chosen with respect
to the observation direction k2 of the radiation X~.
For directional observations, i.e. , for polariza-
tion-insensitive detectors, e.;(k~)f~ vanishes for
/I e 0 (axial symmetry about k~) and the eo(k~)f, are
simply the angular distribution parameters A;(X, )
for the radiation X~ as defined in angular correla-
tion problems, e.g. , for y radiation we have

A&(ra) = + F&(I,I-,'I,I) (I, II j„AL',2'
ll I)

'aL2'a S

e',-(k, );= A„-(X,)D,',-"(k,—z) . (73)

x (I, II j„A~)II I) Z (I, II j„A~~'
II I/f' .

fI2L 3

(73)
The efficiency tensors in the z representation are

and the summation over q= q in Eq. (74) results in

D00 (kg —k2) = P~(cosA~),

where 0 is the angle between k, and k~. Hence the
unperturbed directional correlation is given by the
usual expression [after dropping the irrelevant
factor (21+1) '

]

W(8) = Z ~ B~(I)A~(Xq) P„(cosO). (76)

B. Response Function I'q(t)

W(8qp)82/2, ' Hot) =Z„B~(I)A„(X2)1"„(t). (79)

Terms with»4 are of no practical interest. The
coefficients I', are given by [see Eq. (76)]

In order to facilitate the planning and analysis
of NMR//RD experimentsthe 'directionaldistribution
functions" W(k„k~;Ho, I) for some typical and use-
ful experimental arrangements will be given. The
formulas are restricted to pure magnetic dipole
interactions, i.e. , A. = A. , and to directional distri-
butions.

For a specific choice of the angles O„~t)„and
82, P, (see Fig. 3) the directionaldistribution or cor-
relation function [Eq. (76)] can be written in the
form

The angular distribution or correlation function is
now easily constructed from Eqs. (71), (19), and
(v3):

F~(f) = ~ G~i(f) Y~, .(8i 4i) Y~, e(8a &2))t)t (ao)

w(k„k„I) = Z p,"(0);*A-,(x,)G„",(I);
q, )t, q, X

x B~ (z-k, )D,',"'*(z-k,), (74)

(v6)

and if the orientation parameters [Eq. (6a)] are
used, Eq. (74) takes the well-known form'6

where the unitary property of the D function has
been used.

If the D functions are replaced by the correspond-
ing spherical harmonics,

and a corresponding equation for F~ describing
time-integrated experiments. For random phases,
q= q,

' hence the terms with q& q vanish. The def-
inition of l", is chosen in such a way that it contains
the perturbation and the geometry. In the unper-
turbed case 1'„reduces to P„(cosO).

Of particular interest is the geometry in which
k, and k2 are parallel to Ho, because it leads to a
simple expression for the angular distribution. In
addition, since q= q=0 for geometrical reasons,
there is no difference between the random- and
fixed-phase case. The I'„(t)coefficients are for
this geometry identical with the perturbation factor

F~(8i = 8a = o I) = Gii(t) . (61a)
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TABLE I. Response function I' f(t) = K{t) k2 for selected geometries. The angles are defined in Fig. 3.

No.

90 45

90 135

{deg)

180 0

0 0

90 90

90 0

90 45

0 0

0 0

rj(t) =K(t) .k,

—Gf 1
= —cos p —slIl pcos(d~ t00 2 ~ 2

G f 1 cos p+ sin pcos~~ t

—(j/~2)(Gfj+Gjj ) =sinpcosp sin(cut+ +(1—cosmist) —sinpcos(cot+4) sin~~t

(1/~2) (- Gff +Gfi ) =sinpcos pcos {mt+ Q(1 —coscuet) +sinpsin(at+ Q sinn~ t

2{ Gff +Gf 1 SGjf QGjf ) =sinpcosp(1 —cosv~t) sin(~t + &+ 47()

—sinp sincu~t cos(M t+ &+g~)

2(- Gf f+Gf f +$Gf f +gGf f ) —slnpslnvet cos(Q+ 47()

+ sinpcos p(1 —cos~, t) sin(Q+ ~z)

2(G f1 6 f f +iGff +iGff ) = sinp sinmfst sin(E+ 2m)

—sinpc ops(1 con-s, t) cos(n+ ~v)

45

90

90

135 90

0 0

90 180

—{1/~2)Gff 2i(Gjf+Gjj ) =(1/42)Isinpcospsin(et+4)(1 —cos~~t)
—sinpcos(vt+Q sinco~t —cos p- sin pcos~et]

{1/~2Gf f + 2$(G f f + G 1f ) {1/~2)[sin p sin Q)~ t cos 4+cos p + sin p cos h)~ t

+sinpcos p(1 —cos& t) sing]

2( Gff +Gff +Gff Gif ) =cospsinetst sinvt —sin(~t+ cos~(stsinh

+(cos pcos(det —sin p) cos(~t+5) cosA

10 90

90 45

90 135

90 135

90

2(-G&&+G&& +G&& —G~] +iGf]+iGig —iGn —iG&& )

= cosp sincu~t sin(cut +~~) -cos(d, t sin(cut+ Q+&~) sinA

—(sin p +cos p cos Q3+ t) cos (M t + Q+ g7(') cos Q

2(Gf f +Gf f +iGf f XG ff ) cospcoscL) t slIl(JDg t

+coscu, t sin(~t+ 6+ ~) cos(b, + —' )

—(sin p+cos pcoscu~t)cos(cut+&+&~)sin(/+ 4 ~)

{Gjf Gf1'Gjf +GjjjG11+jGff jGff +jGff )

= —cospsinve t sin(cut+ ~~) —sin(cut+4) cosco~t cos(d + 4z)

+ (sin2p+cos p coscu~ t) cos(~t+5, ) sin(4+ 4z)

13 90 90 90 45 —'+2(G 1+G +G +G —G 1+ 'G —G + G )4w ii 11 11 ii —
11 Z fi —$ fi $ 11

=- cosp sinco~t sin(~ t+ gm.) +cos~, t COSACOS {cot + g+ &r)

+ [sin p+cos pcosco~t] sin(wt+6+~~) sinQ

In the case of "antiparallel geometry" the odd terms
change sign according to

for z = Hs and the angular distribution function [Eq.
(74)] is of the form

f'~(e|= 01 es = &I t) = ( —l) Gxx(t) ~ (8lb)

For more complicated geometrical arrangements
explicit expressions for the I'„coefficients are given
in Tables I-IG.

W(kq& ks& t) =Z A~(Xs)ps(0)t Ds,
' (kq- Hs)

)t, q

x e ""s D' ' (Hs-ks), (82)

C. Ceometrical Interpretation of Perturbation Formula

1. Static Magnetic Interaction

For a static magnetic interaction with a field Ho
the perturbation coefficients are given by Eq. (27)

where the unitary property of the 0 functions has
been used. Using Eq. (29) the distribution function
[Eq. (82)] can be expressed in the form

W(koks,' t)= Z A~(Xs)ps(0)I~)Ds, ' (kg-Hs)
40& 0
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= ~~ A, (X,)p,'(i)*, (83)

The statistical tensor pp(t)' is the same as pt(0}f, ,
but in a representation with respect to the coor-
dinate system that is obtained by the application of
three successive rotations to the coordinate system
with z, = k&, first k, -Hp, then a rotation by a = —&pt
about Hp, and finally Rp kp.

This statement is equivalent to the discussion
following Eq. (30), i. e. , that the effect of a static
magnetic field on an oriented ensemble can be de-
scribed by a rotation of the symmetry axis k, of the
ensemble about Hp by an angle n =( pt.

To reduce Eq. (84) the group property of the D
functions can be used. The successive application
of two rotations A, and R~, in that order, can be
expressed in terms of one rotation R by using the
group property of the D matrices:

(88)

Hence, the summation over q and q' in Eq. (83) re-
sults in

&(k2, kp,
' t) =Z„pp(0)fA„(X2)P„(cos2)(t)). (88)

A comparison with Eqs. (79) and (80) shows that

where

Pp(t) =Pp(0)12 Z D00' (k1-Hp)D, g' ( —0ppt, 0, 0)
aq'

x D&', p&'(Hp —k, ) . (84)

P2(cos2)(f})=- 1",(i). The angle 2)(t} is the angle be-
tween K(t) and kp, where K(t) is the symmetry axis
of the ensemble at the time t. The symmetry axis
is represented by a unit vector K(t) that is obtained
by rotating the original symmetry axis kg about Hp

through +0 pt. That is (I kpl =1),

2)(t) =O~ —&opt . (88)

2. Static iVlagnetic Interaction in the Presence of
an rf I'ield

The angular distribution of radiation X2 emitted
from an oriented ensemble that interacts with a
static magnetic field Hp and an rf field H, (t) is given
by Eq. (74) with the perturbation coefficient of Eq.
(88):

W(k2, kp, i) = Z pp(0)-„A&,(X2)D&",
'

(k, —Hp) e"
)t0 00 (f00

cos2)(t) = K(t) kp

= COS81 COS82+ Sin() 2 Sln()2 Cos(O —(dpi)

(87)

where 8 = Qz —Q, . Using this expression it is simple
to derive the angular correlation function for any
direction of the magnetic field with respect to the
detectors. The two most common special cases:
(i) lf k1 and/or kp is parallel or antiparallel to Hp

the time-dependent term vanishes and the angular
correlation is unperturbed; cos2) = cos62cos62. (ii)
If k& and k2 are both perpendicular to Hp, a geometry
that is commonly used for the measurement of uni-
directional magnetic perturbations, the angle 2)(t)
is given by

TABLE II. Response function I'2(t) for various geometries. The angles refer to Fig. 3.

No.

10

12

13

90 45

90 135

45

90

90

90

90 45

90 45

90 90

(deg)

135 90

90 180

90 135

90 135

90 0

90 45

180

90 90

90

90 45

I'2(t) = 2~K(t) 'k2]'- 2

00
22

22 +0(G22 G22 )

~100 ~ +jk(G02 +GO-2)

22 2 +0(G22 G22)

22+2'(t(G22 —G22 )

22 2 +0(G22+G22 ) ~22 (G22+G22 )

00 P i PP (G10 + G-10) Q(G 20 ~ G-20)

F00 P(G20 ~G-20 ~GO-2 ~G02) ~0(G22+G2-2 ~G-22 ~G-2-2)

&22- ~~«22. » " 22'-~ 2"2)+~-'(-G»+G22'-G22'+G22"')

+3
(- G22 + G22 + G22 —G22) —s (G22 —G22 —G22 + G22 )

F00 P( iG20~(G-20+GO-2~G02) ~ ~ 0( G22 —G2 2+G 22+G 2 2)22 32 22 22 22 22 & s 22 22 22 22

22+ ~22(G22+G22 +0G22 —iG22) —ie(G22 —G22 +G22 —G22 )
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x D~&"*(0, p, 0) e ' ""D," (0, —P, O)

xe -4 i) ( to t +)) ) D ( l) ) +
( H k )00 0 2

=Q a, (x,)p', (0)-„*r„(t)

=Z w, (x, )p', (t)* . (99)

Hy making use of Eq. (29), p6(t)* can be written in
the form

p))(t)'= po(0)-, ~ Do,"*(0 —ei —@4)D'~' (n 0 0)
ee'PP'

aa'

x D,',' ( —)dt —n, 0, 0) Dg 4) (Qz) 8@ 0) . (90)

Again the summations over q, q, p, p, q, and q
can be performed and the result is

D,",'*(O, q(t), O) = P,(cosy(t)) = r„(t).
Thus the angular correlation function can formally
be written as

W(k» kz; t) = Z, po(0)); A„(Xz)P„(cos)i(t)). (91)

This means that, as in the static case, the influence
of the perturbation can be described by a time-
dependent angle q(t).

Before leaving this section, let us recapitulate,
with emphasis on the physical meaning of the above
results.

Referring to Eq. (90), we can understand the ef-
fect of the rotation matrices D"' in the following
way: At time t= 0 the ensemble has symmetry about

k» and only statistical tensors with q = 0 are non-
zero in a frame with the z axis along k„i.e. , only
tensors of the form po(0)-„* are nonzero [ the com-
plex-conjugate notation is used to retain consistency
with Eq. (71)]. Now in the pure magnetic case it
is possible, using successive time-independent
rotations, to express p))(0) in a frame S wherein
the Hamiltonian vanishes. For t & 0 the frame S
rotates relative to the S frame. It is thus necessary
to transform back into the S frame using the (now
time-dependent) rotation matrices in reverse order,
and finally to transform into a frame with the z axis
along k6, in order to obtain the desired po(t)f To
express the symmetry axis at time t =0 (i. e. , the
k, axis) in the S frame the following operations
must be performed:

(a) Rotate the k, frame through the angles
(0, —e„-p,), to express k, in the S frame at t = 0.

(b) Rotate the S (or xyz) frame about H6through
angle & in order to adjust the rf phase. This op-
eration defines the new x axis as being along H&

at time t= 0, and k& is then expressed in the S' (or
x y z ) frame at t= 0 (Fig. 1).

(c) Rotate the S ' frame about the y' axis [see
Fig. 2(a)] through the angle P. The new z axis
then falls along H„and k, is expressed in the S
frame, at t=0. Now at t=0 the S frame coincides
with a rotating frame S that rotates about z =z
with frequency co„and in which the magnetic field
disappears altogether [see Fig. 2(b)]. Thus k, is

No.

TABLE III. Response function I 4(t) for several selected geometries. The angles refer to Fig. 3.

I 4(t) =~8'X(t) .~2]'--", [K(t) k, j'+-',
(deg)

13

90

90

45

90

90

90

45

90

45

90

180

90

90

90

180

135

G44
00

SG44+ Sv&0 i(G44 —G44 ) —
fg ~0(G44+G44 )

SG44 8~1pi(G2440 G4240) 1 ~p(G 4404+ G4440)

—
~-~ G44+ Ie ~5i(G44- G44 )- &-2~10 (G,4+G44 ie ~5 i(G44 —G44 )

+~ ~0(G +G )

e4 44 e4
g G00 g ~10 (G 20 + G-20 +G 0-2 +G 024 + —(G22 + G 2 2 + G 22 + G -2-2)

44 44 44 44) 32 44 44 44 44

++~0 (G +G +G +G ) ——4(G42+G4-2+G-Q2+G-4 +G2-4
128 44 44 44 44 e4 44 44 44 44 44

+G-2-4+G-24+G24) + 35 (G 4+G4 4+G +G )44 44 44 f/) 44 44 44 44

e-4 G44+e4v10i(G44 —G44 —G44 +G44) —
3-2 (G44 —G44 —G44 +G44 )

3 ~ 20 -20 0-2 02 5 22 2-2 -22 -2-2

128
+~p (G40+ G 40+ G0 4+ G04) 5 / .(G42 G4 2 + G-42 G&2 G-2-4
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also expressed in S at t =0.
The remaining rotations in Eq. (90) describe the

time evolution of the symmetry axis, and express
it in the laboratory frame. Since the direction of
this axis will no longer coincide with k„weshall
now call it R(t). Thus after the above operations the
vector that we have isIY(0) . We must now

(d) rotate the S frame about H, (i.e. , about
z = z }through the angle —&u, t, which gives K(t)

(e} rotate the S frame about the y =y axis
through the angle —p to give K(t);

(f) rotate the S frame about Ifo (i.e. , about
z =z) through the angle —vt —b,, thereby obtaining
K(t) expressed in the S frame.

The resulting vector K(t) must be related to the
emission direction k2 in order to obtain the angular
distribution in the k& direction at time t. This is
accomplished by the last rotation D&0 (&f&z, Hz, 0),
which expresses R(t) in the k, frame.

The two ways of computing the angular distribution
from a state that is perturbed by static and rf mag-
netic fields, as given by Eqs. (79) and (80) on one
hand and by Eqs. (90) and (91) on the other, are
identical. The rotations which are contained in
I'~(t) [see Eq. (80)] in a rather implicit manner
were discussed one by one in Eq. (90) only to pro-
vide the reader with a physical understanding of
the rather formal derivation of the perturbed an-
gular correlation function. In Sec. IV the same
approach will be made to describe the behavior of
the symmetry axis of an ensemble under the in-
fluence of static and periodic magnetic fields, in
complete analogy to the behavior of the magnetiza-
tion vector in conventional NMR (Bloch equations).

IV. GENERALIZED TORQUE EQUATION: ALTERNATE
APPROACH FOR MAGNETIC INTERACTIONS

The theory developed above is exact and complete
It may be used to describe any NMR/RD experiment
involving magnetic and quadrupole interactions,
etc. However, for pure magnetic interactions, the
most important single case, we have also found
another approach to be valuable. This second for-
mulation, which owes its origins to NMR theory,
is derived below.

The transformations, described by Eqs. (89) and
(90) and the discussion following, are simply suc-
cessive rotations in space. Equation (90) was for-
mulated to display their spin independence, for the
magnetic case. It is also useful, however, to
eliminate specific reference to the ranks of the
statistical tensors. To do so we exploit the sym-
metry of the system by transforming into the ref-

Hz(t) =H, (e„cos(~t+4)+e,sin(&et+6))+Hpe, , (92)

is always zero. This is accomplished by three
successive rotations

( cos(mt+6) sin(~t+4) 0)
R,(S-S') = —sin(~t+2) cos(~t+&) 0

~

0 0 I)
f'cosp 0

RR(S -S )= 0 1
(sinP 0

—sinP)
0

cosP )
( cosa&g sin&a, t 0 )

R3(S -S ) =~ —sin~/ cos~,t 0
0 0 1

The S and S frames were defined in Sec. IID1 and
illustrated in Fig. 1. The S frame introduced
above has axis z along', with P=cos '&(z, z ).
Finally S is a rotating frame relative to S
The purpose of Rs is to "transform out" the re-
maining magnetic field 5, so that

Hzs & ~ (t) = 0 (98)

Figure 2 illustrates S and S . For & =0 there
is a one to one correspondence between (S, S
&u„Tf,) and (S', S, ~, Ho), as a comparison of
R& and RB shows.

We now denote a unit vector along the symmetry
axis of p as K(t), without reference to the frame in
which it is written [see Eq. (87)]. Clearly it must
satisfy the boundary condition

K(t = 0) =k i, (94)

and it may be written in S at t =0 as

z. ..(t = 0) = Rz(t = 0)RzR~(t = 0)ki, (98)

where k& is referred to the S frame. To express
K(t) in S we need only transform back, obtaining

Rz(t} =R, '(t)Rz Rs'(t)R3(0)RzRq(0)k, . (98)

The explicit form for Rz(t) is

erence frame S'" wherein p is time independent
(except for nuclear decay) and axially symmetric
(i. e. , p,'=0 for q40). Of course this means that
we must express k„the direction of axial sym-
metry at t=0, in the reference frame S wherein
the part of the Hamiltonian that describes the in-
teraction of the nuclei with the time-dependent mag-
netic field, which can be written in the laboratory
frame as

Rz (t}= (( [cos P cos(&ut + &) costs, t + sin P cos(ut + A) —cos P sin(&et + a}sinu&, t ] cos&

+[cosP cos(rut+ &) sin&a, t + sin(~t + b) coarct, t] sin&] k,„+([ —cosP cos(~t + &) sin~, t —sin(cut+ &) cos&u, t] cos&
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+[cos pcos(~t+4) coerce,t- cospsin(&et+4}sin&a, t+sin pcos(art+&)] sinb/k»

+(sinp cosp cos(&et+ &}—sinpcosp cos(&et+ &) cos&ug+ sinp sin(art + 4) sin&a, t)k„)e,
+({[cospsin(&ut +~) coeur, t+sin psin(~t+&)+cospcos(&et+&) sin~, t] cos&

+ [cosp sin(~t+ 6) sin~, t —cos(&et+ 4) cos&u, t] sins) k„+([—cos p sin(~t+ 4) sin~, t+ cos(&et+ &)cos&u, t] cosh,

+ [cos P sin(ru t+ &) coerce, t + cosP cos(~ t + &) sin&a, t + sin P sin(~ t+ 4}]sink) k»

+( —sin p cos p sin(&ut + &}cos~,t + sinp cosp sin(~t+ &) —sinp cos(et+ &) sin~, t jk„)e,
+ (([sinP cosP —sinP cosP cos&u, t] cos&+ [- sinP sin&a, t]sink)k„

+{[sinpsin~, t]cosa+[sinpcosp —sinpcospcos&o, t]sink)k» +(cos p+sin pcos&u, t)k~, ) e, . (97}

Observables in conventional NMR are related to
the magnetization M, which obeys the torque equa-
tion

=yR, (t)x jj,(t), (100)

dM =yMxH,
dt

(98)

where y =gp, „/k. This property of M is of great
utility in visualizing the behavior of a spin ensemble
in a conventional NMR experiment. Ne note that
NMR theory is embodied in the previous sections:
M ";& collinear with K(t) and its magnitude in S

is proportional to p, . (The case M ll z in a continu-
ous-wave NMR experiment is analogous, then, to
k& [Iz in an angular correlation experiment. Pulsed
NMR experiments provide examples in which a
natural time scale exists and for which k& is not
parallel to the z axis. ) In fact Eg. (98) is just a
special ease for A. = 1 of the more general transfor-
mation expressed by

=yf xH.dt
(99)

In many NMR/RD experiments M-=0 because of the
parity symmetry of the experiment, which requires
po =0 for odd X. For these cases a "torque" equa-
tion still obtains, however, because& as inspection
of Eq. (98) shows, the direction of M, rather than
its magnitude, is important in the torque equation.
Of course Eq. (99) depends on the states of the in-
dividual nuclei in the ensemble having gyromag-
netic ratio y, but it in no way requires a finite
magnetization in the ensemble. Rather, the torque
equation should be regarded as a transformation of co-
ordinates that will eliminate R(t) and allow the den-
sity matrix to remain time independent in S
This is not a new result, of course, but our point
of view is of necessity a little more crystallized
than is common in the magnetic resonance litera-
ture, where M is usually nonzero. The essential
physical content of our approach is given in papers
by Rabi, Ramsey, and Schwinger and by Fano. 3

W'e may therefore write a generalized torque equa-
tion,

W(kq, ka, t) =Q), po (0)g A), (X2) P„(cosy(t)). (102)

But this result is identical to Eq. (91); only the
point of view is different. For the time-integral
functions

W(kq, kq) =Q g po (0)f A~(Xp)1'„(kq,ka), (103)

we need only evaluate the time-integrated Lengendre
polynomials,

I'„(k„kz)=r ' f e 't'P„(cosy(t))dt . (104)

For any k„k2, A. these integrals can be written
as linear combinations of integrals over powers of
cosy(t), of the form

f e '~' [cosset(t)]"dt,

with n ~X. Now cosy(t) is itself a linear combina-
tion of powers of sines and cosines of the angles

in a form that indicates explicitly its validity in the
laboratory frame at any time t. Of course it is
valid in any frame. This equation may be con-
firmed in detail by substituting the explicit expres-
sions (92) and (97) into (100). Now q(t), defined in
Eq. (87), can be written in this notation as

cosy(t) =k2 Rz(t) . (101)

It is the angle between the kz direction, to the sec-
ond detector, and the symmetry axis of the density
matrix, as before. The multipole radiation pattern
can be described by Legendre polynomials in the
8 frame,

W, , (t) =Q p,"(0)tfA„(X2)P„(cos8~.„).
1

To evaluate the counting rate in the laboratory
frame S at time t, we need only know rt(t), the
instantaneous angle between ka and K(t). Thus
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For the limiting case ~,7 -~ the last two terms
approach zero and we have

(b)

(c)

r, ((u,i- ~) =[P,(cosP)] ' = [(u' —a )/(u'+ 1)]', (108)

where u is the frequency in units of », u = cotp
= (&u —&u, )/u&&. The geometrical interpretation of this
function is illustrated in Fig. 4. The I'~ integral
[Eq. (104)] is taken, for each value of &u, around
a circle on the unit sphere. The circle must pass
through k„where the path of integration starts
(z in this case), and H, goes through the center
of the circle. Far off resonance (top of Fig. 4)
H, is near z and P,(cosy (t}) is near unity all
around the circle. At resonance (bottom of Fig. 4)
the integral is taken around a meridian, and I'2(~)
has the hard-core value

f'z(~) = (I/2w) f'" P2(cosset) dg = 4 . (Iov)
-8-6 -4-2 0 2 4 6 8

Ql -4'
Qlf

FIG. 4. Illustration of the way in which line shape fol-
lows from geometry, for the case &=2, ~v —~. Both
k& and k2 are taken along the z (z') axis, and diagrams at
left are in the S' frame. I'& is evaluated by integrating
e 'P2Icosg(t) ]dg around a circle described by K(t). In
case (a), for (& —~0) «~~, Z(t) is always small, P2 is
near unity, and I'2 is thus also near unity (heavy portion
of line on right). For frequencies nearer ~0, the form of
P2 leads to minima and a hard-core value, as shown in
(b) and (c).

(d, t, p and (dt+ b, . After some trigonometric mani-
pulation all the necessary integrals can be written
in terms of integrals of the forms

At intermediate values of u the integration path
[Eq. (104)] heavily weights the "equatorial" re-
gions g

-
& g, where P~ is negative, and I'& drops

to a single minimum in each direction around u =0.
Thus we have a complete geometrical interpreta-
tion of the curve. Similar arguments can be made
for other geometries.

For the limiting case ~,~- ~, an expression for
the I'„functions defined in Eq. (80) is easily written
down for any arbitrary geometry. We note that
K(t) precesses until H, is the effective symmetry
axis of the system. Thus (p,")I =0 for qco, and
only (po)u is left. But for any A only po(t=o)K was
nonzero, and thus only pt(t)K will be nonzero. Hence
the general transformation equation for spherical
statistical tensors [Eq. (4)] becomes

f, e 't'cost~, t dt and f e '~'sinless, t dt, (Po)H, =Pa(t)RDOO'(n', t)', y') (lo8)

I', (t) = cosset(t) = (Rz), = —sin P cos&u, t —cos'P,

I'z(t) = Pz(cosy(t)) =-', sin'P cos'&u, t

+ 3 sin p cos p cos(d, t +, cos p —2

The time-integral response function has the form

A

I'2-——~+ —', cos t} +-, sin lI+3cos t}sin p[1+(~,r) ] '

+ —,
' sin P [1+(2u&, r) ] ' . (105)

where / is an integer.
As an example we shall work out the angular dis-

tribution for a specific geometry and relate it to
the geometrical interpretation. We consider the
case k, II +z, k2 II —z (geometry No. 1 in Tables I
and II}, and calculate I', and Fz. From Eq. (97}we
have k,„=k„=0;thus

Here a, p, y representthe rotation angles from the
R(t} frame to the 5, frame. Now n and y are
time dependent, but P is not: It is the angle be-
tween H, and K(t). But Do,

"' is independent of n
and y: In particular,

Do'o' (n'P'y') =P„(cosP').
Thus

(p,")„-=(po)„., P),(cos(k„A,)),

(lo9)

where we have now used p, (t)g = po(t=0)s, . By sim-
ilar arguments the rotation of H, about Ho gives an
analogous relation for statistical tensors in the S
frame, namely,

( po)s = ( po)& P&(cos(A Hp)) = ( po)ff, P„(cosI8)
(111)

Now the angular distribution of radiation from the
oriented state varies in the limit co07- ~ as
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&(k» k2~ f) =&. (po)g A~(&2) P~(«»62) .
Thus, for cu, 7—

W(k„k2,(u, 7 —~) =Q„(pt)I,A„(Xg)1"„(~), (113)

and we have

I',( ) =P„(cos(k„H,})P„(cosP)P„(cos&) (114)

as the limiting line shape for any geometry and
frequency as co,~ -~.

In this torque equation approach the spin inde-
pendence is manifest from the beginning because
we never use an 1 fm) representation. There is only
one response function F,(t) for each tensor rank,
rather than the G'„„'(t}.I',(t) is always real. Of
course the two theoretical approaches give identical
results, andthey require about the same amount of
computational work. The chief advantage of the
theory developed in Sec. III is its generality, which
permits ready extension to more complicated
'tC, (t). An advantage of the present approach is the
readily grasped relationship between the experi-
mental geometry and I'„(~).With the functional
forms of the Legendre polynomials in mind one
can, with little or no actual calculation, predict
the symmetry properties of I'„(&u}and even the
qualitative shapes of the resonance curves for a
given experiment.

The two theoretical approaches have been used
interchangeably to obtain the results given in the

following sections.

Fig. 1). The high-frequency component originates
from the transformation into this Larmor frame and

represents physically the spin rotation with fre-
quency ~. Of course 5, and 5, are the two magnetic

fields actually present. Thus any experiment can
alternatively be described in terms of the high and

low frequencies (do and v& rather than ~ and ~,.
For frequencies far off resonance the modulation

frequency increases as given by u&, [Eq. (47)].
Finally for 1 co —~, l »I ~&1 the perturbation coef-
ficient approaches the form

G„''„(t)=Q, exp[ —I [(p + q)(et+ (q —q)n]),
and only the high-frequency component is left.
Here the limits

»ms =0 [see Eq. (44)]
I( - p)f gl-

lim[d,'~'(P }d~ (P )] = 1,

have been used.
It is possible to perform experiments in such a

way that the rapid spin-rotation term vanishes for

V. TIME DEPENDENCE OF ANGULAR DISTRIBUTIONS

A. General Discussion

A time-differential observation shows the periodic
motion of the nuclear magnetic moment under the
influence of Ho and 0,. The time-dependent pertur-
bation coefficients G'„'„(f} are essentially the Fourier
inverse of the time-integrated perturbation coef-
ficients G'„'„(&u). Consequently, the observation of
the time-dependent perturbation factor does not
lead to any additional information as compared to
the time-integrated observation, but its discussion
is instructive for the understanding of the resonance
behavior.

The time-differential perturbation coefficient for
a pure magnetic interaction is given by Eq. (65).
Near resonance the time dependence of G„'„'(t)cor-
responds to a rapidly oscillating function
exp[- i[q&uf + (q —q)n]j that is amplitude modulated
by the slowly oscillating function

I'„(t)
0

-1/2
0

(c) Geometry lh

Sajr(f} Q -!Pm+Ed(x) (P )d(xj(P ) (115)

This low-frequency component can be interpreted
as the rotation of the nuclear spin with frequency
&u, about the effective field 5, in the Larmor frame
that in turn rotates with frequency m about 50 (cf.

FIG. 5. Slow component of I'z(g) for three geometries,
with + = co(). For geometries 1 and 5 only the slow compo-
nent (precession about H~) is observable, while the fast
component of I'2 appears in geometry 13. The curves
shown are for &0=12&. In this case the envelope for
random b, indicated by dashed curves, ranges from +1
to —2, while the mean value varies from +g to —8.
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r,(t) =s'„'„(t). (116)

The explicit forms at resonance, which can also
be evaluated from Eq. (97), are

I', (t) = —cos&u,t,
I",(t) =-, cos2ur, t —2

(117)

If q0 and q=O, as applies to geometries 5, 6 and
8 in Table I, then only the low-frequency co occurs
in I',(t). For geometry 5 [Fig. 5(b)] the explicit
forms at resonance are

I', (t) =R sin~, t (coen —sinn),

I'z(t) = —, (1 —cos2u, t}(1—sin2n) ——',
(118)

These functions are plotted in Fig. 5(b) for & = —, v

and for random &. In the latter case r, (t) and

rz(t) are obtained from the above expressions by
replacing cos~, sin~, and sin24 by their ensemble-
averaged values of 0. This causes r~ (t, random
&) to vanish, while the oscillatory part of I ~(t) is
reduced by a factor of 2 in amplitude.

For those cases in which the experimental ge-
ometry is such that q40 (Nos. 2-4, 7, 9-13), the
oscillation with co, forms an envelope for the rapid
oscillation of frequency ~ [Fig. 5(c)]. The phase
factor (q —q)n which is added to the high-frequency
term in Eq. (65) simply describes a constant shift
of the periodic pattern e ""'. The angular correla-
tion can be calculated by the corresponding formula
in Tables I and II.

For geometry 13 the specific expressions for
X = 1 and 2 at resonance are

r, (t) = K, (t) k, = (I/v2 )([cos((et+ n) —sin((et+ n)]

x costs, t cosh + [sin(&at+ n) + cos(&et+ n)] sinn),

(119a)

r, (t) =-,'[K, (t) lt, ]'--,' .
Choosing 6 as random, these expressions become

I', (t) = —, cos(&et+ —,
' m)(1+ costa t),

(119b)
rR(t) = 8 + 8 cos u&, t —~sin2~t(l + cosa&, t)

The behavior of I', (t) is straightforward. It is
simply the product of fast and slow terms. If such
a curve were observed with time resolution much
slower than ~ ~, then r, (t),„,would simply vanish.
By contrast, I'2(t) exhibits more interesting be-
havior. With poor time resolution only the term

purely geometrical reasons. In Fig. 5 examples of
the low frequency oscillation are given for X = 1, 2.
For q =q =0 [Fig. 5(a)] the oscillation can be ob-
served directly in geometry No. 1 (Tables I and II}
and the time-dependent angular correlation is de-
termined by

in sin2urt would vanish, leaving the slow component

rp(t)&ps s + 8 cos (d~t

as shown in Fig. 5(c)..igure 6 shows the rapid oscillation (dt which,
at resonance, near t = 0, represents the spin rota-
tion in the field Ho (the influence of H, is not yet
evident). Examples are shown for two specific
geometries (Nos. 9 and 11), with H, /HO=10 3. A
number of features are illustrated by this figure:
(a) The shapes of the curves are identical for the
two geometries chosen. (b) Near t=0 only terms
with q= q contribute since limG~~(t) =1 as t-0. (c)
Because of (b), the starting phase of the spin rota-
tion is determined by the geometry alone. Although
not shown in Fig. 6, the curves for &u/~0=1. 001,
1.000, and 0. 999 are practically indistinguishable
on this scale near t=0. The geometrical inter-
pretation of this behavior is clear, since near t=0
the limiting value of I',(t) for these geometries is

r, (t) = &„(os'(t)) = P,( os[ t —(0, —4', )]}. (120)

To observe a resonance effect the condition co&7. ~ 1
must be fulfilled. Thus, for H, /Ho= 10 3, as in
Fig. 6, the amplitude of the rapidly oscillating
functions will be appreciably affected only after
~,/~, -10' oscillations. An example of this be-
havior is given in Fig. 7 where a time segment of
the differential perturbation factor I', (t) near & ~,t
= 10 coot = 1 is shown. The following features are
apparent: (a) The curves differ for different values
of &u/~„ indicating the resonance effect. (b)
Random- and fixed-phase curves differ due to the
contribution of factors with q & q in the case of fixed
phases. (c) When passing through the resonance
a change is observed for both amplitude and phase.
The behavior of the amplitude and phase near res-
onance depends crucially on the time segment se-
lected and the specific geometry. For example,
Fig. 7 represents a special case. In geometry 9
the rf field at t = 0 is parallel to k, at the resonant
frequency (&u = &uo) and therefore has no effect at
all. In fact rather than inducing transitions it pre-
vents them, acting thereby as a holding field. Thus
the effect observed at ~ = ~0 for any geometry in
which k, is parallel to H, (0) is really an "antireso-
nance. " This effect will be discussed further in
connection with Figs. 10 and 15.

The rapid oscillations shown in Figs. 6 and 7
represent spin rotations about the constant field Ho
which are conventionally measured with the field
oriented perpendicular to the detector plane. They
are only observable in levels with long lifetimes,
and with reasonably low values of Po. This means
that in time-differential experiments one must take
into account the envelope functions only if the time
resolution is sufficiently good to resolve the high-
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e, =e, =so'

r~t) 0

aaa- ash = aal&-

1.0
l.0—

random

I ~(t) 0

dao

FIG. 7. I'), (t) for X=2, 4 in the time
region ~t-1, where the oscillations
have been substantially affected by
precession about H&. The curves have
been calculated for geometry 9 at
resonance (b) and close to resonance
(a) and (c).

X, =2
6=0

cv- duo =W~

l000.0 I 004.0
I

I008.0

W(k, II H„e,f) =Z, B„(f}A(X )G„„(f)„„P„(cosO),
(123)

where O~ is the angle between k, (ti Ho) and ka. Equa-
tion (123), with the expression [Eq. (122)] for the
perturbation coefficient C»(t)„„inserted, describes
a rotation of the angular distribution pattern about
H, with a frequency co,. If the g factor of the
nuclear state is known, observation of the time
dependence of G~»(t)„,makes it possible to deter-
mine the effective amplitude H',"of the rf field at
the nucleus. In those cases where the externally

applied rf field is enhanced by a paramagnetic or
ferromagnetic coupling the enhancement factor
(1+H„,/H„,) can be accurately determined. This
possibility of a direct observation of FI'," is a
valuable feature of the NMR/RD method.

VI. NMR BEHAVIOR OF TIME-INTEGRATED
ANGULAR DISTRIBUTIONS

A. General Considerations

In time-differential experiments the total pertur-
bation factor is always periodic in time irrespec-
tive of the magnitudes of H, and Ho provided only
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that these fields are sharply defined. However,
time-integral measurements yield attenuation ef-
fects which depend sensitively on Hg Ho and the
lifetime 7. In contrast to conventional NMR we
find in NMR/RD a wide variety of line shapes.
There are several reasons for this additional com-
plexity, notably the extra vector k„higher multi-
pole-order observables, and the natural time scale
of the nuclear decay.

In planning an NMR/RD experiment one often
wants the highest possible sensitivity consistent
with the geometrical constraints, if any, imposed
by the apparatus. Clearly there are many possible
distinct sets of experimental conditions. The rela-
tive orientations of the four vectors k„k~, Ho, and

H„the magnitude of co,7, and the option in some
cases of fixed or random phase present an embar-
assing choice. With the observation of a few
basic principles, however, selection of an optimum
geometry is usually straightforward. There will
be important symmetry considerations for a ma-
jority of experiments.

The formalism developed in Secs. II and III led
to a general formula [see Eq. (62)] for the time-
integrated perturbation coefficient that describes
an axially symmetric static interaction in the pre-
sence of an rf field. For the special case of pure
magnetic dipole interactions the perturbation factor
has the form given in Eq. (66). This equation can
be used to describe resonance experiments with
various geometries and phase relations. In order
to discuss resonance effects in time-integrated
NMR/PAC measurements, a few typical numerical
results will be presented for some specific geom-
etries and representative parameters. The dis-
cussion will distinguish between the resonance be-
haviors for random- and fixed-rf phase.

For some specific geometries the form of the
angular correlation function can be obtained from
Tables I (&=1), II (&=2), and III (&=4). In each
table the response function I'„(t)is expressed in
terms of the time-dependent perturbation factors
G»(&u, t) [Eq. (60}]. The time-integrated response
function I', (&d, t) bears the same functional relation-
ship to the time-integral factors G,'„'(&o)[Eq. (61)].
Since the phase angle A is included in G»(&d, t) and
G;,'(~) [Eqs. (65) and (66)], the relations in these
tables are valid for any h. The corresponding
7', (ur, t) or 1 „(&d)for random b, may be obtained in
each case by striking out the terms with q4 q
[Eq. (6V)].

Also given in Table I are the explicit expressions
for

r, (t) =P,(cosq(t))=K(t) k,

that are found from Eq. (9V) or by working out the
G,''„(&u, t) factors in detail [Eq. (65)]. Time-integral
functions I"„(~)may be obtained by integrating on

are not given explicitly in Tables II and III, but they
may be calculated, for each geometry, from the ap-
propriate expression for K(t) .kz as given in Table
I.

Before starting we note that there are four na-
tural frequency variables for any experiment: co,

u&„and I/v. We can completely characterize
any experimental situation by calculating I', as
a function of the dimensionless variable (~ &dp)/(d&,

with &o,7 held constant. [The signs of &oo and &u,

are defined consistently. Thus (&u —&oo)/&d, is al-
ways understood to mean (~ —

I &uo l )/( I (d, I ). ] I.et
us make an observation at this point about linewidth.
For low rf power (&u,v « I) the natural linewidth
g/r may be approachedb, ut few nuclei will parti-
cipate in rf transitions. For high power (&u,~»1)
most of the nuclei may experience rf transitions,
but the linewidth will broaden to -S~,. Clearly
maximum efficiency is achieved for co,y-1.

8. Random rf Phase

1. Resonance Line Shapes for k& and/or km

Parallel to Ho

The general expression of the perturbation factor
for random-rf phase follows from Eq. (66) with

G"( ) =g P ', [d&~(( )]2
[ p )8 8 ((&( (124)

This equation can be used to calculate the various
terms of 1

„

in Tables I-III. An inspection of these
tables shows that whenever k, or k~ is parallel to
the z axis, as is the case in geometries Nos. 1-8,
the response function f„contains only the one
term G~~ since q= q. Therefore the discussion
will concern mainly these terms. Since the im-
aginary parts cancel for q=0, we obtain from Eq.
(124)

GZ(~)= 2- I,(p„,)s [do&, '(P)l'. (125)

At resonance the perturbation coefficient becomes
[compare to Eq. (122))

(x-p) t (x+p)! 1
((& ('('( (& ~() '( (' ( ~ (u ~P)-

for (A+p) even

r 'e ' 'dt [Eq. (104)], while response functions for
random a are obtained by integrating over (2r) 'dh.
The corresponding expressions

T.;(t)= P,(cosy(t)}=-,' [K(t) k,]'--,'

and

I' (t) = P (cos7)(t)}=~[K(t) k ] -~[K(t) k2]'+((
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=0 for (II+p) odd. (126) 1.0 =

lim (Go„)„,=,', , for II. even .
CO

XX reg
1

(127a)

An interesting feature of NMR/RD experiments is
that a nonzero "hard-core" value of G» exists at
resonance for X even. In the limit of large-rf
amplitudes, i. e. , large values of H& such that
~&&»1 is satisfied, only the term with P=O in Eq.
(126) remains:

0.8-

0.6—
A

-1,

0.2—

0 I I I

-5 -4 -3 -2 —
I 0 I 2 3 4 5

I,O' I I I I I I I I I

0.8

Here, II.!!= X(X —2)(X —4) ~ ~ ~ 2 or 1. Using a more
physical picture the hard core for P= 2z comes
about by integrating the Legendre polynomial
around a meridian in the z' y' plane:

2$ [x!]'Pg(cos'I!) d'g = r
~gIrj

(II even)

0.6
r,

p.4

0.2

P I

-5 -4
I.p

0.8

-3 -2 —
I 0 I 2 3 4 5
I I I I I I

=0 (& odd). (127b) 0.4

The existence of this lower limit or hard core for
even X implies that, at resonance, a fraction of
the anisotropy always remains, no matter how large
the imposed rf amplitude is. This hard-core be-
havior is illustrated in Fig. 8, in which I', =(Gu),
of Eq. (126) is plotted vs H, /Ho for some repre-
sentative values of cop'.

It is important to note, however, that at frequen-
cies off resonance the perturbation coefficient
G„„(&u)with even X can actually reach zero for suf-
ficiently large amplitudes of H, . The perturbation
coefficient [Eq. (125)] vanishes, even for p = 0, if
dw '( P) = P„(cosP„)= 0. This condition can be ex-
pressed in terms of the "maximum perturbation
frequency" &d' by using Eq. (44):

0.2

0 -4 -3 -2 I 0 I 2 3 4 5
I .0 I I I I I I I I I

0.8—

0.4

0.2

0-5 -4 -3 -2 -I 0 I 2 3 4 5

FIG. 9. Line shapes for geometry 1, showing multi-
pole structure and saturation behavior.

I.O

0.8—

~ ' ' I ! i r

cos p)t Hg

(1 —cos'P„)'" H,
(128)

02

Q 4

0.2—
X=2

Q
IO I 0 IO IO IO

H, /H,

I » il I & & & I

IO IO

FIG. 8. Power dependence of I'), at resonance for ge-
metry 1, showing hard-core behavior for even X.

Here P„arethe angles for which the Legendre
polynomial P„(cosP„)vanishes, e. g. , P, &

= 90',
P„~=54.7', and P„4=30.6' and 70. 1'. Since e'
in Eq. (128) is symmetric about resonance &uo,

G„„behaveslike a X-fold split resonance line.
This structure is demonstrated in Fig. 9 for
& = 1-4. It is a purely geometrical effect caused
by the fact that multipole radiation with its charac-
teristic intensity pattern is used to detect the res-
onance. This effect was first observed for the
case X = 2 in optical studies, ' ' and all the formulas
derived above apply to optical-double-resonance
experiments as well.

In connection with optical-double-resonance work
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[dl,"'()3)]'=[d,',"'( -~)]'
[see Eq. (68)].

If the angular distribution of allowed P radiation
emitted from a polarized nuclear state is used to
detect the resonance, the line shape is determined
by the term in l& = 1. In this case Eq. (125) reduces
to

pp 1 + (&dp —&d) 7'

1 + (&dp —&d) T + (&d& T)
(130)

Hence the line shape as a function of cu is a Lorent-
zian, as was pointed out by Sugimoto et al.

2. Resonance Line Shapes for k& and k& Nonparal-
lel to Hp

In the case of random phase these geometries
lead to a response function which contains factors
of the form given in Eq. (124). Examples are
geometries 9-13 in Tables I-III. It can be inferred
from Eq. (124) that the terms with q4 0 are con-
siderably smaller than those with q= 0. Numerical
calculations confirm this. Thus for complicated
geometries the leading terms G„„determine the
shape of the resonance.

At resonance Eq. (124) takes the form

(/ac) g 1 p(p~&+8~p)~ &~& & p

1+ (P&d + Q&d )
(131)

it was pointed out that the splitting of the resonance
line allows a reliable determination of Hj. The
distance between the points of maximum perturba-
tion is obtained from Eq. (128),

(&do —&d') = cosP„(1—eos P„)' &d, . (129)

For A. =2, for example, cosPp=el/M3 which gives
(&dp &d ) = &d&/M Thus with the frequency scale
chosen in Fig. 9 the two minima occur at + 0. '7l.
Of course, the nuclear orientation is not destroyed
at these minima, because of the coherence that
exists among the substates. The nuclei are still
oriented about H„and an adiabatic frequency shift
will restore the orientation in the laboratory frame.
By contrast, relaxation effects will destroy nuclear
orientation in the H, frame (see Sec. VII).

The resonance behavior of G„„(&d)is shown for
X= 1-4 in Fig. 9. The frequency scale was chosen
in such a way that the width of the curves is nor-
malized with respect to H&. The effect of power
broadening of the resonance line which occurs for
increasing rf amplitudes is readily deduced from
this figure. It is apparent from the figure that for
4 random and any A., G„„is an even function of
(&d —&dp)/&d&, and hence is insensitive to the sign of

This statement also applies to any geometry
with random 4 and q= q+ 0. For q= 0, this result
is easily proved from Eq. (125) using the relation

For w&v'- ~ these perturbation terms show the
same hard-core behavior discussed in connection
with Eq. (126). In addition, a similar effect may
be achieved even at modest rf amplitudes for large
values of ~g. Keeping co&7 constant the perturba-
tion term (G'„'„)„,vanishes for &dg -~, unless
q= 0. Large Q) pT and co&7 values can be realized in
experiments with large magnetic fields and long
nuclear lifetimes.

In any NMR/RD experiment a natural symmetry
axis about k, exists at t= 0. As K(t) evolves there
is no symmetry axis fixed in the laboratory frame
until, as +p'- ~, Hp becomes a symmetry axis.
For random-phase cases the symmetry is very
simple. Whatever the position of k„K(t)will pre-
cess until pp, originally diagonal along k&, be-
comes in the time-average diagonal along Hp, i. e. ,
until the nuclei become oriented along Hp, in the
ensemble average. Since k& and Hp are in general
not parallel, the magnitude of (po)I is usually less
than that of (pt)I~, because of averaging. If Ho is
the only magnetic field present, we have, for the
limit &dpv- ~ [cf. Eq. (4)],

(Po)ii, = (Po)p, (P„(eos(k„H,)))„P„(cosP). (133)

The average is taken over 4. For frequencies far
off resonance, 8-0 and Eq. (133) reduces to Eq.
(132).

Now (po)n is simply a statistical tensor deserib-
p

ing an ensemble of nuclei oriented relative to Hp.
Thus the response function corresponding to Eqs.
(132) and (133) can be written, respectively,

I'„=P„(cos8,) P„(eos8p) (134)

for &dy —~ with no rf field present, and [cf. Eq.
(114)]

I'„=(P„(cos(k,, H, )))„P„(cosP)P„(cos8) (135)

for +&T- ~ with cop» My. In the average over b,,
the specific form

cos(k, , H, ) = cos p cos8, + sin 8 sin8& cos(p, —n, )

should be used. Because
~
P„(x)

~

ha, s its maximum
value of 1 at x = + 1, it is clear from this relation
that the strongest angular correlations are obtained
with parallel geometry k, ll k2 ]l Hp. Inspection of
Tables I-III shows that for each geometry the coef-
ficient of Gu is P„(cos8,) P„(cos8p).

Finally, for X odd, random b, and k& in the x, y
plane, we note that f'~(&d) vanishes identically for

(po)S = (pot Px(cos8&) ~ (132)

If a strong rf field is also present, and cu&~-~
with &dp» &d, still, then K(t) must be averaged around
H, before being averaged around Hp. For this case
Eqs. (110) and (111)give
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all ~,~ and co because the ensemble average over
& must be taken over odd powers of cos(p, —4)
[see Eq. (135)].

3. Comparison uith Spin-Rotation Measurements

A few observations can be made about the advan-
tages and the applicability of time-integrated NMR/
BD in comparison with time-differential PAC mea-
surements in static fields oriented perpendicular
to the detector plane. The latter, also known as
the "spin-rotation" method, measures the inter-
action frequency as a function of time. A Fourier
analysis of these data yields the interaction fre-
quency. An elegant derivative of the spin-rotation
method is the "stroboscopic" technique, ' which
compares the interaction frequency with a known

frequency standard and in this way directly mea-
sures the frequency transform of the time spec-
trum.

An advantage of spin-rotation or stroboscopic
methods is that no energy is absorbed by the nuclear
ensemble and thus no power broadening occurs.
The width of the frequency transform is given by
the nuclear lifetime and/or any relevant relaxation
time. The applicability of these time-differential
techniques is, however, limited by the resolution
time of the detection equipment. Hence for large
interaction frequencies NMR/RD is the only method
that can be applied. Notice that the conditions for
the NMR technique to work effectively are coos» 1
and ~,7 ~ 1. Thus if a large effect is to be ob-
served, the resonance line must be broadened by
II&. The extraction of any information about the
lifetime v or a possible relaxation time ~„,~ by
means of Eq. (125) then depends crucially on the
knowledge of Hj .

C. Fi,xed rf Phase (Pulsed rf}

1. Symmetry Properties of I'„for kz It z

Turning now to fixed-phase experiments, a wide
range of behavior of F„is possible. It is worthmhile
to discuss cases in which at least one of the vectors
k„kzis along Ho (these are the best cases in the
sense of providing the largest effects). If the rf
phase has a well-defined value with respect to the
time t = 0 when the nuclear level is formed, terms
with q& q occur in the angular correlation function
[see Eq. (66)]. The general form of the response
function as defined in Eq. (80) can be obtained from
Tables I-III for a few interesting geometries. For
fixed rf phase 4, the response functions depend
strongly on phase angle and geometry and have
little in common with the ones for random phase
(Fig. 9). We wish to characterize the important
symmetry properties of I'„for two reasons: (a)
It is of practical value to know the relative sensi-
tivities of 6'„~for different experimental configura-

tions; and (b) we want to explore the possibility of

determining the sign of @HO without using a cir-
cularly polarized rf field H&(t). We shall discuss
the sign of @HO or that of ~o rather than that of g
alone because for some important cases hyperfine
fields of unknown sign may play the role of Ho.
The cases +&a- ~ and &,v finite mill be discussed
separately.

From Eq. (66) it follows that for n, fixed the
cross terms of the perturbation factor G„''„with
q4q have finite values as e&&- ~. Thus, even in
the saturation limit, I'„(~) is strongly geometry
sensitive. Vfe shall first discuss four cases in
which k~ is parallel to z, which gives q = o, since

Y„;(0,pp) = 5; o [(2X+I)/4z] ~

The limiting value for C»(&o,r- ~}consists only of
the term for P= 0. Thus, from Eqs. (66) and (80)
it follows that in this case the response function
I'„(ut&&-~) can be written in the form

f't, (~) =P„(cosP) Q cosq(& —P, )d', o'(P)d', 0'(8, ) .
(136)

Figure 10 shows f'„(~)for 1 ~ X~ 4 for the cases
~, = —,m, P, =&, i. e. , k, l]x'att=0 ay= gp fy=, p+&,

k, random in the x'y' plane at t= 0; and, for corn-
parison, e&=0, i.e. , k, ]1 z'. The asymmetry that
remains, for odd X, as w&7 - ~ will be referred to
as persisent asymmetry. It is insensitive to the
sign of gH0 since in the limit co,v - ~, I'„depends
only on P, which is invariant against a sign change
of gHo [compare to Eq. (44)]. A physical picture
of this result would be the following: In the S'

frame K(t) precesses over a circular path (see Fig.
4); for w, v- ~ the factor e "' approaches constancy
and all segments of the circular path are weighted
equally. Thus the sense of the precession is unim-
portant and the sign of gHO does not affect f t,(~).

From Eq. (136) the following rules can be estab-
lished: (a) For h fixed and X even, f'„(~)is an
even function of (to —~0)/to, , as in the case of ran-
dom phase. (b) For n fixed and X odd, f"„(~)is
either an odd function of (&o —too)/to„or else it does
not depend on frequency at all, and vanishes for all
frequencies.

The antiresonance phenomenon arises in Fig. 10,
in connection with the four curves labeled f'„(x,z),
because for this case K(t) and H, are both parallel
to the x axis in the S'(t) frame at resonance, and
H& therefore acts as a holding field. Because Hq

induces no transitions at ~ = coo, the perturbation
factors have the same value at resonance as they
have far off resonance; i. e. , I'„(ut= too) = f'„(ur= + ™).

The remaining category of experiments, not
covered by the above discussion, is that for which
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FIG. 10. Line shapes in the saturation limit ~&~- ~, with k2 along z and k& along x with b, =0 (top row), along y with
6=0, in the x-y plane with 6 random, and along z (bottom row).

6 is fixed and co,7 is finite. In the limit ~,~- ~
the imaginary terms t(Par, r) vanish [see Eq. (66)].
For ~,~-1, however, these imaginary terms are
about the same size as the real components, and
they can lead to asymmetries that are sensitive to
the sign of gHO. Since in this section we are con-
cerned only with k& I~ z, the discussion applies to
geometry Nos. 1', 5, 6, and 8 in Tables I-IIL For
these geometries the response function f'~ (which
is of course real) includes imaginary parts Im fGgf
which bring about an asymmetry. It should be
remembered that Re(G~) and Im{G'„'„)have opposite
symmetries about resonance Isee Eqs. (68)]; for
even (odd) q, the real (imaginary) part of G~o is
symmetric about the resonance frequency, while the
imaginary (real) part is antisymmetric.

The response function F& can be affected in two
ways. Both arise from the sense of precession
about Hj and both are transient, disappearing as

It is not feasible to observe the sign of
~0 directly in a time-integral experiment, as this
sign will affect f'„only in order &u&/ceo. Thus all
@HO sign determinations are made by measuring
the sign of ~&, as the geometries given below will
indicate. We shall refer to the sign of &0 or (d&

interchangeably. This implies that we know the
sign of Ho and also the phase 4, which gives the
sign of H, at t= 0. Maximum sensitivity in sign
determinations can be attained by taking k2 along
Ho.. This choice precludes any possibility of de-
termining the sign of ~o directly, but (as dis-

cussed later) it offers the greatest variation of I'„
with (d.

The first way to infer the sign of the interaction
is from asymmet~ of the response function about
the resonance. The sign of +0 can affect I'„to
render

f;((~ —~,)/~„~,&0) =(-I)"1,((~, -~)/~1& ~o 0)

& r„(((u—(' )/(o, , (so& 0) . (137)

Thus F~ is neither an even nor an odd function of
(e —u&o)/&u, , but f'„(&uo& 0) is ( —1)" times the re-
flection of I'„(ruo&0) through the resonant frequency.

As an example Fig. 11 shows the resonance
curves which are to be expected with geometry No.
5. The marked feature of these curves is the
asymmetry about cd = (do for opposite signs of (d„
or equivalently (for 1 even) for the angles
P, =45' (225') and 135 (315'). This asymmetry
can be used to determine the sign of co& even when
linearly polarized rf is used. The difficulty in
practice, however, is that the shift is small and
can only be picked up in experiments that have
great sensitivity and are free of additional broaden-
ing.

To understand the origin of the observable asym-
metry, let us follow K(t) as it evolves in the S'
frame according to the torque equation (100). At
resonance, with H, ~~x, F„is insensitive to the
sign of ~& for even X: This is a consequence of the
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about H~.
The second way in which the sign of ~& can affect

I'„is really very similar, though superficially quite
different. In this case l

„

is an even function of
(&u —~z)/~I, but it is a different even function for
(dg & 0 than for coy & 0. Figure 12 illustrates this
effect for geometry 8 [k, =M(e„+e,), kz=e„
n = 0]. This is the exact equivalent, for NMR/

PAC, of the most common arrangement for de-
termining g factors by time-integral PA& studies.
In fact, for co=coo, we find
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Q)1 7 = Q. 5

I'„(t)= P„(cos(8,—co,t}),

f', = (1/r) f e 'i'P, (cos(8, —&u, f))df,

f' = —'+ —'cos2(8, —8')/[1+ (2&@,T) ]'iz .

(138)

(139)

0.2 Here 8'= —,
' tan '2', r . The difference at resonance,

due to the X=2 term, is

—0.2—
W(ILI z & 0) —W(ur z & 0)
W(uz& 0)+ W(&hz&0)

(140)

-0 4

0.4

0.2
A

0

(dl 7=—
tt.z is maximum for 8, = 4 II, &a&,v = —,'. (Cz) ~

= —3Az/(4+Az). These equations are familiar from
angular correlation theory. Maximum sensitivity

- 0.2

—Q. 4
l I ) } } l

-5 -4 -5 -2 -I 0 I

(d —~o
QJ 1

! I

2 5 4 5

0.6

0.5

0.4

I
'

I
'

]
'

I
'

1
'

1
'

t
'

t
'

]

FIG. 11. Approach to saturation for geometry 5, with
b, =o. Note sensitivity to sign of ~&a which vanishes, for
ail ~, as I~,~l-~.

0.5

even parity of P„.Off resonance this is no longer
true. Suppose co is slightly below coo, for example,
and H, is thus in the (+ x', + z') quadrant of the
x'z' plane. For 8, =-,'m, f&=-,'m as shown, and
&a&I &0, K(t) will start up into the (+x', +y', +z')
octant, I7(f) will decrease rather abruptly from
—,'II, and I'z(t) will increase rapidly from ——,'. For
A&I & 0, on the other hand, K(f) will swing down into
the (+x', +y', -z') octant and Ii(t) will increase
rather slowly from zII. Thus I'z(t) will remain
longer near ——,'. For I cu, v I

-1 a large fraction
of the nuclei will decay while the effects of this
transient asymmetry are still large, and they will
affect l„.For I ~&v l »1 this is no longer true
and the line becomes symmetrical. Clearly ex-
periments of the class illustrated in Fig. 11 are
completely equivalent to time-integral PAC experi-
ments in the S' frame, with precession taking place
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FIG. 12. Response function 1 2 for geometry 8, with
b = 0. Note sensitivity to sign of m&7, which disappears
as ~&7 ~. For ~=~0 this geometry is equivalent to the
usual method of determining gHO by spin rotation, but in
the rotating frame S'.
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FIG. 13. Response function I'4 for a geometry similar
to 8, and6=0, but with 8~ reduced to 87I in order to en-
hance the sensitivity of I'4 to the sign of (d&v.

when

W((uo& 0) —W((up&0)

W(uo & 0) + W(no & 0)

is obtained in time-integral PAC by applying and
reversing a dc magnetic field (the analog of our
H, at resonance) perpendicular to the correlation
plane in which two detectors are placed at a rela-
tive angle of —,'s (or equivalent). The "attenuation
factor" [I+(2&@,r) ] '~ is well understood: It leads
to a vanishing difference when (d&~ becomes very
large. In the NMH/PAC case this factor makes the
effects of the sign of ~& on the line shape transient.

For A. &2, 8& should be smaller than —,'w for maxi-
mum 8„,because the largest-amplitude highest-
frequency component of P~(cos8) varies as cosX8.
For example, I 4 is relatively insensitive to the
sign of coj for g, = —,'m, but is more sensitive for
8, =-,'v (Fig. 13).

For X odd, the odd parity of P„leads to more
asymmetries in 1"„.In general, however, these
asymmetries can be divided into a transient type,
that conveys information about the signs of u, and/
or A„,and a persistent type, that depends only on
the sign of A, . In Fig. 14 we illustrate an experi-
ment that is the A. = 1 counterpart of the one illus-
trated in Fig. 12. Here 8&= 2w was chosen to maxi-
mize the difference

I I I

o.e- ~, - 4', = -* "k2,H

0.4

0.2

r, 0

Aa

2. Symmetry Properties of I „with kq and kz in the

xy Plane

It is evident from Table II that the magnitude of
the resonance effects for A. = 2 drops by about
another factor of 2 if neither R, nor kz is paral-
lel to the z axis but both are instead perpen-
dicular to it (geometries 9-13). This can easily
be understood from Eq. (114), since Pz(0) = ——,'.
A similar result is observed for X= 4, but with a
greater reduction in the effect. For odd X, perpen-
dicular geometry destroys the integral effect.
This is easily deduced from Eqs. (97) and (101):
The (kz)„„[K,(t)]~ terms in cost)(t) are all linear
in cos(&ut+ 6) or sin(~t+ 6); thus all odd-rank I'~

have high-frequency factors with zero average
value. They therefore average to zero in the trans-
formation S'- S. Hence we shall consider only
even-X cases further. The response functions
I'„«for geometries 9, 11, and 13 in Tables II
and III are shown as examples in Figs. 15-1V.
All these geometries are convenient for beam ex-
periments, with the exception that No. 9 is not
suitable for target foils where H&

' and Ho" have
to be in the plane of the foil. They differ only by
the angles f, and P2 for k, and k&. Through the
factors e '~~ and e"~& [compare to Eq. (76)] the
choice of angles sensitively affects the super-
position of the various terms of the response func-
tion in Eq. (80). The phase angle 6 of the rf field
and the angles (Ij), and p2 are equivalent in the sense
that they occur in Eq. (76) in the form
exp{ —i[q(P, —&) —q(pz —&)]}. A particular value
of ~ can be compensated by rotating the detector
system by an angle 6 about the z axis (cf. Figs.
1-3).

In Fig. 16 a transient asymmetry around the
resonance frequency shows up for ur, r- 1: Again

r, = [1+(~,r)']-'"cos(8, —8') (141)
—0.2

at co= ~0 with 8'=tan (d, ~ in this case. 8, is maxi-
mum for ~,7=1.

The persistent asymmetry in Fig. 14 happens to
be zero. In Fig. 11 (top panel) we have a case in
which both a nonzero persistent asymmetry and a
transient asymmetry occur. As ! co&7. ! —~ the
transient part vanishes and no information is avail-
able about the sign of ~&.

—04

-0.6-5
I I I I I I I I I

—4 -3 -2 —i 0 1 2 3 4 5

QJ —QJp

(aJ )

FIG. 14. Response function I'~ for a geometry similar
to 8, and 6=0, but with 8& increased to ~7I in order to en-
hance the sensitivity of the sign of w&7. .
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=0 for (X+q) odd. (142)

O.l5
h

r,
O. IO

0.05

O.IO

r,
0.05

a I

-8

~, ~- io-WJ
I a I

-6 -4 -2

V V

I a I a I a I

0 2 4 6
fat) —QJ0

@le

I a

8

From Eq. (142) or Eq. (114), the limiting value of
the A. = 2 response function at resonance can be ob-
tained as

(143)rp(~)„,= tII+ + COS2(ataa —ta) .
For the particular geometries shown 'g.in Fi . 15-17

(114) or (142).
The resonance behavior of geometry No. 9 in

Fig. 15 is the most obvious one for all perpendicu-
lar geometries since it has H& as ythe s mmetry
axis in the rotating frame. The rotation ~t about
the z axis yields for (d,~-

f,(-).,= [P,(0)]' (144)

the same hard-core value that was obtained from
t . Sli htly offrandom rf phase in parallel geometry. ig y o

resonance I z(~) dips to a minimum at a frequency
between the zeros of P2(cos(k, , H, )) and P2(cosP)
[see Eq. (114)]. As we have noted before in dis-

Fi 7 and 10 geometry 9 is a special
fieldcase because for (d =(do Hy acts as a holding ie

FIG. 15. Response functions for geometryetr 9 with 6
=0 and A. =2, 4. For odd X and ~p»~~ Ig ——0.

0.2 5 .
r

'
T I

a
&

a a I I

it can be used to determine the sign of (d, , provided
that the phase angle A of 0, at t = 0 is known. Since
both detectors are located in a plane perpendicular
to the z axis, the rotation of K(t) about the effective
field can no longer be visualized as easily as in
Sec. VI C1 in which the system was invariant
against rotations about the z axis. y,Clearl there
is no rotational invariance with respect to the z

is in geometries like the ones shown in Fig.axis ln

r these15-17. The general response function for thes
tedcomplicated geometries must either be calculate

according to the formulas given in Tables I-III or
by calculating P„(cosa!(t})with the proper vector
K(t) [see Eqs. (91) and (97)].

If.we are not interested in a transient asym-
metry effect like the one shown in Fig. 16 and the
lifetime of the nuclear state is sufficiently long to
permit reaching the asymptotic value coiv- ~, a

l form for the response function can be
ithderived. For any "perpendicular" geometry wi

k, and kz in the xy plane Eqs. (66) and (60) yield

0.20

O. I 5 .

O. I O

0.05

- 0.05

0, I 5 I

0.}0

-0.0 5

I, I g I

I
'

I
'

I

(")=,'. . .(co tI)Z(- )"'e ""'"
(I I I)2

d'"'(p} for (X+q) even
(X —q)!!(X+ q)!!

-8 -6 -4 -2 0 2 It 6 8
~-~0

QJ I

FIG. 16. Response function for geometry 11, with 6
=0, and A. =2, 4, and ~&&0. For odd values of &, and
~p»~i „=. u, I' =0 Curves for &0 may be obtained by re-1
flection through ~ = p.
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and the effe ct at this frequency is really an anti-
resonance. For cases in which the 1e ine is broad-
ened by dipolar fields, the use of geometry 9 ld
serve to narrow the line, in analogy with similar
applications in conventional NMR. 43 44

in MR&'RD the k, vector can easily be taken along
H& withoutusing elaborate pulse techniques.

As mentioned above, it is considerably more
difficult to visualize the spin motion in the case

D~k&IH& IHo~k&, illustrated in Fig. 17 for
Pp = —,'w in geometry 13 (although for large &p, 7 it
becomes independent of g ). Thiis geometry is im-
portant for accelerator experiments. E u tqua ions

an ( ), or (114), are applicable here: Thus
the "y-z" geometry of Fig. 10 gives a larger ef-
fect. For technical reasons it ma hy, owever, be
impractical to countalong Hp (i. e. , kp II H . An

inter estin fs ing feature of this geometry is that the
x. e. , p II Hp). An

multipole structure of I'„(~)is degraded fe, or even

et th
o & minima, which gives this part' 1icu ar geom-

e ry e advantage that the resonanc li f —2
is considerably narrower compared with a normal
width as shown in Fi . 1g. 0, perhaps allowing a more
accurate frequency determination. The

mu &pole structure is a consequence of
I'„~varying as P„(cosP)for this geometry, i. e. ,

A

r,

0.25:—'

0.20—

O. l 5:
O. IO—

0.05:
0:

0.05:
O. l 0—

0 I5

O. IO

A

r,
0

—0IO -8
I I I I I

-6 -4 -2 0 2

I
/

I
/

I ] I
f

I

Oa

45'—

k,

I"„(~)= P„(cosp p) P) (cosP) Pg(cosa p) . (145)
~ ~Variation of I',(~) as the square of P„(cosP)in

multi ole stru
parallel geometry [Eq. (106)] led toe o the complete
mu ipole structure with X components. F dd

„(~)vanishes for all frequencies because the
angle between H, and kl is —,'n.

To provide the experimenter thwi an estimate of
ow arge a resonance effect is to be expected for

the easiest experimental setu wse p, with H0 l k, , three
possibilities are summarized in Fi . 18
measure of the resonance effect at ~=0 co 7 —~
and k& alon xg, y, or z we define the quantity

5I'„")=1',(, l

—
o~ »

~ l ) —f'(", = )

(146)
which gives the change in I' (~) ta resonance for a
given geometry. For odd A. , 5I' =0 f
tries, if k& j.H . Wi

,=0 for all geome-
i g p ~ With even X, either Eqs. (66) and

(80) or (114) gives
A

5F~(~) =P„(0)[l-P) (0) ]P„(cos&p).
g o parallel geometry are evi-Again the advanta es of

dent. Even if kj cannot be parallel to HD, k should
still be chosen parallel.

Exam les forp or various geometries and rf- h
relations iveng' above served the purpose of point-
ing out experimental possib'1't'i i ies. A successful
application of these ideas cana ' eas can be expected only for

experiments on long-lived isome . Fi
phase measurements a

i omers. Fixed-
ts are hardly feasible for NMR/

FIG. 17. Res onsp se functions for geometry 13, with 6
= 0 and ~=2, 4. For odd A., 0 =—0 'fl Cdp » (dg ~

PAC and NMR/ON and will probably be confined to
accelerator experiments where it is techni

e o pu se the beam synchronously with the

VII. RELAXATION CONSIDERATIONS

e ec s of relaxationA general discussion of the effe t
n e scope of thison angular correlations is beyond th

paper. Such a discussion has been
by Gabriel. The r

een given recently
rie . The purpose of this section is to di

cuss ex licitlp y the single most important case of
0 s-

relaxation effects on NMR/RD
f ~ ~

, namely the influence
o spin-lattice relaxation on 1' hine s apes and in-
tensities. This case is esis especially important for

MR 'NR e crimMR/' xp 'ments, in which nuclear lifeti
are often in the milli

r e mes

to or ion er th
e mi isecond range and compar bl

g an the spin-lattice relaxation time
ra e

The analysis in Secs. III and IV led to exact
solutions for the time de end

~ ~ ~an ini iall
me ependence of radiation from

an 'x y axially symmetric distrib ti
sub ect t

i u on of nuclei
j o static and rotating magnet f

we shall introdu
e ic ields. Now

a in roduce a random perturbation X
show that the new

ion g arid
e new solutions are similar to those

that exist for the s stem
ields. The time dependence of the ensemble is

now described by [compare to Eq. (9)]
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s, ll H, ~

~i+~ g odd

A

P&(off) ~ 0
A

P(on) = 0
P), (0)

=P~(0) Ho

FIG. 18. Summary of the "on-
off" effects to be expected for
several perpendicular geometries.

H
k, [[k, , h=o

&p ~ 4 Xodd )E even

i„(off)= 0 =P(0)'

1~(o ) = 0 =&&(0)

Oft*a) g Odd X even

off

r"„( ) = 0 =P~~0)'

ihp= [(Xo+Xn), p] . (148)

The density matrix in a field-free frame may be
written

p'"(i) = U (i)p(t) U(t), (149)

~here U(i) is the transformation into a coordinate
frame in which Ko vanishes. In the case of mag-
netic interactions U(i) represents the transforma-
tion into the S'" frame: It is given by the series
of rotations described by Eq. (90) or Eq. (96).
After substitution of Eq. (149) into Eq. (148) and
comparison with Eq. (9), we have

ihp'"= [Uf3CnU, p"'] . (150)

+R +R

Combining Eqs. (150) and (151), we get

iap"'= [x„p"'].

(151)

(152)

Let us examine the conditions under which Eq.
(151) is valid. For Rn to be invariant to rotation
of only the nuclear coordinates, the interaction
responsible for relaxation must be isotopic. This
means that the extranuclear environment, or lat-
tice, must meet certain conditions. The basic re-

This equation is exact. Its validity does not depend
on the relative sizes of Xo and XR ~ It describes the
time evolution of p"' under the influence of only
a relaxation Hamiltonian Xn" ——U XnU. In many
cases, however, KR is invariant to rotation and we
can write

T, «1 (153)

This ensures that 3CR is small enough to be treated
as a perturbation. The correlation time of the
perturbation must also be small enough that the
system remains substantially fixed during the
period of one correlation time v, , i.e. ,

cop, «1 (154)

It should be noted that these relations do not imply
anything about the relative magnitudes of ~~ and
(d 0 or of (d p and the relaxation rate, although a

quirement is that, in the ensemble, the lattice
states available for participation in the relaxation
process must not be associated with a particular
direction in space. When the static Hamiltonian
Xo is associated with a particular direction in
space, this condition requires 4E «k T, where 4E
is the energy quantum transferred in the relaxation
process. For example, the problem in the mag-
netic case is that b,E is implicitly associated with
a direction defined by Ho. From the principle of
detailed balance any microscopic relaxation pro-
cess must be related to its inverse by a propor-
tionality factor e ~ that thereby relates the pro-
cess to Ho. Thus unless bE «kT and e ~ - 1
the relaxation process cannot be approximated as
being isotropic, regardless of other details of the
system.

An additional requirement is that the product of
the characteristic strength and the correlation
time ~, of the random fluctuations be small, '
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sufficiently strong perturbation will of course
mask any resonance effect.

The unperturbed density matrix in the S'" frame
at t= 0, i.e. , p"'(0), is diagonal in an m rep e-
sentation whose z axis is the k, axis. If the p x-

turbation $C& can be taken as spherically symmetri-
cal, then p'"(t) will remain diagonal along K(t)
and its time evolution may be expressed in terms
of only its diagonal elements p =(m l pram) along the

K(t) axis. In first-order perturbation theory, Eq.
(152) yields rate equations which can be written

p (t) = Z F ~ p .(t) (155)

In the transition matrix F, sums on rows or columns
are zero. The general solution of Eq. (155) is

PI

p (t)=p (eq)+ & S «&«(0)e "«' . (156)

Here p (eq) denotes the equilibrium value of p„(t)
that is approached as t- . The set of exponential
coefficients (- k«) are the eigenvalues of F. (They
should not be confused with the propagation vectors
k, and kz. ) The quantities f (0«) give the initial
values of the eigenvectors of F: They are determined
by the initial conditions. The transformation S
connects the p basis set with the eigenvectors and

diagonalizes F, i.e. ,

W(~&, k~, t) = Z R„e'«'A„P„(cos&l(t)) . (161)

For the specific case of relaxation in metals
via isotropic magnetic hyperfine interaction with
conduction electrons, the perturbation 3C~ takes
the form

S., =(-1)" (I-mfm~to) .
The orthogonality of the Clebsch-Gordan coef-
ficients then gives, from Eqs. (160) and (162),

(162)

Kg=AI ~ S=AIgSg+ 2[I,S +I S,]
%'e note that this interaction is also isotropic in
the S'" frame. The coOT condition is easily met:
At the Fermi energy the conduction electrons have
7', -10 ' sec, while even for very large hyperfine
fields +0 is only in the 10 -10' -sec ' range. The
condition cu~v, «1 is also satisfied, but by a smaller
margin, because the instantaneous hyperfine inter-
action with a conduction electron exceeds the time-
average interaction that is manifest as a hyperfine
field or (especially) as a Knight shift. Abragam
and Pound' showed that the AI S interaction leads
to a single-exponential decay of their quantity
III~~, which is proportional to our G~~, or, in theS'" frame, to (po(t))x«&. This is a consequence
of the fact that each p~ is itself an eigenvector (&

of F. This requires that

p (t) —p (eq)= ~ S «&(t), Ru = t«(0)5«i (163)

PJ

(po(t))x(«& = ~ Ri«&"'
3=0

(158)

From Eqs. (1), (156), and (158), and the boundary
conditions

p",(eq) = 0,

p~=1, independent of time

we can write, for X = 0,

~Oi 0$

The constancy of pO also requires k0= 0. For
X&0,

(158}

(15V)
Fdg~=S 'FS

The statistical tensors along K(t), (p,")««&, which
are constructed from the diagonal elements of the
density matrix in the m representation p, are
nonzero only if q =0 [Eq. (1)]. The time evolution
of these tensors is governed by the same set of
exponents (k;I:

Abragam and Pound gave the decay constants ex-
plicitly. In our notation their result has the form

k~(free atom) = —,r,„(A/jj) I(I+—l)S(S+1)

x [1 —(2I+1)W(I1XI;II)] .

Here the subscript A denotes the AI ~ S interaction.
After evaluation of the Racah coefficient this re-
duces to

k~(free atom) = ——,'r, „(A/k) S(S+ 1)X(&&+1) . (164)

Now this result is directly applicable to isolated
paramagnetic atoms. In a solid or liquid metal
this expression for k» would require multiplication
by a proportionality factor to account for conduc-
tion-electron statistics. The relaxation constant

k» for either a free atom or a metal varies with
X as»(A +1) and for X= 1 the value of k~ is just
1/T», where T,

„

is the spin-lattice relaxation
time. The subscript A denotes the AI ~ 5 mecha-
nism. Thus we can write

R&,«= t'«(0)Z (-1) ' S,(I—m Im ~».0) (160)
k,„=1/T&~ k„=&&(X+ 1)/2T (165)

and po(t) decays to zero as a sum of exponentials.
Substitution of (po(t))««& for (po~)f in Eq. (91) gives

Accordingly, Eq. (161)becomes

W(k» k« ~ t) =~&,po(0);, exp[- A(~+ 1)t/2Z', „]
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& &&(I'„(cosz)(t)). (166)

In time-integral studies the response functions
are obtained by multiplying the appropriate time-
differential functions by (1/7')e ' ', where r is the

nuclear lifetime, and integrating on dt. Com-
parison of Eqs. (91) and (166), however, shows
that the effect of considering relaxation is simply
to multiply each response function r„(t)by
exp[- &((X+ 1)t/2T»]. Combining this with the factor
(1/&)e ', we have the factor (1/v)e 't'', where
the effective lifetime v' is defined by

1/v' = 1/7 + l((&+ 1)/2T» (167}

Now the integrals

r", =(1/r) J'" r, (t)e 'I' dt

all have the same functional dependence on ~' that
the corresponding integrals in the absence of re-
laxation had on the true nuclear lifetime 7, ex-
cept that the integral response functions are all
attenuated by the factors

[1+(X(ur )2] /[1+ (l((d v') 2]

(168)

Thus relaxation reduces the relative magnitude
of the resonant effect as well as broadening the
line. It is necessary, in the presence of relaxa-
tion, to increase the rf field amplitude by a ratio
7'/T in order that co,7' should attain a required value.

These considerations are easily generalized to
include also the effects of quadrupole relaxation
caused by randomly fluctuating electric field
gradients. The Hamiltonian governing this inter-
action, $C, is invariant to a coordinate trans-
formation into the S"' frame where it can also be
treated using first-order perturbation theory.
Taken alone, Xo would cause (p(&)K«& to decay as

tions, the effective spin-lattice relaxation con-
stant is given by

1/T,' = 1/T,„+1/T&o (172)

The X dependence of k), is different from that of
&(z„„,however: From Eqs. (170) and (171),

&(.(X+ 1) A(l(+ 1) —2

2T,o 4I(I+ 1) —3
(173)

Thus the effective nuclear lifetime is given by

1 1
= —+ k~„+k~q7' 1

1 X(l(+ 1) 1 1

T 2 yA 1Q

X(&(.y 1) —2

4I(I+ 1) —3 (174)

This r' can be used in Eq. (168) as before.
The above discussion of spin-lattice relaxation

applies to solids, liquids, and gases. It is, within
the above assumptions, a rather complete treatment
of relaxation effects in NMR/RD. In any magnetic-
resonance experiment the question of transverse
relaxation (Tz) must be considered. Since it is
known that angular correlation patterns in perpen-
dicular geometries are sensitive to T2, it might
be expected that our equation should contain T2 ex-
plicitly. However, relaxation that arises from 'KA

can be described by a single parameter (A) and thus

by a single relaxation time (T»), and similarly for
3C. In a general discussion of relaxation effects
the coefficients k, are functionally dependent on both
T, and Tz. For example, Gabriel gave (in our
notation)

(p(&(t))K(t & (p(&(0))z, e (169)
( &

A(X+1) 2 1
(176}

K=-~+ (~,o/h') (eQ) Vz,

we can write

1 2[4I(I+ 1) —3]
T Iz(2I 1}z (171)

Since both the AI ~ S and quadrupole relaxation
mechanisms are treated as first-order perturba-

3 v, o 2
—

2 X(X+1)[4I(I+1)—l((X+1)—1]
Xo 80 gz ( Q} cs Iz(2I 1)2

(170)

Here (eQ) V„is the ensemble-averaged square
of a fluctuating axially symmetric electric field
gradient that causes relaxation, while 7,& is its
correlation time. Def ining

for isotropic magnetic hyperfine interactions.
However, when the criterion cuov, «1 is met, he
pointed out that T, = Tz, and the k'„"become inde-
pendent of q. We have avoided this problem alto-
gether by working in the S"' frame where there is
no transverse relaxation.

Of course this discussion applies only to T2
effects that arise from K„andufo. The high di-
lution of NMR/RD samples precludes Tz effects
from interactions with like spins, however, ex-
cept possibly in NMR/ON experiments on very
long-lived states. The remaining T2-like effect,
namely inhomogeneous broadening, is well-known
in both NMR/NR and NMR/ON experiments

Note added in Proof. The effect of the "nonreso-
nant" circular component of the linearly polarized
rf which has been completely neglected in this paper
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was recently discussed by U. Capeller (private
communication) in a rigorous treatment of the prob-
lem. He proved that in addition to the Bloch-Sie-

gert shift there exist subharmonic resonances at
frequencies of about u&'=no/(2u+1) (u= l, 2, 3, . . . )
for large rf amplitudes H, /&0~ l.

*Work performed under the auspices of the U. S. Atom-
ic Energy Commission.
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