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A generalization of the Navier-Stokes equation, valid for wavelengths and times of a molec-
ular order of magnitude, is discussed on the basis of viscoelastic behavior of simple class-
ical liquids. In this theory, transport coefficients are replaced by appropriate viscoelastic
memory functions. The theory is verified by analyzing the data on current-correlation
functions obtained from computer experiments. Three different models for the time depen-
dence of the viscoelastic memory are investigated, namely, a single-exponential decay, a
modified-exponential decay, and a Gaussian decay. It is observed that the memory functions
are approximately Gaussian, at least for times of the order of one or two relaxation times.
This is in agreement with a conjecture of Forster, Martin, and Yip. The wave-number de-
pendence of the half-width of the Gaussian decay, and of the longitudinal- and shear-viscosity
coefficients, are found from computer experiments. The extrapolated values of these trans-
port coefficients, in the limit k —0, are in good agreement with experiments on liquid argon.

I. INTRODUCTION

In recent years, the dynamics of density fluctua-
tions in simple classical liquids has been a subject
of considerable interest. In particular, several
theoretical attempts' have been made to reproduce
the data obtained from computer experiments on

fluctuations of the current density in liquid argon. '
Our reasons for presenting still another article on
the same topic are twofold: (i) We provide a simple
heuristic argument leading to the generalized hy-
drodynamic equations that have been derived pre-
viously by more e laborate statistical-mechanical
methods; and (ii) we present a more detailed and
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complete analysis of the data provided by computer
experiments.

As is well known, the familiar Navier-Stokes
equation gives a good description of transport phe-
nomena in liquids for long wavelengths and low fre-
quencies. This description may be expected to fail
at wavelengths of a few angstroms and frequencies
of the order of 10' Hz. The original motivation for
the present work was to find the appropriate gen-
eralization of the Navier-Stokes equation so as to
include short-wavelength and high-frequency phe-
nomena satisfactorily. Since the inception of this
investigation, a number of authors have in fact found

the desired generalization. ' 4 The essential point
is to include nonlocal behavior in space and time.
In particular, viscoelastic behavior must be taken
into account. This has been done by various forms
of linear response theory, for example, by Mori's
theory of generalized Brownian motion ' and by
methods of Kadanoff and Martin. '

The generalized hydrodynamic equations that have
been derived and discussed in this article are

—J„(k, t) =
)

ikp(k, t)
dt ' ' mSk

t
dsk~(t)„(k, t —s) J„(k, s), (1.»)

0

t—J~(k, t) = — ds k2(t)~(k, t —s) J,(k, s), (I. lb)
0

where J„(k, t) and J,(k, t) are, respectively, the
kth Fourier components of the longitudinal and
transverse current density; p(k, t) is the kth
Fourier component of particle density. (t)(k, t) is
a rnernory function representing the retarded re-
sponse of the current to a change in the stress
tensor. [If the memory function is independent of
k and is a 6 function in time and the value of S(k),
the structure factor, is taken in the limit k-0,
Eqs. (1.1) reduce to the longitudinal and trans-
verse components of the ordinary linearized
Navier-Stokes equation. ] Fluctuations in the
current density are described by a correlation
function C (k, t),

C (k, t) =(J*(k, 0) J(k, t)), (1.2)

and the transverse current-correlation function

where ( ~ ~ ~ ) denotes average over an equilibrium
ensemble. The longitudinal current-correlation
function obeys the equation

—C (ks)= -j( ds
4

„k' ~, k'k„tk, s — ))mS(k
0

x C„(k, s) (1.3)

4~[(o/ff)"- ((r/ft)'], (2. 1)

with e/ks = 120 'K and o = 3.4 A. The mass of a
single particle is the atomic mass of argon. The
density is 1.407 g/cm s Because of the corresponding
states relationship arising out of Eq. (2. 1), the re-
sults should be applicable to a variety of liquified
noble gases at appropriate temperatures and densi-
ties.

Trajectories of this system of particles were ob-
tained by numerical integration of the coupled dif-
ferential equations of motion. The time step for
integration was 2&10 "sec. The system was in
thermal equilibrium at a temperature of 76 'K (and
therefore simulates liquid argon in a slightly super-
cooled state). Having determined the trajectories
of the 500 particles as functions of time, one can
then compute the time dependence of various dy-
namical variables, in particular, the current density

N ~

J(k, t)= ~ Z R, (t)e'"'~") .
j-1

Here N = 500, and R~(t) and R, (t) are the position
and velocity of the jth particle at time t in an N-

(2. 2)

satisfies the equation
t—C, (k, k)= f-d k'd, (k, s — )C(k,s), , (1.4)

0

which is exactly the equation obeyed by transverse
current density itself.

We find that the memory function (t)(k, t) has the
following properties. First, the initial value for
the memory function in the longitudinal case is
[(4)&(k) —vo(k)]/k and for the transverse case is
m,'(k)/k'. The quantities (d~(k), m,'(k), and (d()(k)
=k [ks T/mS(k)] can be found from an equilibrium
calculation involving the radial distribution function
and the intermolecular potential; alternatively, the
quantities (d,'(k) and &o, (k) can be calculated from the
initial second derivative of the correlation function
C(k, t). Second, the time dependence of the memory
function can be approximated reasonably well by a
Gaussian (in agreement with a conjecture of Fors-
ter, Martin, and Yip ); the half-width can be found
either from an equilibrium calculation or, alter-
natively, from the initial fourth derivative of C(k, t).

II. COMPUTER EXPERIMENTS

Before proceeding to the details of the analysis,
we present some background information on the
computer experiments" which investigate the dy-
namics of a classical system of interacting parti-
cles.

The data presented in this paper pertain to a cal-
culation on a system of 500 particles in a box with
periodic boundary conditions. The total intermo-
lecular potential is taken to be a sum of (6-12)
Lennard- Jones pair potentials,
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In this section, we present a theory in support of
Eqs. (1). We use a heuristic argument, based on

physical intuition.
The dynamical variables with which we shall be

concerned in this analysis are the particle and cur-
rent densities. Fourier components of the particle
density p and current density J are defined to be

and

(k, t)=N &ta g a ~ R)o&

j=1

Pf ~

J(k, t) =N-'" Z R (t)e'"'"~" & .
/=1

(3. 1)

(3. 2)

As stated earlier, the longitudinal and transverse
components of the current density J(k, t) are defined
with respect to the direction of the wave vector k.
The current-correlation function C (k, t) defined in
Eq. (1.2) can be decomposed into longitudinal and
transverse components C„and C, . Because of
isotropy in a liquid, both these correlation functions
depend only on the magnitude of k and not its direc-
tion. W'e now study the longitudinal and transverse
current-correlation functions separately.

particle system. J„(k, t) is then the component of
J(k, t) in the direction of k and J,(k, t) in a direction
normal to k.

From the time dependence of J(k, t) [here J(k, t)
stands for either longitudinal or transverse current
density], we compute a moving time average

C(k, t) =(I/T) f ds J (k, s) J(k, s+t) (2. 3)

for the longitudinal as well as transverse current-
correlation functions. Here T is of the order of
2&& 10 "sec. Figures 1(a) and 1(b) show the shapes
of these correlation functions for several values of
k in reciprocal angstroms. For convenience these
curves have all been normalized to unity t = 0.
Shortly after the first minimum, the curves appear
to be dominated by statistical noise. The data pre-
sented in Figs. 1 are the raw material for our anal-
ysis. The statistical problems arising in the cal-
culation of these correlation functions have been in-
vestigated e lsewhere. "

III. THEORY

v, =(—,'&i+&I„)/mp, (3.4)

mp being the mass density. (Transverse and lon-
gitudinal fields are not coupled in linear response
theory. )

Also, conservation of particles leads to the con-
tinuity equation for p(R, t),

—p(R, t)+V ~ J(R, t)=0, (3.5)

or its kth Fourier component

—p(k, t) =ikJ(((k, t) . (3.6)

vP( R, t) = (sP/sp)vp( R, t) . (3.7)

A generalization of the ordinary hydrodynamics is
suggested along the following lines.

(i) A change in pressure at position R should not
be determined completely by density variations at
the same position R, but also by density variations
in neighboring positions. In other words, the pres-
sure gradient due to a density gradient is nonlocal
and should really be a functional derivative

RR(R&-R,fdR,"",5p(R I .
(&p R (3.3)

Because of the translational invariance in liquids,
the functional derivative depends on the relative
separation only. Qn taking a Fourier transform in
space, this becomes

(VP) =tkp(k)(t&P/t&p), . (3.9)

This functional derivative is related to the direct
correlation function of the liquid or its equilibrium
structure factor S(k) by

We do not consider the effects of temperature
fluctuations. We show in the Appendix that for the
region of interest to us in this analysis (k-10 cm '),
the error due to omission of temperature fluctua-
tions is small and falls within the reliability of our
results.

We assume that the pressure variations are en-
tirely due to density fluctuations; the pressure
gradient then is

A. Longitudinal Current. Current Correlation (t /tp), =k, r/S(k) . (3. 10)

In ordinary hydrodynamics, the time dependence
of the longitudinal current density J„(R, t) at the
position R and time t is determined by the longitu-
dinal component of the linearized Navier-Stokes
equation"

el((( R t) VP( R t) +v&V 2((( Q t) (3 3)

where v, is the kinematic longitudinal viscosity,
related to the shear viscosity g and volume viscosity

In effect, S(k) determines a k-dependent compressi-
bility.

(ii) Another generalization is suggested by the
observation that liquids have viscoelastic behavior;
the viscosity coefficients are really complex func-
tions of frequency, "'"

&
& (~) = f dt e ' 'P

„,(t), {3.11)

where Q„(t) is an after effect or memory function
describing the delayed response of the longitudinal
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equation' gives the time dependence of the trans-
verse current density J,(R, f) at a position R and

time t

dt
—J,(R, t)=vV J,(R, f),

where v is the kinematic shear viscosity v = q/mp.
The Fourier transform in space of this equation is

memory functions can be deduced. The simplest
procedure, and the one we use here, is to assume
a mathematical form for 4'(k, t) containing an un-
determined parameter, and then to test the validity
of the assumed form by curve fitting.

We use three different models for the time de-
pendence of the memory function kk(k, t) in Eqs.
(3. 14) and (3.21): (i) a simple exponential function

—J,(k, f)= —)Jk J,(k, f) . (3.19)
(4. la)

—Ck(k, f) = -k ds 2()k(k, f -s)CJ(k, s) . (3.21)
0

We define, a,s before, a frequency &u, (k) as

(u, (k) =k Q, (k, 0),
so that

k JI),(k, f)=&@,(k)4', (k, f),

(3. 22)

(3. 23)

where 4, (k, f) is the time dependence of the memory
function and has been normalized to unity at its
initial value. This frequency Jdk(k) can be found
either from initial second derivative of the correla-
tion function C,(k, t) or, alternatively, from an
equilibrium calculation:

(u, (k) = —C,(k, 0)/C, (k, 0)

(3.24)

Note that Eq. (3.19) leads to an exponential decay
of the transverse cur r ent -cor relation function
C,(k, f); this is far from correct as can be seen
from the inspection of Fig. 1(b). We must therefore
modify the transverse part of the Navier-Stokes
equation (3. 19). This is generalized so as to in-
clude the viscoelastic behavior of liquids. Following
the arguments used to get Eqs. (3.11) and (3.12),
we replace the constant viscosity v in Eq. (3.19) by
a memory function, in the form of a convolution in
time and a function of k (to allow for nonlocal effects
in space)

—J(k, J)= —k f Jsk, (J, J — ) J)k, 2) . )2.22)
f,

0

The corresponding equation for the transverse
current-correlation function is

(ii) a modified exponential function

[1+2t/7' (k)] e

and (iii) a Gaussian,

exp[ 7)f'/-4r,'(k)]

(4. lb)

(4. lc)

B. Analysis in Terms of Initial Time Dependence of
Correlation Function

A. Analysis in Terms of Power Spectrum

The power spectrum of the current-correlation
function is defined as

C(k, &u) = $ dt cosset C(k, t) (4 2)

and can be related to the corresponding memory
functions by Eqs. (3. 14) and (3.21). The frequencies
~, (k), w, (k), and ~2(k) are obtained by an equilibrium
calculation and are considered as input data. The
relaxation times rs(k), r„s(k), and rs(k) appearing
in the three models are considered as parameters,
and are determined by the method of least-squares
fitting to the molecular dynamics data on power
spectrum C(k, ~). This is repeated for severs, l
values of k. The theoretical curves for the power
spectrum C(k, &u) are then obtained by substituting
these computed values of the parameters 7.(k). A
comparison of the theoretical power spectrum with
the molecular dynamics data on C(k, &u) indicates
that the Gaussian model for the time dependence of
the memory function gives the best fit at least for
large c (or short times). In Figs. 2 and 3 we show
the theoretical power spectrum for the longitudinal
as well as transverse current-correlation function
computed by assuming a Gaussian model for the
time dependence of the memory function; this is
compared with the "experimental" data.

Equations (3.14) and (3. 21) are the equations we in-
vestigate by means of computer experiments.

IV. CALCULATION AND ANALYSIS

An a priori calculation of the memory function
)k(k, f) is difficult and little progress has been
made. For this reason, we take an experimental-
ist's point of view. Information obtained from com-
puter experiments tells us something about the
structure of the current-correlation function. On
using Eqs. (3.14) and (3.21), the structure of the

In this part of the analysis, theparameter r(k)
is computed directly from the data on the time de-
pendence of C(k, t)/C(k, 0)(and not from its power
spectrum). We use the Gaussian model for the
time dependence of the memory function and com-
pare the results with those obtained from the
analysis of the power spectrum. A least-squares
method is used to obtain a polynomial fit to the
data C(k, t)/C(k, 0). The coefficients of t and f'
give the second and the fourth moments of the
correlation functions. From Eqs. (3. 17a) and
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= ~,'(k) + 2 v~,'(k) [I/~ &"'(k)]' (4 4)

for the longitudinal and transverse current-correla-
tion functions, respectively. Thus, a knowledge of
the initial fourth derivative (fourth moment) of the

current-correlation function gives an opportunity to
compute v'~"'(k) and v~' (k). [Note that a previous
knowledge of &uo(k) is essential for the longitudinal
case. ] In Tables I and II, we compare the values of
the parameters zoo'I(k) and rG (k) as computedfrom
the best fit to the power spectrum with those from the
best polynomial fit to the time dependence of the
current-correlation function. The agreement seems
to be quite good.

From the foregoing analysis, we find that the time
dependence of the memory function w(k, t) can be
approximated reasonably well by a Gaussian; this
is particularly true for short times of the order of
one or two relaxation times.

V. RESULTS

TABLE I. Comparison of 7' ' (k) and qzQ, 0) using
Gaussian memory.

0. 23
0. 50
0. 57
0.63
0 ~ 90
l. 17
l. 43
1.70
1.83
1.97
2. 10
2. 23
2. 50
2.77
3.03
3.30

+long+)

best fit to
power spectrum

(10 13 sec)

3.02
l. 74
l. 50
l. 56
l.36
l. 14
1.09
0.99
1.05
l. 10
l. 09
1.15
1.20
l. 11
0.97
0.94

Tlongg )
from initial
derivatives
(10"13sec)

0. 96
l. 52
l. 53
1.54
l. 38
1.28
1.20
1 ~ 10
1.03
l. 11
1.07
1.20
1.26
1.21
l. 15
l. 10

q, (u, o)
best fit to

power spectrum
(10 3P)

5. 54
3.19
2. 52
2. 52
1.60
0. 91
0. 52
0. 27
0. 22
0. 20
0. 17
0. 17
0. 17
0. 15
0. 13
0. 11

q, (p, o)
from initial
derivatives

(lo-' P)

4. 12
2. 63
2. 31
2. 52
l. 66
0. 96
0 ~ 55
0. 28
0. 21
0. 18
0. 15
0. 17
0. 17
0. 15
0. 15
0. 13

We find from this analysis that a one parameter
description of the time dependence of the memory
function is reasonable. We find also that Eqs.
(3. 12) and (3.20) are valid generalizations of the
Navier-Stokes equations for the longitudinal as well
as transverse current density, and give a good de-
scription of the dynamic behavior of simple classical
liquids for small wavelengths and short times.

We find that the time dependence of the memory
function is reasonably well approximated by a Gaus-
sian, at least for times of the order of one or two
relaxation times. The half-width ~(k) can be found
from a calculation using the entire power spectrum
of the current-correlation function; alternatively,
we can use the initial fourth derivative of the time
dependence of the current-correlation function
C(k, t).

We therefore discuss all our results assuming a

TABLE II. Comparison of v'™(k)and q(k, 0) using
Gaussian memory.

0.23
0.50
0.57
0.63
0.90
1.17
1.43
1.70
1.83
l. 97
2. 10
2. 23
2. 50

7" g)
best fit to

power spectrum
(10 1 sec)

3.02
2. 14
1.96
1.99
l.71
1.53
1.36
1.28
l. 27
1.21
1.20
1.20
1.23

7.tran Q)
from initial
derivatives
(10 sec)

l. 27
1.90
l.92
l.70
l. 42
l.42
1.32
1.29
1.29
l. 24
1.23
l. 22
1.22

q9, o) qv, o)
best fit to from initial

power spectrum derivatives
(10 P) (10 P)

2. 63
1.72
1.53
1.50
1.09
0.79
0.53
0.38
0.32
0.27
0.22
0. 20
0.17

1.21
1.45
l. 27
1.31
0.91
0.72
0. 52
0. 37
0.32
0. 27
0. 24
0. 21
0. 17

q, =limp, (k, 0) =5.6x10-' P .
0

They compare favorably with the experimental
values obtained by Naugle et al. ': g = 2. 80&&10 P
and g, =( —,

' q+q„}=6.03x10 'P at density 1.408
g/cm and temperature 85.0 'K. Forster, Martin,
and Yip' get a theoretical value of 1.63&10 ' P at
density 1.37 g/cm and temperature 98. 5'K for the
shear viscosity of liquid argon.

Our scheme does not work as well for the smaller
values of k, particularly, k = 0. 23 A ', as it does
for larger values of k, for example, k =1.83 A '.
This seems to indicate, as might be anticipated,
that our generalization of the Navier-Stokes equa-
tion so as to include nonlocal effects in space and
time is valid for short times and short wavelengths
only. For smaller wave numbers, temperature
fluctuations may be important and should be con-
sidered. (However, it should be remembered that
the computer experiments are not reliable for such
sma. ll values of k. )

Gaussian model:

w(k, f) = exp[- vt'/4r (Gk)] .
We use this analysis to obtain the zero-frequency
k -dependent longitudinal and shear viscosities

q, (k, 0) = mp [&a, (k) —&uo(k)]v""(k)/k, (5.1)

q(k, 0}=mp&u, (k)&" (k}/k (5. 2)

In Fig. 4, we show as a function of k the quantities
&uo(k), &cr, (k), r"~( k), and q, (k, 0). Figure 5 shows
the quantities &u, (k), ~" (k), and g(k, 0) each as a
function of k. Note that all the quantities except
&uo(k) can be calculated either from the power spec-
trum (Sec. IVA) or from initial derivatives (Sec.
IV B). The agreement between the two procedures
is quite good. The extrapolated values of the shear
viscosity p and the longitudinal viscosity g, = (&q
+ q„} in the limit k -0 are

q = lim q(k, 0) = 3. 0 x 10 P
0
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FIG. 4. (a) Dispersion curves +0(k) and ~&(k) for the
longitudional current-correlation function. (b) Half-width
r "(k) of the Gaussian (for the time dependence of the
memory function) versus k. (c) Zero-frequency wave-
length-dependent longitudinal viscosity g& (k, 0) as a func-
tion k.

self-consistent-field method which may be viewed
as a generalization of the random-phase approxima-
tion. Such an approach was used earlier by Hubbard
and Beeby' in developing a theory of collective mo-
tions in classical liquids. Duderstadt and Akcasus

apply a kinetic approach for the analysis. Both
these latter approaches give a relatively poorer
agreement with the molecular dynamics data, es-
sentially because it is much more difficult to model
either the screened response function' or the damp-
ing operator' than to model a function of k as in the
hydrodynamic description. A more recent improved
model for the screened response function used by
Pathak and Singwi' fits the molecular dynamics
data to a much greater degree. No attempt, how-
ever, is made to connect these theories with ordi-
nary hydrodynamics.

Using computer molecular dynamics experiments,
one can obtain information about the transverse
current-correlation function; neutron-scattering
experiments are inherently incapable of giving such
information. However, molecular dynamics data
is currently available only up to about 10 '~ sec. It
is therefore desirable to obtain molecujar dynamics
data for a longer time interval.
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VI. DISCUSSION
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From the foregoing analysis, we conclude that
one can use a scheme based on hydrodynamics to
describe short-wavelength and high-frequency coop-
erative motions in simple classical liquids, pro-
vided that one generalizes the Navier-Stokes equa-
tion so as to include nonlocal behavior in space and
time. In other words, viscoelastic properties of a
liquid play an important role in its dynamic behavior
in the region where distances and times are of a
molecular order of magnitude.

We have also seen an indication that temperature
fluctuations may be important at long wavelengths.
In the region of interest to us, these fluctuations
are unimportant.

Our analysis is similar to those of Chung and Yip'
and Akcasu and Daniels. However, these workers
were concerned with only a simple exponential mod-
el of the memory function; they used different pre-
scriptions to estimate r(k). Our analysis is more
detailed in that we investigate three different models
for the memory function and use the method of least
squares to estimate r(k)

Singwi, Skold, and Tosi used a theory based on
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FIG. 5. (a) Dispersion curve &&(k) for the transverse
current-correlation function. (b) Half-width r ~(k) of
the Gaussian as a function of k. (c) Zero-frequency wave-
length-dependent shear viscosity q(k, 0) as a function of
k.
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APPENDIX: EFFECT OF TEMPERATURE FLUCTUATIONS

In this appendix, we consider the effect of tern-
perature fluctuations on the longitudinal current-
correlation function. We first consider the long-
wavelength long-time behavior of the correlation
function. For this purpose, we start with the lin-
earized hydrodynamic equations

—p(k, t) = tkZ„(k, t), (A1)

C pJq(k t): Co p(k t) + tkT(k t)

4"' ~ ' 'd(k t),
mp

(A2)

A(s}= $ dt e "A(t) . (A4)

The Laplace transform of the longitudinal current-
correlation function is easy to obtain:

C (y —1) s - kp~„—T(k, t) = " —p(k, t) ——~T(k, t)," 'dt '
P t ' m

(A3)

where P is the coefficient of thermal expansion, Co
is the ordinary adiabatic sound velocity, and y
=c& /c„; po is the equilibrium value of the particle
number density. The quantities p(k, t), T(k, t),
and d„(k, t) are the kth Fourier components of fluc-
tuations in particle number density, temperature,
and the longitudinal current density.

We solve the set of equations (Al)-(A3) by Laplace
transforms

C„(k, s)
c„(k, t=0)

s+ +bk + y —1wok 2 . A9
(so'(k) 1

s s +ah

lf Eq. (A7) were to be written intheform of the mem-

ory function equation (3. 14) the memory function
K, (k, t) would be given by

K, (k, t) = woo(k) +bko5(t}+ (y —1)coo(k)e ' . (A10)

This is the long-wavelength long-time limit of the
memory function for the longitudinal current-cor-
relation function. Notice that the memory function
due to viscosity is a 6 function in time and does not
persist beyond t=0, whereas the memory function
due to temperature fluctuations (thermal conduction)
persists for rather long times.

If we replace the 6 function in the viscous memory
function by a finite function with a range of not more
than 10 -10 ' sec, the long-time long-wavelength
hydrodynamic behavior of the longitudinal current-
correlation function should not be affected. For
this purpose, we can replace the 6 function by a
Gaussian,

5(t) - (I/Wv)be-' ',
where h may be of the order of 10 sec . Equation
(A10) can now be written as

K, (k, t)= ~,'(k)+(bk'/v v)Se

+(y —1)&u,(k)e " ' . (A12)

The quantity 8 can be evaluated from the initial
value of the memory function K, (k, t); from (3.16)
and (A12), it is easy to see that

C„(k, s)
C„(k, t= 0)

Cok — bko Cok
( —1)

1

y s y s+ak

&=v v [~,'(k) -y~,'(k)]/bk'. (A13)

In the limit of long wavelengths, &u, (k) is given by

~,'(k)=e,'k', e,'= ( —,C +K )/mp, , (A14)

where

(A5)

a=X/mpoc„, b= ( o +rtg„) m/p o (A6)

mo(k) =k [k Tsm/(Sk)] Cr k (A7)

(CT being the isothermal sound velocity), in the
long-wavelength limit

you (k)=C k (A8)

In Eq. (A5), we can now replace Cok by yahoo(k),
l.e. ,

Since the long-wavelength limit of ago(k} is deter-
mined by

where G and K„are the long-wavelength limits of
the high-frequency shear modulus and bulk modulus,
respectively. From Eqs. (A7) and (A14), it follows
that in the limit k-0, Eq. (A13) reduces to

b = Wv (c,' c,')/b . - (A15)

For liquid argon, b-l0 o cm sec, Co/5-10
sec ', and Co/b-10" sec '. Thus, we see that
8-10 sec ' in the limit k-0. Hydrodynamic be-
havior of the longitudinal current-correlation func-
tion is, therefore, not affected by using Eq. (A12)
instead of Eq. (A10) for the memory function.
Equation (A12) for the memory function K, (k, t) is
now

K, (k, t) = (uo(k) + [(o,(k) —yu)o(k)]
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&[~&(k) —y~o(k)] ox exp — '
& 4

+(y —1)(coo(k)e "' . (A16)

the long-wavelength limit, the Brillouin peak occurs
at Cok

The situation is markedly different for large k.
At about k= 1 A, since a=10 cm sec, ak =10
sec '; also

This memory function in the limit k-0 yields cor-
rect hydrodynamics. The second term in Eq. (A.16)
is large initially, and decays very fast (-10 "sec);
the third term, on the other hand, is small initially
and decays very slowly. All three parts of the
memory function K, (k, t) are essential to obtain the
long-wavelength behavior of the dynamic structure
factor S(k, &o). For example, in the region of &u

away from the origin, the slowly decaying compo-
nent K,(k, t) = (y —1)&uo(k)e

' appears almost like
a constant, (y —1)ufo(k); this, when added to the
consta. nt term &uo(k), yields y&uo(k). Therefore in

[(u,'(k) —y&uo'(k)] =10" sec-' .

Beyond k =1 A, ak continues to increase whereas

[(bio(k) — y(u o(k)]ibk'

tends to stay stable around 10 sec '. Thus the
roles "fast" and "slow" are interchanged between
the second and the third terms in Eq. (A16). We
therefore expect that a memory function of the form

K, (k, t) = ao(k) + [(u, (k) —(uo(k)]e " (A17)

is sufficient for our purpose.
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