
MULTIPLE SCATTERING OF NEUTRONS IN ~ --

evaluated the intensity of a higher order of scatter-
ing by ignoring any further energy changes after the
second scattering. An alternative method is the use
of MUsE code. The detailed calculations of Slag-
gie have shown that the third- and higher-order
scattering corrections are less than 20% of the sec-
ond-order scattering correction. It therefore ap-
pears that for most of the inelastic-scattering ex-

periments the effect of third- and higher-order
scattering corrections can be ignored, considering
the current state of knowledge of the scattering
model.
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Various lower and upper bounds are derived for the energy, free energy, and pressure of
particles interacting via an r " pair potential in v dimensions. The results include (i) lower
bounds for mixtures with n &2, of the form constp ' " as p increases either isentropically or
isothermally, complementing an upper bound of the same form in the isentropic case, recently
derived by Kleban and Puff, and (ii) upper and lower bounds for the case n & v, n&2, which for
the pressure are both of the form constp '" " as p increases isentropically.

We derive various upper and lower bounds for
the energy, free energy, and pressure of a system
of cr species of particles (including the o = 1 case)
such that the interaction potential for a pair of
particles of species i and j is e, e, /r, where r is
their separation and n is a positive constant.

For n & 2, our lower bounds are complementary
to the recently derived upper bounds of Kleban and
Puff, and when combined with their bounds, show
that the pressure p behaves under isentropic com-
pression like p

+ "for n & 2 and like p
+" " for

n & 2, n & v, where p is the density and v the di-
mensionality. The case z= 1, v = 3 describes
"real" matter (which we shall treat nonrelativis-
tically) and is thus of special interest. In particu-

lar, our large-p results in this case are relevant
to stellar matter. To ensure the existence of
thermodynamic functions, a charge-neutrality
condition, g;e;p;=0, must be assumed in the
n=1, v =3 case (and perhaps for all n&v, although
existence proofs are currently lacking except for
n = 1, v = 3), where p, is the density of the ith spe-
cies; gp; = p. For n &v, on the other hand, one ex-
pects the existence of thermodynamic functions
if e;& Ofor alii.

Our starting point is a form of the virial theo-
rem

p'=2 n
+kin+ (+ nktn)
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where u is the mean total energy per particle, and

u„„ the mean kinetic energy per particle. In clas-
sical mechanics, u„„is —,'vkT. In quantum me-
chanics we do not know u„„but we do have the lower
bound

sider it as a function of p and ~= Tp
" " and note

that

+ P p

uagn & g(p) i (2) Thus (9) can be written

where g(p) is the energy per particle for the cor-
responding ideal gas in its ground state, which for
Fermi statistics has the form'

g(p) =A. p"",
with A„=A„(h, m, ) independent of p.

We distinguish various cases, according to the
value of n.

Case I, n = 2: Here (1) reduces to

(4)

where s is the entropy per particle. The general
solution of this differential equation has the form

u= p""h(s), (6)

where h is nondecreasing since (Bu/Bs), = T is non-
negative. It follows that

s = increasing function of up

or equivalently

f= p "k(Tp ")

(6)

where f is the Helmholtz free energy per particle,
and k is a concave function. In the quantum-me-
chanical case k is also nonincreasing since (sf/BT),
= —s is negative. Thus the equation of state has
the form

p = p' a/" x (function of Tp 2/") . (8)

In particular, these functional relations apply to
the ideal Fermi, Bose, and classical gases, where
e&=0 for all i.

Case II, n &2: Here Eqs. (1) and (2) imply that

P 2-n n
g(p) + —u,

p v v
(9)

B(uP ) 2 n -1- /v

so that
P

u= p" "
p

' " "g(p)dp +h(p, s), (10)
0

where h is a nondecreasing function of p at fixed
s. It is also a nondecreasing functionof s atfixed p.
For Fermi statistics (10) reduces, ' (3), to

u=A„p""+p"'"h(p, s) .

To obtain the corresponding result for f, we con-

c
Bf -n/v

& (2-n) p
' "'"g(p)/v,

Bp

and it follows that

f= p"'" Q(2 )-/11 p
'-"'"g(p)dp+k(p, Tp-"'")},

(12)
where k is a nondecreasing function of p at fixed
Tp " ". In the quantum-mechanical case k is also
a nonincreasing function of Tp " " at fixed p; k is
then also a nondecreasing function of p at fixed T.
For Fermi statistics, (12) reduces to

f=A„P "+p" "k(p, Tp " ") .

A lower bound for the pressure can be obtained by
substituting (10) into (9). By (3), this gives for
Fermi systems

& -A„p /" + —p"/"h(p, s) .
p v v

(14)

For quantum systems a lower bound on p in terms
of T rather than s can be obtained by using u -f
= Ts & 0 with (12) in (9). In the Fermi case, from
(3), this gives

p & —A.""+—p"'"k(p, Tp "'") .
p v v

n n-2— & —u — g(p),
p v v

and the method previously used above now gives
upper rather than lower bounds. For example, in
place of (14) we now have, for all statistics,

—& —p" /" H(p, s),
p v

where H(p, s) is a nonincreasing function of p at
fixed s. [We have left out the term that comes
from g(p) since it no longer dominates for large p,
the case of greatest interest. ] Similarly, for the
free energy we have

(16)

Equation (14) has the consequence that if at least
one of the species present obeys Fermi statistics
and the system is compressed isentropically, then
p —(2/v)A„p ' " cannot decrease. Thus p increases
at least as fast as constp ' ". On the other hand
Kleban and Puff show that p has an isentropic
upper bound of the form p' /" (const+ constp ' "'/").
Thus P must behave like p

' ", in the sense that
pp

' " has constant positive upper and lower bounds
as the system is compressed isentropically.

Case III, n&2: Here Eqs. (1) and (2) imply that
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where B„=e K„" ". Integrating by the same meth-
ods as used on (9), we obtain

u = If„p"/" + p"" 5(p, s),

f=a.p"/" +p""/(p, Tp ""),
(19)

(20)

—& —B„p" " + —p "h(p, s),
P V V

(21)

and, for quantum systems,

p & —B„p"'"+ —p""u(p, Tp-""),
P V V

(22)

where h and k have the same monotonic properties
as the f/ and k in (10) and (12). From these and

f & p"'"K(p, T p "'"),
where K is a nonincreasing function of p at fixed

-n/v

Case IV, n & v: It is also possible to obtain lower
bounds if n &v, where for simplicity we consider
only the single-species case, dropping the sub-
script 1 on eg The method depends on a lower
bound for the potential energy per particle u„,
=u -u«, . To obtain this lower bound, let ~; denote
the volume of the polyhedron comprising all points
that are closer to the ith particle than to any other.
Then if 8; denotes the distance from the ith par-
ticle to its nearest neighbor we have (ignoring sur-
face effects) ur; & K„R"; where the right-hand side
is the volume of a v-dimensional sphere of diameter
A;. The potential energy Nu~, therefore satisfies

e2 g n/v

Nu, &Z &e'Z (17)
R~n

From Holder's inequality g Ix;y, I & (g Ix,. I
~)~/~

x(gIy;I')'/', (1/P+1/q= 1), with x;= ~",/'"'"',
y;= 1/x;, P =(v+n)/n, we obtain u, & e (K„p)"/",
and so (1) gives

P 2 Ã —2 2 yg
—2 n/v— = —u+ u~, & —u+ B„p"/", (18)

P V V V V

upper bounds such as (16) we can estimate the be-
havior of thermodynamic quantities as p is in-
creased when n exceeds both 2 and V. For exam-
ple, (16) and (21) together imply that under isen-
tropic compression p behaves like p

'"/v in the
sense that pp

' " " has positive upper and lower
bounds.

Finally, in the case of classical mechanics with
n & v we can obtain similar results for p,„, u,„,
and f„, the amounts by which p, u, and f exceed
their ideal-gas values at the same density and tem-
perature. The relevant form of (1) is P,„/p
= (n/v) u„and by an analysis similar to that of
case I we find, for example, that

pn/vK (Tp-n/L)

and, consequently, that

u,„=p"'"L(Tp "'"), -

where

L(x) = K.„(x) xdK., (x)-/dx .

(23)

(24)

(26)

Since the excess specific heat is non-negative, L
is a nondecreasing function; it follows by (25) that
d K„(x)/dx'& 0, and consequently, since f,gT-O
as T- , that K,„ is also a nondecreasing function.
Both L and K,„are positive. Equations (23) and

(24) show, for example, that f,„and u,„ increase at
most as fast as consto" " as p increases at fixed
T. The functional forms of the results (23) and

(24) follow from general scaling considerations,
and have been discussed before' ' while the non-
decreasing character of K,„(x) and L(x) can be ob-
tained from a straightforward use of the Gibbs-
Bogoliubov inequality, instead of the arguments
given above. The result

f,„& constp" /" as p increases isothermally

was also obtained previously» by one of us using
different methods.

We are indebted to G. A. Baker, Jr. , J. Groene-
veld, S. Harris, and J. L. Lebowitz for helpful
discussions.
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