
PHYSICAL REVIEW A VOLUME 4, NUMBER OCTOBER 1971

Kinks and Tearing Modes in Simple Configurations

J. P. Goedbloed~ and B. Y. Dagazian t

International Atomic Energy Agency and United +ations Educational Scientific
and &ultural Organisation, International Centre for Theoretical Physics, Trieste, Italy

(Received 4 September 1970; revised manuscript received 22 January 1971)

A plane slab of current-carrying plasma is generally shown to be stable against ideal
magnetohydrodynamical modes. It is shown that some of the stability criteria appearing in
the literature and contradicting this fact can be brought to bear on the stability of the tearing
mode. In this connection, simple stability diagrams are shown for the tearing mode in plane
and cylindrically symmetric force-free magnetic fields.

I. INTRODUCTION

In this paper several topics related to the stabil-
ity of a semi-infinite plane slab of plasma are dis-
cussed. The reason for the study of such a simple
configuration is the appearance of conflicting state-
ments in the literature about this or related con-
figurations. The most important magnetohydro-
dynamical (MHD) mode is the kink instability, which
is usually treated in nonplanar geometry. If re-
sistivity is introduced in the theory, new modes
are possible, and one of these, the tearing mode,
is most closely related to the kink mode. Because
the tearing mode is commonly treated in simple
plane geometry, one is led to try the same ap-
proach for the kink mode. Here, however, the
"kink" mode in one dimension has been shown to be
completely stable, not only by means of a study
of the equation of motion, but also through a New-
comb-type stability analysis. Next, the relevant
literature is discussed, and simple stability criteria
are derived for the tearing mode in plane and cyl-
indrically symmetric force-free magnetic fields.
Finally, the physical nature of the two types of in-
stability is clearly described and discussed.

II. MODEL AND BASIC EQUATIONS

We consider the geometry of a plane semi-in-
finite slab of plasma (Fig. l). The equilibrium is
described by

where the prime denotes differentiation in the x
direction.

Outside the slab, Bo is constant, and across the
lboundaries x=+ &a, Bo can be either discontinuous

or continuous, depending on whether surface cur-
rents are present or not.

If the above-described equilibrium is perturbed
so that a given plasma element moves at a speed
v=- s$ /st, where $ is a Lagrangian displacement
vector, we have the following equations:

Pp
—— VP ~ —[(gx Bo)x Q+ (g x Q) x Bo ], (4)

—+V (p v)=0Bp

et 0

BP
+ ypo+. v+ v +po = 0

—=Vx(vxB )at

where the symbols without subscripts denote per-
turbed quantities; Q is the perturbed magnetic field
and y is the adiabaticity index.

Bp= B~(x) e, + Bo,(x) e,

VPp= Jpx Bp= (1/4v)(Vx Bp)x Bp,

where po is the zeroth-order equilibrium pressure,
Jo the equilibrium current, Bo the equilibrium mag-
netic field, and e„e,are unit vectors in the y and
z directions, respectively. We assume that the
pressure is isotropic and varies only in the x di-
rection; then Eq. (2) is written as

&o.&o. &0.&o
FIG. 1. Plane plasma slab.
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III. EQUATION OF MOTION AND EIGENSOLUTIONS

Because of the planar symmetry of the problem,
we can write

plasma Eq. (12) reduces to

(14)

](» y s) g(~)sf'tlly5I+kgc ldg) (8)

where k„k, are the y, z components of the propa-
gation vector k. Taking incompressible displace-
ments, V $ = 0, and writing 8=k Bo, we get from
Eqs. (4)-(8)

with the solution $„=Ae " "', A being a constant.
Inside the plasma, if the wavelength of the pertur-
bation is sufficiently long (k- 0}, we can write

('„'+ (in')'$', = 0,
which has the solution

( —~'po+F'/4v) ( = —VP

where

(9) dx$„=B
( )+C, (18)

P=P+Q Bo/4w, Q=iF $ -$ ~ VB.

In the following we shall need only the x component
of the latter equation:

Q„=iE )„.
Applying the operator e„Vx Vx on Eq. (9) we ob-
tain the equation of motion in a convenient form:

$'„'+ (in')'f', —k $, = 0, (12)

where (p= —ur po+F /4v .2 2

A quadratic form can be obtained by multiplying
Eq. (12) by $f and integrating over x, in which case
we have

where B and C are constants. When the wavelength
is short (k- ~ } Eq. (12) assumes the form of Eq.
(14) which inside the plasma has hyperbolic since
and cosines as solutions. The solutions for the
limiting cases of long and small wavelength are
particularly interesting because for both cases in-
stabilities have been claimed in the literature.
Now, because we restrict ourselves to u & 0, it is
seen that none of these solutions is singular and it
is evident from the preceding discussion that it is
hopeless to try to match the boundary conditions;
the slab is stable. Also it has been argued by
Laval, Mercier, and Pellat that for u &0 no nor-
mal modes exist because of the singularities for
y = 0. Apparently the plane plasma slab in ideal
MHD exhibits neither instabilities nor modes of
real frequency and it would appear to be a partic-
ularly uninteresting situation.

IV. NEWCOMB-TYPE STABILITY ANALYSIS

where $„and $'„should vanish at + ~. The integra-
tion over x is taken from -~ to + ~ because we can
extend the definition of $ in the region outside the
plasma by writing the vector potential A= ]„Band
Q = vx A= Vx ( $ x B).' Then we can consider the
slab configuration of Fig. 1 as the limiting case
of a diffuse configuration so that the plasma pres-
sure, density, and magnetic field continuously
change into the vacuum configuration with vanish-
ing pressure and density and constant Bo.

Being interested in the possibility of instabili-
ties, we can restrict the discussion to ~ & 0. In
that case y is positive definite and the equation of
motion (12) is not singular. The quadratic form
(13) now contains no singular solutions and it is
evident that for u& & 0 the left-hand side of Eq. (13)
is negative definite and the right-hand side is posi-
tive definite so that solutions for ~ & 0 are impos-
sible and the plasma slab is stable.

On the other hand, considering the slab of Fig.
1 with sharp boundaries, one can solve the eigen-
value problem of Eq. (12) together with the boundary
conditions that P and $„are continuous across the
boundary and that $ „=0 in x= +~. Outside the

Without restricting oneself to incompressible
perturbations from Eqs. (4)-(8), the following
well-known quadratic form 6W can be obtained:

uw=-,' f [yp, (v ()'+(t vp, )v ~+(1/4v)Q'

—J ~ Qx $ j dy . (17)

For definiteness we shall assume here that the
plasma slab is diffuse and bounded by two perfectly
conducting walls at x= x, and x= x&. This restric-
tion will not strongly influence the final results and
it can be removed easily by taking the limits x&- —~, xz-+~. Using real variables, Eq. (17) can
be written as

where we have defined

vg -$'„= f(k-,t, +k,$,),
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f —= i ( $ & Bp)„=i(Bog), —
Bpy )g) .

Minimization with respect to q and g is trivial and

yields

VW=(1/avk') j F'(~ t', ~'+k'~ t, )') dx. (19)

ak' F ~Q'~'

where we have conserved the second term because
we need it in a later section. Because of the term
F"/F, which can be negative, the integral can be
negative. However, now one should remember that
the singular points (F = 0) have a stabilizing effect
in ideal magnetohydrodynamics. According to New-
comb's theory, ' which can be modified so as to ap-
ply to this situation, the singular points split the
interval (x„xz) into independent subintervals which
should be studied separately, as far as stability
is concerned. If F"/F is negative it is clear that
5W from Eq. (20) could give a negative result only
if the independent subintervals were large enough,
because, at the boundary of an independent sub-
interval, Q„vanishes and the negative contribution
to the integral could dominate only if regions of
small Q'„were included. Newcomb shows that 58'
can be negative for an independent subinterval only
if there exist solutions of the Euler-Lagrange equa-
tion, following from minimization of 58', having
more than one zero point in the independent subin-
terval. Stated differently: The zero points of Q„
should alternate more rapidly than the zero points
of F.

The Euler-Lagrange equation in terms of Q„can
be written in the following form:

Q„"/Q, = F"/F + k (21)

Because Q'„'/Q, and F"/F are negative if Q„and F
oscillate, it follows immediately from Sturm's
fundamental theorem that Q„oscillates more slowly
than J'. As a result, a single independent subinter-

In this form Gled is seen to be never negative, so
that the configuration is always stable according
to ideal magnetohydrodynamics.

Because of the singularities for J = 0 in the Euler-
Lagrange equation belonging to 6S' the description
of the theory in terms of the displacement vector
( is not completely equivalent to the description in
terms of the perturbed magnetic field Q. This has
led to a number of errors in the literature. To il-
lustrate this point let us transform Eq. (19) by
means of Eq. (11):

n w =
~

'~. Jf I 4 I

' ~ ( z ~ &')
I

Q .I

val (bounded by two succeeding zeros of F) cannot

contain more than one zero of Q„and the system is
stable. So we finally arrive at the same conclusion
which was reached directly from Eq. (19), viz. ,
that the plasma is stable. It seems that in the
formulation of the theory in terms of $„one knows

already beforehand that the singular points suppress
possible instabilities, whereas in the formulation
in terms of Q„one must use the stabilizing influence
of these points explicitly.

V. DISCUSSION

In this section we will briefly discuss some re-
sults, obtained by various authors, pertinent to
the configuration we have been discussing. It turns
out that frequently the influence of the destabilizing
term F"/F in Eq. (20) and the associated singular-
ities are not properly taken into account.

One of the earliest papers concerned with the
stability of a plane plasma layer is that of Lough-
head. In that paper it is claimed that such a layer,
with a uniform current flowing between a pair of
parallel planes, and with vanishing current and
magnetic field outside this region, is unstable with
respect to ideal MHD modes. The derivation is
essentially in terms of Q„and this conclusion is
reached because the solutions for Q„have more
than one zero. However, the influence of the sin-
gular points is not taken into account and accord-
ingly the obtained incorrect condition for insta-
bility [Eq. (54) of Ref. 4] is the condition which
ensures the existence of singular points.

Recently, a similar statement was made in a
paper by Hasegawa, ' where an instability of a plane
plasma system is considered as an explanation for
the observed instabilities during auroral substorms.
This instability (which is called a "kink") should
have wavelengths and growth rates corresponding
to those observed in the aurora band. The model
is similar to the one described above, w'here the
y-z plane coincides with the aurora, with the only
difference being that the dimension of the layer in
the z direction is not infinite. Currents flowing
along the magnetic field in the y direction now pro-
duce a magnetic field B,(x) decaying in the x direc-
tion because of the limited extension of the sheet
in the z direction. Next, the stability theory of
this model is developed, assuming that in the rnid-
dle of the sheet a local treatment of the instability
is possible and taking an expi(k, y+ k,z —~t) depen-
dence of the perturbed quantities. Therefore, with
respect to stability, Hasegawa's model is essentially
the one described above, where the x dependence
of the equilibrium magnetic field is caused by a
geometrical factor. Hence, we conclude that this
model cannot be unstable.

Apparently the local treatment is in disagree-
ment with the presence of a gradient in the magnetic
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Q'„' + (n —k )Q„= 0,
having oscillating solutions if k'& o. ', viz. ,

(22)

field outside the plasma. layer. This term dB,/dx
is the driving force of the instability in Hasegawa s
model. However, outside the sheet J, = 0 and hence
dB/ dx= dBgdz, so that either dB,/ dx= 0 and the
field is straight so that the plane analysis can be
applied but there is no instability, or dB,/dxe 0
and the field is curved so that the plane analysis
breaks down.

As a further example let us prescribe the mag-
netic field in the plane layer to be force free with

a constant n, where n is the parameter from the
defining equation for force-free fields:V&& B= aB.
For this case F"/F = n and the Euler-Lagrange
equation in terms of Q„reads FIG. 2. Stability diagram for the tearing mode in a

plane force-free magnetic field.

Q„- sinI(cr —k )'~ x+ const] . + f„"',. I: I Q.'I'+(F"/F+k')
I Q. I']dx, (23)

The singular points are determined by the zero
points of F- sin(ox+const). In accordance with our
expectations, Q„can oscillate at most as rapidly
as F, so that stability is ensured.

Schmidt gives an expression for 5@ in terms of
Q for general force-free fields using a special nor-
malization which was found by Voslamber and Cal-
lebaut. ' If one were to determine the stability of
the plane force-free field from the expression
(5-132) of Ref. 6 for 5 g', one would find instability
xf (u ' —k ) a& v, where xz —x, = a. This criterion~ P, 2 1/2

is plotted in Fig. 2. It turns out to be the condition
which ensures that Q„has more than one zero point
in the interval (x„x2). However, we notice again
that the singular points are ignored in Schmidt's
treatment, so that the stability diagram of Fig. 2
makes no sense in ideal magnetohydrodynamics.

VI. TEARING MODES IN FORCE-FREE MAGNETIC FIELDS

Surprisingly enough, the stability diagram of
Fig. 2, which is incorrect within ideal MHD theory,
can be given a simple physical interpretation within
the resistive theory. In Refs. 8 and 9 it was shown
that in the limit of high conductivity the stability of
a constant pressure plasma with respect to tearing
modes is determined by the same expression for
55' as for ideal MHD modes, if the resistive layer
(surrounding a point where k ~ B = 0) were simply
replaced by a vacuum. Because $ „has no physical
meaning in a vacuum one should start from the
expression (20) rather than from the expression (19)
in order to derive the criterion for the tearing
modes from this statement. For a plasma-vacuum-
plasma system, where the vacuum is situated in a
small region (x, —e, x, +e) containing the singular
point, 5%"becomes

5W- f t I
Q„'I'+(F"/F+k')

I Q, I']dx

where the contribution of the vacuum integral van-
ishes because & is small and the contributions of
the second term of Eq. (20) cancel because Q„can
be taken approximately constant in the thin vacuum
region. Using Eq. (21) and integrating by parts,
we obtain the condition for the stability of the tear-
ing mode:

(Q.', /Q. ,)... (Q.',/Q. ,).... , (24)

where Q„& satisfies the boundary condition Q„= 0 in
x= x, and Q„2 satisfies the boundary condition Q„
= 0 in x= x&, This criterion is the same as the
criterion 4'& 0 of Refs. 8 and 9. If we now take
the limit &- 0, corresponding to taking the resis-
tivity q- 0, inequality (24) provides the condition
that the solution Q„&, being zero in x= x&, should
not have a second zero upon continuation in the in-
terval (x„xz). So, criterion (24) is equivalent to
the condition that Q„should not have more than one
zero point in the whole interval (x„x2). In this
way, working in terms of Q„, one can simply ignore
the singular points and find the criterion for stabil-
ity of a force-free field of constant n against tear-
ing modes in a simple manner. Here, we explicitly
restrict our consideration to force-free fields of
constant n because for these fields the equation for
Q„ is not singular, as is evident from Eq. (21).
Clearly, the singularities which turn up in force-
free fields of n 4 const in general prevent us from
stating the stability criteria against tearing modes
in the same simple manner.

The condition for the absence of solutions Q„
having more than one zero point in (x, , x2) is
(a —k )' a& w. So Fig. 2 gives the correct sta-
bility diagram for the plane force-free field with
constant n with respect to tearing modes. It is
seen that in the long-wavelength limit (k- 0) the
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plasma is unstable if I n I a& w, that is for high
currents in the layer. It seems attractive to con-
sider these resistive tearing modes as an alterna-
tive explanation for the aforementioned aurora
phenomena. However, it turns out that the current
density of the sheet current is too low to satisfy
the criterion I n I a& m and the resistivity is many
orders of magnitude too low to give a reasonable
value for the growth rates of resistive tearing
modes in these cases. Apparently, collisionless
tearing modes, as have been described by Coppi,
Laval, and Pellat, ' are more appropriate for the
description of the aurora phenomena.

We have shown that a plane force-free field can
develop tearing-mode instabilities and therefore our
treatment is subject to the criticism of Barston, 11

who claims that a plane plasma layer in the absence
of gravity is exponentially stable for constant resis-
tivity. The proof of this statement is given in the
Appendix of his paper, where it is shown that a
plane plasma layer with p = const, p = const, F"= 0,
and g = 0 is stable. Indeed, it is clear that also in
our case there will be no instability if E"=0, be-
cause in that case n = 0 and the source of the insta-
bility is simply neglected. Barston's reason for
taking J'" = 0 is the fact that he considers completely
consistent equilibrium situations where v = 0, 9B/St
=0, and also Ohm's law g~= E+v& B is satisifed.
For constant resistivity this leads directly to 4 B
= 0 and therefore F"' = 0. This line of reasoning is
not very useful, however, because one can well
study the tearing stability in the situation where
there is no perfect equilibrium (q = const and aB/st
4 0 or v 40) by introducing a time scale for the sta-
bility problem which is much shorter than the time
scale according to which the equilibrium quantities
vary. Physically this makes sense because tearing
modes exponentiate in a time ~,- g ', whereas the
magnetic field decays in a time ~,- q '. So, in the
limit of small resistivity r, «r, and we have a
quasiequilibrium. This means that, although
strictly speaking Barston is right, his results imply
that the tearing stability problem should be stated
in terms of different time scales for the equilibrium
and the stability.

A similar interpretation of the stability criteria
can be given for force-free fields in cylindrical
geometry. The ideal MHD stability of a force-free
field of constant a in a cylinder (a so-called Lund-
quist field) was investigated by Voslamber and Cal-
lebaut. ' They found it to be unstable with respect
to kink modes if I z I ro& 3. 1'76, where ro is the
radius of the wall surrounding the plasma. The
stability with respect to ideal MHD modes of the
Lundquist field is governed by the behavior of r$„
= —fr Q„/F, where

rO. —m ~-(II —(I /a)']" '
I
a

I r)

—z, ( I
a

I
r)+0z, ( I

a
I

r)r ' Ie I r
(26)

Whereas for the plane force-free field Q„could
oscillate at most in step with the singular points,
for the Lundquist field rQ„can oscillate more rapid-
ly than F(for m = 1) in a very thin region of the
k/a —

I a I ro plane, as indicated in Fig. 1 of Ref. 7.
Only the presence of this very thin region makes
the Lundquist field unstable with respect to ideal
MHD modes.

Adopting the same line of reasoning as for the
plane force-free field, we now ignore the singular
points (F = 0) in order to find the stability criterion
for the Lundquist field with respect to tearing
modes. It can be seen from Eq. (25) that rg„has
more than one zero point in the interval (0, ro) for
I k I & I n I and for I a I ro large enough. The sta-
bility criterion for the m = 1 tearing mode turns
out to be the most restrictive one. It is depicted
in Fig. 3. The critical curve is taken from Fig.
1 of Ref. 7, but now the unstable region in the
0/a —

I a I ro plane is more extended, owing to
neglect of singularities. It is seen that with re-
spect to tearing modes the plane and the cylindrical
force-free fields are much more similar than they
are with respect to ideal MHD modes, which are
present for m=1 in the cylindrical case and absent
in the plane case. From Eq. (25) it follows that
for ~ra+ 3. 832 also m = 0 tearing modes are un-
stable, as indicated in Fig. 4. In fact the Lund-
quist field turns out to be unstable with respect to
tearing modes for every value of m, only the un-
stable region for higher values of m is displaced
more to the right in the stability diagram.

Finally we mention that the resistive instabilities

FIG. 3. Stability diagram for the tearing mode in a
Lundquist field (m =1).
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3. 83 (age

FIG. 4. Stability diagram for the tearing mode in a
Lundquist field (m = 0).

for force-free fields are especially relevant for
constant o., because it has been proved recently
that these force-free fields are the only ones which
remain force-free in time if the plasma is at rest
(v = 0) and if the resistivity is constant and iso-
tropic. Under these conditions the force-free field
decays exponenitally in a time r, = (4v/o. ) 0 ', with-
out changing its direction.

UII. CONCLUSIONS

The tearing mode and the kink mode are both
current-driven modes. In the plane case the ef-
fect of the presence of current in the plasma is
shear in the magnetic field which leads to F"/F
& 0. In the cylindrical case, current in general
causes both shear (except in a constant-pitch field)
and curvature and again F"/F e 0. Both the kink
and the tearing mode have the same source of en-
ergy, i. e. , the energy that comes from the fact
that the magnetic field is not a vacuum field.

We have proved that the kink mode is stable in
the plane case, so that for comparison one really
has to consider the cylindrical case. Then, for
both modes the plasma moves in such a way as to
undo the deformation of the magnetic field imposed
by the presence of current. In the case of the
tearing mode the plasma motion takes place about the
resistive layer where the plasma moves into opposite
directions. Resistivity makes possible the subse-
quent decoupling of plasma and field lines, so that

the latter appear to collapse towards the resistive
layer annihilating this way that part of the mag-
netic field which gives rise to F"/F & 0. In the
kink mode the same thing is accomplished by a
global distortion of the plasma column in such a
way as to again annihilate that part of the magnetic
field which gives rise to F"/F & 0.

We see that both modes involve global displace-
ment of the plasma column; they both derive their
energy from the same source, only the detailed
motions are different. This difference is of course
made possible by the presence of resistivity in the
case of the tearing mode.

Another way of looking at it is to consider neigh-
boring equilibria. ' Here we have available, in
addition to the initial equilibrium, a neighboring
equilibrium of lower energy than the original one.
Then the plasma will tend to move to the lower en-
ergy state, if the motion is possible. In the plane
case this type of motion is possible only in the form
of a tearing mode. In the cylindrical case both
forms are possible, but the tearing modes can go
unstable over a greater area in the (k/n, I a l ro)
plane than kinks can (see Fig. 3). In the toroidal
case the picture must still be approximately the
same as in the cylindrical case, especially for
large aspect ratio.

Notes ad'ded in proof. The fact that the plane
analysis for the aurora breaks down was recog-
nized by Hasegawa in a later Erratum [ Phys.
Rev. Letters 24, 1468 (19'IO)], where it is remarked
that the dispersion relation was wrong and also that
the most unstable mode has a long wavelength,
violating the local assumption. Therefore, the
problem is essentially non-one-dimensional.

Dr. D. C. Robinson has brought to our atten-
tion that the tearing-mode instability of the Lund-
quist field was studied before by Gibson and White-
man [Plasma Physics 10, 1101 (1968)].
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A "factor method" of evaluating the double-scattering correction for inelastic-neutron-
scattering experiments with an infinite-plane-slab specimen has been developed. Using ap-
propriate dynamical models, calculations have been made both for highly compressed room-
temperature gaseous methane and for liquid methane at 98'K. As a result, the agreement
between analytical results with measurements is remarkably improved. In addition, the model
sensitivity of the correction and the advantages of reflection-type experimental geometry over
transmiss ion-type are investigated.

I. INTRODUCTION

The use of slow neutrons as a probe to investigate
molecular dynamics is considered to be a very
powerful technique. The experimentally observed
scattered-neutron intensities are usually interpreted
with a phenomenological molecular -dynamics mod-
el. The success of such an interpretation depends
on measuring single-scattering intensity for a
monoenergetic incident neutron beam and an infinite-
resolution detector. Such idealized experimental
requirements are never achieved; hence, analytical
results should include the effects of second- and
higher-order scatterings and of the finite resolution
of the incident beam and the detector. Of these
three factors, multiple scattering appears to be the
most complicated one to account for. The problems
mentioned here are not peculiar to inelastic-neu-
tron-scattering experiments, but rather are com-
mon to a wide variety of different experiments. We
will confine ourselves only to inelastic-neutron-
scattering experiments.

A workable scheme for evaluating the multiple-
scattering correction was first given by Vineyard,
who solved an energy-independent neutron-transport
equation for an infinite-plane-slab specimen. Sub-
sequently, Blech and Averbach have extended the
method to infinite cylindrical samples. Both of
these investigations were restricted to elastic scat-
tering of neutrons under the assumption of a quasi-
isotropic scattering cross section. Cocking and
Heard' have calculated second-order scattering
without making use of the quasi-isotropic approxi-
mation.

Recently, the effects of second-order scattering

have been studied by Slaggie, as well as by others, '
who solved the energy-dependent neutron-transport
equation for transmission-type experiments. A
common conclusion of these workers is that the
second -order scattering correction is very impor-
tant and quite sensitive to the details of the scatter-
ing cross section.

In this payer we describe in Sec. II a "factor
method" of evaluating second-order corrections
for both transmission- and reflection-type experi-
mental geometries. Resulting expressions are then
programmed to evaluate the correction for an arbi-
trary scattering law. In Sec. III numerical results
are obtained for three different geometrical sample
thicknesses for room-temperature gaseous methane
with a liquid density. These results are directly
applicable to Larsson's experiment. Section III
also deals with a comparison of our results with
cold-neutron liquid-methane data of Dasannacharya
and Venkataraman. The finite resolution of the
incident neutron beam is accounted for in a sug-
gested approximate manner. Scattering-law model
sensitivity and advantages of reflection geometry
over transmission geometry are discussed along
with some concluding remarks in Sec. IV.

II. THEORY

We consider a scattering sample in which the
scatterers may or may not be uniformly distributed.
We assume that a monoenergetic neutron beam of
energy Eo is incident at a direction defined by the
vector so. The nth-order scattered-neutron density
is then the solution of the following transport equa-
tion'.


