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mor frequencies, 0» co, and the field is "high" so
that 07'» 1, where v is the correlation time of the
dipole term. When the former condition holds and
more generally when the dipole rates are small
compared with 1/v+1/ T„Eqs. (B13)-(B16)can be
solved by iteration. Thus the familiar expressions
from the I-spin relaxation are obtained by putting

p = 0 as the argument of f, in Eqs. (B13) and
(B16), and the first-order corrections to the S-spin
relaxation follow from (B14) and (B16) by taking

p = —1/T~ and p = —1/T„ in f ~„, respectively. In
order to apply the Eqs. (B10) and (B13)-(B16)to an
inhomogeneous system, they must, in principle,
first be solved for p which is then to be averaged
over an appropriate ensemble for the values of C
and 7'. In the above approximatinn this amounts to
averaging the equations, which makes this case in-
distinguishable (as far as relaxation is concerned)
from the case of a homogeneous system with a non-
exponential cor relation function.
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A description of the stability properties of a plasma under the influence of an external elec-
tric field oscillating near the plasma frequency is presented.

1. 1NTRODUCTION

We investigate the stability properties of a homo-
geneous plasma under the influence of an alternating
electric field oscillating at frequencies near the
plasma frequency. Describing the stability proper-
ties of this system represents a first step in the
understanding of a mechanism for absorption of en-
ergy in a plasma from laser radiation. This
problem has been studied by many authors' using
various analytic expansion techniques. The basic
results of their work have been the discovery of
two distinct instabilities which occur when the driv-
ing frequency is either slightly above or below the
Bohm-Gross frequency. It is our aim in this paper
to consolidate and expand upon their work by solving
the equations numerically, thereby obtaining solu-
tions for a wide range of parameters. From these
results it is possible to obtain a relatively simple
picture of the structure of the two fundamental un-
stable modes.

Il. THEORY

In the collisionless approximation the equations

governing the behavior of a homogeneous plasma
under the influence of an electric field

E,„,= yEo sinmot

are

~~f - ~~f ~e E ~~f

Bt By m, Bv

BE Bp
Zqy f~dv,

By By

where j is e for electrons and i for ions. The oscil-
lating solution about which we linearize is given by
f, =f, (v,*), where

v&* = v+ (q&Ep/m, ur p) cos&upt = v+ v&
D

We shall take f, to be a Maxwellian:

fq(vq*) = (&p/m' v») exp[ —(v'/v»)'I .
We consider perturbations of the form

0( y, v, f) = Q(v, &)e"' .
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After linearizing, substituting, and solving for the
perturbed distribution function by integrating back
along unperturbed orbits we obtain the following
integral equation first obtained by Silin':

pe

pi

g(t)+ f sH(s, t)P(t —s) ds =0,

where P(t) is related to the potential @(t) by

g(t) = @(t)exp s
a ' ' sinatttt

2coo m; m,

H(s, t) = Z &uk, exp. —kvz;s ~

i e
p~ 2u)o

(2)

We calculate a fundamental solution matrix Z(2tt/
ate) by numerically integrating Eqs. (3) and (4) from
0 to 2tt/&dtt for four independent initial conditions.
Here Z(t) = [z(1)z(2)z(3)z(4)], where z(I) is the solu-
tion vector z(t) evaluated at time t for the Ith in-
dependent initial condition. Since A is periodic in

2tt/&ua, if Z(t) is a solution to Eq. (3), then
Z(t+ 2tt/a&e) is also a solution. Thus, it follows
that

[sintde(t —s) —sinttret)
ikq&Eo m; + m,

2coo mime

III. COLD CASE

We first consider the limit in which vT, = v&, =0.
It can be shown that the integral Eq. (2) reduces
to the set of coupled second-order ordinary differ-
ential equations

d p ~Pi + ~2 (p p &- ikL sinu&ttt) p
dP (3)

d pe+ ~2 ( p
tkL Stkuttt) p

dP y (4)

where

L = («tt/ot', ) ((m, + m, )/m, .m, )

is a scale length related to particle excursions pro-
duced by the electric field Fo. p, and p, are related
to the perturbed densities n, by

p, , = n, , exp(i f kv, ; dt) .

Z(t+ 2w/ate) = Z(t) II,
where II is a, constant matrix. The stability of the
system is determined by the eigenvalues of Q. If
we denote the four eigenvalues by X, then the growth
rate of any given mode is

y, /td, = (I/2tt ) ln
~
li,.

~
.

Two properties of the X,. can be easily ascertained.
From the fact that the trace (A) = 0, it follows that
XtAaXskk = 1. From Eqs. (1) and (2), we note that if
p(t) is a solution then p*(- t) is also a solution.
This leads to the conclusion that the X, are either
purely real or else occur in complex conjugates.
In the numerical computations Z(0) is taken to bethe
identity matrix. The computations were done for
various values of m, /m„kL, and &uk/&ue, where
&ok = (tdk, + &ukt) . An over-all picture of the stability

Silin' has derived these equations using a fluid
model.

Equations (3) and (4) are a fourth-order linear
system with periodic coefficients and as such
Floquet theory can be used to obtain stability be-
havior. Briefly, the solutions and growth rates
are computed as follows: We write Eqs. (3) and
(4) as a system of four first-order equations z =Az,
where A(t) is the periodic 4&&4 matrix

0

A(t) =
pi

2
pe

1 0

0 0 1

coa e ix 0 0pi

0 0

0
0

)

0.4
I

0.8
ol / ol0

P

l.2

and it= kL sin&dttt. z is a four vector given by
FIG. 1. Stable (clear) and unstable (cross-hatched)

regions in the (vpaik, kL) plane.
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FIG. 4. Stability behavior for vrgcu+= 0. I and T& /Te
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FIG. 2. Maximum growth rates vs &upcuo for mass ratios
of —and —.i i
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of the system is given in Fig. 1, which is a plot of
stable and unstable regions in (&u~/&us, kf.) space
for a fixed mass ratio m, /m, =,~z. We see that

24

2.0—

I.6—

I.2—

for sufficiently high frequencies the system is
stable. There is a significant region of instability
in the underdense region and it appears that these
instabilities exist for kL arbitrarily large. coo= co~

is the transition point between what is usually re-
ferred to as the parametric (underdense) instability
and the modified two-stream (overdense) instability.
The nature of the eigenvalues X is different in these
two regions. In the underdense case Imk,. 4 0,
while in the overdense case ImX,. is identically zero.
In Figs. 2 and 3 we illustrate the maximum growth
rate and corresponding wave number vs to~/&us for
mas»atios « ~oo and i83e ~ The growth rates for
the instability in the underdense region are sub-
stantial. This is significant with respect to the
laser problem since this region feels the full inten-
sity of the laser. Thus, the instabilities generated
there may provide an efficient means of depositing
laser energy into the plasma.
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FIG. 3. Wave numbers corresponding to maximum growth
vs (alp/(dp for mass ratios of Ioo and

FIG. 5. Stability behavior for v~/cuoL=0. 5»d T~/T~
=0.1.
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FIG. 6. Maximum growth rates vs pz, /cuoL for the
parametric mode.

FIG. 7. Maximum growth rates vs vz~/cuoL for the
two-stream mode.

IV. TEMPERATURE EFFECTS

To include temperature effects the integral Eq.
(2) must be solved. Guided by the form of the solu-
tions in the cold case, we look for solutions of the
form

q(f) e((t Q + e(naos
n=

where X is a complex eigenvalue to be determined.
Substituting this form into the integral equation
leads to the following set of equations for the a„:

Z 6 „a„=O —~&m&

Gmn = Gnm

for all values of the parameters. Furthermore,
when X is purely real, as it is for the two-stream
mode, it can be shown that

( 1)m i( Gg

and from this it follows that the eigenvalues of
G „occur in conjugate pairs. Thus, for the two-
stream mode det(G „) is real.

The stability properties of the hot plasma have
been studied for mass ratio p, = &838. Figures 4 and
5 show the (&u~ /(do, kf. ) stability diagram for tem-
perature ratio T, / T, = 0. 1 and thermal velocities

with

kL kL
»re r=-

,(ix ~ () T,(,( ~ ())i+ g
kv~, T; kvq]

I I I I I
t

I t I I I I I +

WAVE NUMBER FOR MAXIMUM GROWTH

where Z is the plasma dispersion function, 5 „is
the 5 function, and the J, are Bessel functions.
The system has a solution when

detG X kL ~ ~ ' ~ =0.T
Te (0 L pp1(do (00 PP1

g

(5) O. l

To determine X we fix the other arguments of G and
use a complex numerical root solver. We typically
truncate G to a 22&&22 matrix and keep 70 terms in
the series of each term in solving Eq. (5). We
achieve accuracy of better than five significant fig-
ures.

Some properties of G „can be exploited to sim-
plify the calculation. It is clear that
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FIG. 8. Wave number of maximum growth for bothmodes
and 0 T~/T~ 10.
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FIG. 9. Plasma frequency of maximum growth for two-
stream and parametric modes and 0 «T&/T~ «10.

(op=(v~+2(kvr, )' or 1= ~ +—(kL)'

This is a left-facing hyperbola which passes through
the points (1, 0) and (0, —3vr, /&upL), and is the well-
known Bohm-Gross longitudinal dispersion relation
for plasma oscillations. Notice that the two-
stream, or overdense; mode has now become un-
stable belom the plasma cutoff, which still lies at
co~=~o. The growth rates are, however, quite
low in this region.

In Figs. 6 and 7 we illustrate the maximum
growth rate vs thermal velocity for various temper-
ature ratios. Here, the maximum value is obtained
by scanning over both the wave number kL and
plasma frequency ~~/~p. Figure 5 corresponds to
the parametric instability and Fig. 7 to the two-

vr, /&upL = 0. 1 and 0. 5, respectively. Two effects
seem to be important in determining the stability
regions. First, we no longer have instability at
arbitrarily high kL as we observed in the cold case.
Rather, all instabilities occur at long wavelengths
with the cutoff occurring approximately where

Second, the instability domain extends
to lower densities as kL increases, thereby in-
creasing the range of densities over which instabil-
ity can occur. The boundary between the parametric
and two-stream modes is given very nearly by

stream instability. Notice that the growth rates
fall with increasing vr, /~pL and T, /T. , but do not

become negative in the range shown; that is there
appears to be no high-temperature threshold in

this collisionless model as one might expect from
the static case. The wave numbers kL correspond-
ing to maximum growth are illustrated in Fig. 8.
It turns our that these kL's are nearly independent
of T, /T, and are almost identical in the two modes

so only one curve need be plotted. Again, the kL
vs vr, /&upL is almost linear on the log-log plot in-
dicating a shift to longer wavelengths, but no cutoff.
Finally, the plasma frequency at which maximum

growth y occurs is plotted as a function of vr, /(dpL

in Fig. 9. These too are virtually independent of
T, /T, so only one curve for each mode is shown.

Despite the fact that the stability diagrams show

instabilities at lower plasma frequencies, the
maximum growth continues to occur at nearly its
cold value.

These curves have very nearly taken on their
cold values (Figs. 2 and 3) by vr, /~pL = 0. 1. The
maximum growth rate of the two-stream mode con-
tinues to be about 1-,' times that of the parametric
mode.

Numerical simulations of this AC two-stream in-
stability by the particle-in-cell method ' have
shown good quantitive agreement with the linear
growth rates and wavelengths in the case m, /m;

The familiar nonlinear development of phase-
space vortex structure and coalescing is seen in
the electron distribution and to a lesser extent in
the ion distribution. However, it is unlikely that
the ion turbulence seen with this unphysical mass
ratio is qualitatively correct as indicated by Ref.
10. In addition, two or three dimensional effects
may be necessary for physically applicable simula-
tions.
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