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A previously developed theory of dynamic nuclear polarization (DNP) in liquids is extended
and applied to viscous liquids with anisotropic electron-spin relaxation {T&,» T&,). It is based
on a Schrodinger equation for two spins, S and I, in which the influence of the "lattice" mo-
tion is incorporated by a randomly time-dependent field acting on the spin S and a random time
dependence of the dipole interaction between S and I. The quantum-mechanical equations of
motion in an applied rotating field near S-spin resonance are solved and the DNP of the I spin
is expressed in terms of the stochastic parameters which characterize the liquid motion.
Using values of these parameters as obtained from EPR and NMR experiments on two dilute
organic radical solutions, one finds excellent agreement with our DNP measurements on these
systems as reported in the preceding paper. It is characteristic of these solutions that the
NMR requires a distribution of relaxation times. The analysis of DNP measurements con-
firms this; it gives a somewhat different distribution and permits a more specific correla-
tion between it and the structure of the liquid. The range of applicability of the theory is
discussed, and in an appendix a completely general set of equations for the two-spin relaxa-
tion in our model is derived. Using these, the only restrictions on the application of our
theory would be that the S-S as well as the I-I interactions must be small and that the ampli-
tude of the rotating field must be substantially smaller than the constant external field.

I. INTRODUCTION

In the preceding paper we have presented data1

on the dynamic polarization of protons in two solu-
tions of organic radicals at temperatures covering
a wide range of viscosities. We will now show how
this quantity can be calculated on the basis of known
dynamical and stochastical properties of these sys-
tems. The theory to be used is an extension of one

developed previously for this type of problem.
The relevant properties of the two samples, viz. ,

a 0.02-mole/liter solution of tanone in isopropanol
and a 0.03-mole/liter solution of tetrachiorosemi-
quinone in tetraethyleneglycol, are described in
Paper I and can be summarized as follows: (i) The
electron spin of each radical ion has a dipolar in-
teraction with the spins of protons in the molecules
of its solvation layer. (ii) This interaction, modu-
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lated by a random rotation of this aggregate, can
well account for the relaxation of the protons in the
solvent, each of which spends a sufficient amount
of time in a solvation layer. (iii) The electron spins
relax through an anisotropic g factor modulated by
a random rotation of the radical; neither the elec-
tron-proton nor the electron-electron spin dipole
interaction contributes significantly. (iv) In the
constant magnetic field Hp of about 3300 G, in which
all experiments were performed, the electron-spin
relaxation as a function of the temperature 8 is
adequately described by a Markoffian model for the
rotation of the radical, with correlation time T,.
(v) One has r, -e 0 and at all temperatures of in-
terest to us 7', satisfies the inequality ~,y, Hp»1.
As a consequence, the electronic relaxation times
obey the inequality T„»Ta, . (vi) The proton relax-
ation rates produced by the electron-proton spin
dipole interaction cannot be obtained from a simple
Markoffian model. We found an accurate expression
for the proton relaxation times T, and T2 by taking
the standard relations based on a Markoffian model,
replacing the distances r, by some average (r) and
averaging over a Gaussian distribution of lnv. in&*,
which is the average of ln7, and the width of the
Gaussian are linear functions of I/O; r" is of the
same order of magnitude as 7, introduced above. 3

(vii) The two samples differ in that tanone has a
hyperfine (hfs) splitting and tetrachlorosemiquinone
has not and that the width of the distribution in the
former is much more important than in the latter.
The hyperfine interaction is anisotropic, thereby
contributing to T„and Ts„but we will neglect this
feature in the following.

From these properties one can infer that the dy-
namic polarization must be calculable as an ensem-
ble average of values obtained from suitably chosen
two-spin Hamiltonians. These will contain a ran-
domly time-dependent Zeeman-dipole interaction
term, simulating the effects of the lattice degrees
of freedom on the spin motion. The finiteness of
the "lifetime" of a given electron-proton pair, due
to the proton's departure from the solvation layer
of the radical, can be completely ignored in the
calculation. The reason for this is as follows: The
dynamic polarization is produced quickly in each
proton of the solvation layer individually by its in-
teraction with the electron and takes a value given
by the ratio of the rate of H&-driven spin flips to the
rate of electron-induced relaxation. After depart-
ing, the proton preserves the acquired polarization
because relaxation in the solvent is negligibly slow.
Thus each proton obtains a polarization as if it were
permanently attached to a radical ion. In all this
it is assumed that the reaction of the protons on the
electron-spin motion is so small that it makes no
difference that the protons are frequently replaced
by others. This is valid because other forces on

From the above properties we distill a model
Hamiltonian of the following form:

3C=X,+3Ci(t)+X,(t)+~(t) .
Xp is the Zeeman energy of the electron averaged
over all orientations of the radical ion plus the
Zeeman energy of the proton in the external field
Hp.'

Xp=ysHpS +yIHpI (2)

X~(t) is the orientation-dependent part of the elec-
tronic Zeeman energy. Instead of giving the g-
tensor components and then specifying the random
rotation of the radical, we introduce the equivalent
local field' Hq(t) through

XI, (t) = ysHr, (t) S . (3)

Since in our samples the electron relaxation comes
almost wholly from this term, we will determine
Hz, (t) as a Markoffian random variable (for any tem-
perature) in such a way that the observed electron
relaxation times T„and T~ are obtained. The ran-
dom transitions due to the hyperfine interaction are
thus automatically included. X, is the dipole inter-
action, to be written as

3' =y~yql ~ C (t) ~ S . (4)

The statistical properties of 4 (t) will be chosen
similar to but not identical with those that produce
the observed proton relaxation. X,(t) is the energy
of the electron spin in a "pumping" field Hq(t):

Xg (t) = ys Hg (t) S, (5)

of which the frequency 0 is near resonance, 0
=y, Hp. It is rotating in the xy plane; in theory its
amplitude can have any value, but in our experi-
ments it was sufficiently large to saturate the elec-
tron-spin system. The effect of the anisotropy of
g in this term and the direct influence of H~(t) on
the proton spins are neglected.

III. DEVIATIONS FROM THERMODYNAMIC EQUILIBRIUM

It has been shown "6 that a model Hamiltonian
of the form (I) allows the calculation of the deviation
of any observable Q from its thermal-equilibrium

the electron dominate its motion. The existance
of a hyperfine interaction need not be explicitly in-
troduced. Although it is anisotropic and therefore
contributes to T&, and Ta„ the corresponding transi-
tions between the hyperfine components are of no

direct consequence for the dynamic polarization.
It is therefore sufficient to calculate as if the hyper-
fine interaction were isotropic, i.e. , to add the
results obtained for each of the hyperfine states
separately.

II. HAMILTONIAN
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value at temperature 8, as a function of time. To
first order in P =1/ke, one has, taking for conve-
nience units with 5= 1,

8P—= (So+ Sg + sg)P,
et

nq(t) =-(q&, , - &q&,
"= -.' » (~'(t)q&t) )...

i = [x,+x,(t}+x,(t)+x,(t+-.ip)]~(t),. d'ut(t) 1

dt

w(o) =1 .

(7a)

(7b)

( K+ K) + — (K, +K,)
2 Tie T3e 1e

S, = —M(K, +K) —~,(K+K )

52--——' t ~qQ( K„-K„),
The symbol ( ~ ~ )„means averaging over an ensem-
ble describing the stochastic motion. We are inter-
ested in the steady-state proton enhancement, i.e. ,
in

(8)

where K and K are i times of angular momentum in
terms of Euler angles and their complex conjugates,
respectively.

The transformed Schrodinger equation is

which quantity has been measured as a function of
temperature.

IV. INTERACTION REPRESENTATION

„,
'd) =x '(t)~ '(t) ,

x '(t) = y,y, 1 c '(t) A (x(t)) s .
(12)

Equation (7) will be brought into the interaction
representation by means of two successive trans-
formations. The first is a rotation around the z
axis, of frequency 0 in the electron-spin space and
of frequency (d = yIHO in the proton-spin space. The
transformed Hamiltonian is, to first order in P,

The term B is neglected, as it only contributes
second- and higher-order terms in P.

V. EPUATION FOR DI,

As the above transformations leave I, invariant,
the dynamic polarization as defined by Eqs. (6} and

(8) is equal to the limit for t- ~ of

X"= a(a&S, +(u)S„+ gipurgQS„+y, Hr(t)'S

+yty, f c '(t) s, (9)

r I,(t) = -,' Tr [% "(t)I,~ '(t) )„.
An integral equation for n I,(t) can be obtained by a.

double iteration with Eq. (12). This gives

where L4u =~@Ho —~, 1= yeH1, and H~ and 4 " are
the Hl, and 4 seen in the rotating frame. The sec-
ond transformation is in electron-spin space only
and is made to remove all but the last term from
the Hamiltonian. It is nonunitary (on account of the
imaginary term in X) and stochastic in nature and
has been described in Ref. 6, where it was used to
derive the modified Bloch equations. It can be con-
strued as a (complex) random rotation of the refer-
ence frame of the electron spin which follows the
precession due to the fields contained in the first
four terms of Eq. (9). The transformed spin oper-
ators are given by the equation

t
ai, (t) = ——,'Tr 1 dt' f dt'

~ (~"(t")[x'(t"), [x'(t '), I,]]~'(t ")j„,
(i4)

where, in view of the non-Hermitian nature of K ',
the commutator is defined by

[x', q]=x "q-qx'.
The result takes a simple form if one uses unitary

spin components

I,~ =(1/v 2)(I„+iI„), Io=ig (16)
S = A (x(t)) S -B(t) . (io)

This is analogous to a result obtained in Ref. 2.
The vector B, which is due to the imaginary term,
approaches in time the value of the spin polarization
as given by the modified Bloch equations minus
&S&P. A is a rotation tensor in terms of complex
Euler angles x1 =3, xz= g, x3= y. The difference
with Ref. 2 is that because T„&T~ the Fokker-
Planck equation for the probability law P(x, x, t) of
x and their complex conjugate x is anisotropic, as
in Ref. 4. To first order in P, the Fokker-Planck
equation has the form

and likewise for S. In order to decouple the equa-
tion for &I, from the corresponding equations for
the other spin variables, we first perform a trunca-
tion by neglecting the correlation between 4 and
the random variables A and ~'. Thus the average
values of products of 4 's become correlation func-
tions:

(4' „(t )4 ~ „(t")},=r f „(t' —t")6 . 6 ~ .
(17a)

where
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f",„(t' —t") =f„„(t -t")exp[i(n&u+ pQ)(t' —t")] .
(17b)

f,(t) are the autocorrelation functions of the dipole
tensor components on the laboratory frame, and r

I

is the electron-proton distance. The cross-corre-
lation functions of C disappear because the periodic
factors contain t' and t" separately and not only in
the combination t' t".-Neglecting terms of 0(P'),
Eq. (19) takes the form

&I,() = ——,'C f dt' f dt"Q f~„(t' —t") 'ZReA»(t') ReA, „(t")Tr[% "(t")I,VV'(t")]
0 0 Alt y

+ —,
' nQ ReA»(t ) ImA „„(t")Tr[w'~(t )% (t ') ]

+ a Z ReA„„(t')ReA, „.(t")e»., Tr[%'' (t")S,'+'(t")], (18)
ty av

where

g —-'y'y y 6, A=-,' A x aA x (19)

and where E»., is the antisymmetric tensor, E&o &

=1.
Next the averages appearing in Eq. (18) a.re ap-

proximated by moving A(t') backward in time to t"
as if it had followed the most probable path (cf.
Ref. 2), i.e. ,

A(t')- exp[(t' —t")(s,+s,}]A(t") . (20)

We have omitted the term 5~ in the exponent because
we calculate only to order P. 50+ 5& is a linear
operator in the space of A» with fixed y:

J„~= (Z„ReA»(t") ImA „y(t")}„
to be calculated.

Substituting into Eq. (18) gives

(26)

t I,(t) = fdt' f d-t"[M(t'-t")ni, (t")

+Z„M„(t'- t")nS„(t")-R(t' —t")], (27)

.'IT [vt"—(t")Z,A„,(t")S,~ '(t")])„=t S„(t"),
which has the physical meaning of the deviation of
S„ from its value in the modified Bloch equations
[cf. Eqs. (6) and (10) and Ref. 2]. In the second
term, where ImA is already of order P, % ' (t")
X% '(t") can be replaced by the unit matrix, leaving
expressions of the form

(6 0 + sg) A „„=Q„D~„A», (21) where

( —I/T~ -in(u
D = i~/V2

t, /W2 0
—1/T q, i (oq/W—2

i(u, /v -2 —I/T2, +i&(uj
(22)

M(t}= CZ..a'f „"„(t)[e"]„,
M„(t}= C5 „af „(t)E.E „„„[e' ],„,

(28a)

(28b)

R(t) = --,' CQ, af „(t)Z„Z„„[e' ],„. (28c)
Therefore, Eq. (20) gives

A„„(t )-Z„[exp(t —t ) D ]~„A»(t ) . (23)

Substituting this into Eq. (18) allows one to use the
orthogonality relations and product relations for
real rotations, i.e. ,

Z„ReA»(t) ReA „„(t)=6„, (24)

and

Q e „„,, ReA (t) ReA „„ (t) =Z c „„„ReA„,(t) .

With this the A's disappear in the first term of
Eq. (18), leaving

~(Tr[%" (t")I,'vV'(t")])~, = AI,(t") .
The third term contains

Equation (27) contains the variable &S„(t) for
which similar equations are easily derived. How-
ever, DS„ is the change in electron-spin polariza-
tion with respect to the modified Bloch equations
produced by the electron-proton interaction. As
we assume that this interaction is very small com-
pared to either X& or K&, &S„ is small and can be
neglected. This is just as well, because the fre-
quent replacement of protons in the solvation layer
is likely to invalidate a calculation of b S„ in our
model. With this approximation the asymptotic
value of AI, (t) for large t can now finally be ob-
tained. One has

&I, = f R(t) dt/ f M(t) dt =R~(0)/M~(0), (29)

where the superscript I indicates the Laplace trans-
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form.

VI. EVALUATION OF% ANDR

y. ,(f) =y ..F(f),
where f „have the well-known values

(30)

We assume that all the components of the dipole
tensor have the same autocorrelation function

1 1 (ln7' —Inr*)
m(2v)' 2 o (36)

to which corresponds in Eqs. (32) and (33)

In order to decide if one of these two extreme
interpretations accounts for the data we have made
sample calculations for both, taking averages over
& with the distribution function

, (6 3 I)3431. (31) F'(p) =p 'G(1/p) . (37)

We will write F(f) as a Laplace integral, F(t)
= J, Fz(p)e ~'dp. This gives

M (0)=CZ a f~~ f dpF (p)

x [(D +in&u+ipQ-p) ']„, , (32)

R (0) = ——,'CZ nf, J„„f dpF (p)
NPV

x [(D +iud+i pA-p) ']„„. (33)

Lg 4 P 1 ~ vgy
O'K

(34)

For given F (p) the integrals are easily computed.
For the constants J„, defined by Eq. (26) we find

In each case we have optimized ~*. For comparison
we have also made a calculation with a Markoffian
homogeneous model, optimizing 7'.

VII. RESULTS

The values of T&, and Ts, are taken from experi-
ment and the width 0 is taken from the analyses of
the proton relaxation data as obtained in Paper I.
Only w* is used as an adjustable parameter. In
order to choose between the alternatives we have
selected two well-defined features of the experi-
mental curves for 4I, as a function of &w, to wit,
the maximum of the absolute value and the ratio p
of the extreme values. The latter is a sensitive
function of the temperature and varies between zero
at high 8 (pure inverted Overhauser effect) and 1 at
low 8 (solid effect). We have evaluated &I, as a

where D ' is the inverse of D . Equation (34) is
derived in Appendix A.

It remains to choose F (p) For a M.arkoffian
process one has

F(t) =e '~', i. e. , F (p) =5(p —I/r) . (35)

This was assumed in Ref. 2 but the data analyzed
in Paper I strongly suggest that this is inadequate
for the systems under study. A Gaussian distribu-
tion for lnw was found to give an accurate fit to the
relaxation data. This can indeed be construed as
the Laplace transform of F(f), but another interpre-
tation is possible and perhaps more plausible. This
is that the spin pairs producing relaxation as well
as dynamic polarization are inequivalent, each
having a correlation function of the type (35) but
forming an ensemble which can adequately be rep-
resented by a distribution of ln7 as obtained. The
electron-induced proton relaxation does not allow
one to distinguish between these possibilities, be-
cause in our samples each electron-proton pair
contributes separately and linearly to the observed
relaxation rate. This is not so for dynamic polar-
ization which, according to Eq. (29), is the ratio of
two quantities each containing the correlation func-
tion. The question then is whether to average (29)
as a whole or to average numerator and denominator
separately.

I

b,H (gaUss)

10 15

(

I

j I

f

I2i'

FIG 1. Values for one hyperfine component of the
dynamic polarization of tanone in isopropanol at 0 = —75'C
calculated with three different models using Tfg
=7. 8&&10 sec, T2e=3. 7&10 sec, ~&=1.3&&10' sec
G =A/Ao —1, where A is the enhanced and Ao the unen-
hanced signal amplitude. Dashed line: inhomogeneous
model (o = l. 84); dash-dot line: non-Markoffian model
(o.= l. 84); solid line: Markoffian case (o=0).
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6 H (gauss)

-30 30
FIG. 2. I3(jtnamic po-

larization of the tanone
solution at 0= —75'C.
The drawn curve is cal-
culated with T«=
7. 8&& 10 sec, T2e=3. 7
&&10 8 sec, 0 = 1.8,
=1.49&10 sec, ~q
=1.31x10' sec ~.

function of 4& for a temperature where the experi-
mental curve is very asymmetrical, using param-
eters as we have found them in Paper I for the tan-
one sample at 8 = —75 'C, i.e. , T&, = V. 8 ~ 10 sec,
Tz, = 3.7 && 10 8 sec, o = 1.6 (and ~, = l. 31x 107 sec ').
At this temperature our measurements gave, for
each of the three curves into which the dynamic
polarization can be decomposed, a ratio p = 0. 25.
Figure 1 shows the result for the three models. In
each case r~ (or r) has been chosen to make p= 0.25.
The inhomogeneous interpretation is strongly fa-
vored, as it gives very nearly the observed magni-
tude. The non-Markoffian model gives a 40% dis-
crepancy in magnitude and the homogeneous Mar-

koffian case is completely ruled out. The values of
7'* are, respectively, 2. 3, 0. 34, and 1.5 times the
value obtained from proton relaxation.

For the sample of tetrachlorosemiquinone, the
inhomogeneous model also gives the best results,
although the differences are less pronounced. This
could be expected because the width a is much
smaller.

A complete set of curves has been calculated only
for the inhomogeneous case, i.e. , by using (32),
(33), and (35) in (29) and averaging afterwards with
(36). Figures 2 and 3 show the sum of contributions
from the three equidistant hyperfine components for
tanone in isopropanol at —V5 and —85 'C, respec-

h H (gauss)

-30 30

FIG. 3. Dynamic polarization
of the tanone solution at 8= —85'C.
The drawn curve is calculated
with T«=1. 1&&10 sec, T&, =2. 4
x 10 sec, a = l. 8, v* =2. 86& 10
sec, &=1. 31&&107 sec
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10

@-10

3

K1

FIG. 4. Values of v* as a function of temperature
from dynamic polarization (pluses) and from proton re-
laxation (solid line): (a) tanone, (b) semiquinone.

The quantitative agreement between calculation

tively. Figure 4 gives the value of 7'* at four tem-
peratures. For comparison, 7* from relaxation
has also been plotted. Figures 5 and 6 show results
for tetrachlorosemiquinone in tetraethyleneglycol.
The best values of 7'* and their counterparts from
relaxation have been included in Fig. 4.

VIII. CONCLUSIONS

and experiment shows that the dynamic polarization
in our samples is adequately described by a simple
stochastic model which agrees with and was essen-
tially obtained from an analysis of proton and elec-
tron relaxation data. Where the latter left an am-
biguity as to the origin is a distribution of correla-
tion times, the dynamic polarization favors an in-
homogeneous model, ascribing the distribution to
the presence of inequivalent electron-proton pairs,
all contributing to the proton relaxation and to the
dynamic polarization. In view of what is known of
the materials used and because electron spin-orbit
relaxation does not require a distribution, this re-
sult could have been expected, and it is safe to con-
clude that the rather similar distribution needed to
account for the proton relaxation in the pure sol-
vents describes an analogous situation.

The origin of the difference between ~* as ob-
tained from relaxation and from dynamic polariza-
tion can be explained as follows: It is seen from
Eq. (29) that DI, for a given spin pair is the ratio
of two quantities and that, to the extent that the
proton is in the solvation layer of the electron's
radical, the distance r between the two spins di-
vides out. The average over all spin pairs is thus
an average over correlation times of random motion
only. The electron-induced proton relaxation rate,
on the other hand, is linear in the correlation func-
tion and, as shown in Appendix B, closely related
to the denominator of Eq. (29). Averaging it means
taking the average, over correlation times and rel-
ative distances simultaneously, of a function of
orientation divided by r . Since one can expect a
spread in r of a factor of approximately 2, the two

averaging procedures differ widely. Having kept

10

h, H (gaUss)

FIG. 5. Dynamic polarization of
the semiquinone solution at 0 = 20'C.
The drawn curve is calculated with

T(, =2. 5&10' sec, T2, =1.0&&10 '
sec, cr=0. 9, v*=0. 82&10 sec, &
= l. 31& 107 sec ~.
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b, H (gauss }

FIG. 6. Dynamic polarization of
the semiquinone solution at 0'C.
The drawn curve is calculated with
T«=6. 8&&10 sec, T2, =4. 9&& 10
sec, 0=0.9, v*=2. 02&&10 9 sec,
(d& =1.31~10 sec

the variance o of the distribution constant, the re-
sults appear as a difference in ~*. This explanation
is consistent with the fact that, as reported in Pa-
per I, the EPR requires no distribution, showing
that the ion, at least, experiences a Markoff-type
motion. One must conclude that the molecules of
the solvation layer move with respect to the ion,
of which motion the NMR and the DNP give two
distinct measures, the first including a weighting
factor r ' and the second being independent of r. It
is in this connection of interest that the dynamic
polarization is much more sensitive to the choice
of 7* than the relaxation.

One finds in this manner a new method for study-
ing molecular motion through the introduction of
radicals and the measurement of dynamic polariza-
tion. This opens possibilities for "radicular
probes" to reveal the dynamics of molecular motion
in viscous substances, inhomogeneous media,
smectic and nematic liquids, colloids, and poly-
mers. Perhaps it would even be possible to use
dynamic polarization in the study of phase transi-
tions near a critical point.

As for the theory, its essential limitation is that
the electron spin-spin interaction is small and that
the nuclear-spin re1.axation is dominated by the elec-
tron-nuclear coupling. We have also used the fact,
verified for our samples, that the electron-spin
relaxation comes primarily from the spin-lattice

coupling term Xz, (t) of the Hamiltonian. This al-
lowed us to identify the parameters T„and T~ of
the Fokker-Planck equation with the experimentally
observed relaxation times. Our method can easily
be extended to cases where this is not true and can
thus be made to include the "bottle-neck" effect in
dynamic polarization. To this end one must derive
a complete set of equations for total electronic and
nuclear relaxation rates on the basis of our model,
dropping the term 3C,(t) from the Hamiltonain. They
will contain four parameters, viz. , T„, T3„7~,
and 0. The former two are relaxation times in the
absence of X„, and therefore unknown. All four
should be optimized by fitting the equations to the
experimental relaxation data. The values of T„
and Ta, thus found should be used in Eq. (29), but
for reasons discussed above, 7~ (and preferably
also a) in the equations for dynamic polarization
should not be identified with the values obtained
from relaxation. The equations required to carry
out this program are given in Appendix B.

These same equations are also needed in the
analysis of experiments in weaker fields Ho, for
which 700=1. In that case double spin flips contri-
bute essentially to the proton relaxation and the
corresponding terms are modified by the electron
spin-lattice relaxation. This effect was discussed
in Paper I where it was shown that it is negligible
in the present experiments.
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After this there remains a very weak restriction
of the strength of Hp demanding only that an oscil-
lating field of frequency &,Hp be replaced by its
resonant rotating comment H, (t). This means Ho
))Hy i.e. , fields larger than 10 G. Low-field ex-
periments are thus within the range of our theory.

Finally, with regard to the allowed amplitudes of
the field H&, and apart from the obvious require-
ment that the lattice remain in thermal equilibrium
at the temperature 6, we have imposed only one
restriction. This was introduced when the terms
proportional to AS in Eq. (27) for tlf, were ne-
glected. As discussed there, this presupposes that
the influence of the I-spin on the S-spin polarization
is negligible either compared to the influence of K~
or X&. If this is not the case, one mould need two
coupled equations for &I, and ~S, similar to those
for relaxation in Appendix B and easily derived. In
contrast to the case of relaxation, this generaliza-
tion would be meaningful only if the I-S spin pair
were permanently coupled, unlike in our present
samples. With this exception, therefore, our equa-
tions should correctly describe the saturation curves
as well as the dynamic polarization for complete
saturation.

while

(~ 0+ ~ 1)4 00

(~ 0+~1)Col ~x «4~1

(A3)

(A4)

Let Qpp f y and P)',2 be defined as functions in the
linear space of g z which are the same linear com-
binations of the eigenfunctions of Sp+]+ +2 as happ,

and Q)tp are of the eigenfunctlons of Sp+ 5 y ~

Writing
I

Aa 1 tyPPC PP +~@ ffg14g1+~'A ~eked X2 &
(A5)

(5 0+'S 1+ p 2)lt'|Il =V~~ D«p„', +0( p ) (A7)

which follows from the fact that the diagonal ele-
ments of $2 are at most of order P . Equation (A7)
can be written in tensor notation as

one has A, oo
= 0( P), A, „2= 0( P), A,„,= 6,„+0( P),

while (1tl„',}„=Q&„'2}„=0. Using the orthogonality
of the unprimed 1(1's, (A5) gives

9'ol}av 4 00}av($001 /el)/(Qooi $00) +0( p )
(A6)

The inner product ($00, Q,'1) is obta. ined from the
equation

APPENDIX A: EVALUATION OF J„„
From the definition (26) one has

J„„=——'(Q„[A (x)A „(x)-A„„(x)A„„(x)]}„.

(Aa)(~0+~1 D )4, 1 ~24, 1

from which

(400 4, 1) (1t 00 (~0+~1 D ) ~24, 1)

= —((& 0 -&1 —D ') '&t& oo, & 6', 1)

(1t100 ~21t', 1)

(A1)

~&t 00, e.l) =&.(D ')..(&21t I, lt. l)+0(P') . (A9)

One has furthermore

(K, K1,)400= v-2(1t1 „—1t111), (Ala)

The average is over time, the evolution of x(t) and

x(t) being given by the Fokker-Planck equation. The
right-hand side of (A1) will be expressed linearly
in eigenfunctions of S of Eq. (11), calculated to first or
order in the perturbation Sz. It follows from Eq.
(11) that the functions $,2=@A „(x)A0 „(x) trans-
form mutually under the operators Fp, 5&, and 5~.
An orthogonal basis in the linear space of g ~ can
be found by defining an inner product through

(y, (x, x), yo(x, x)) = fy,*(», x)y2(x, x)d xd x,

where x and x are treated as independent real
variables and where the volume element for Euler
angles is taken as d'x= sin3d3dy dg. That makes
the angular momentum operators -iK and -iK
Hermitian, and therefore the simultaneous eigen-
functions of the commuting operators fp and L,
= —i(K, +K,) orthogonal. These are $00=/
with eigenvalue zero of Sp, L„and of f„Q„
= $~0 e «olt1~0 with eigenvalues —1/T„—o (1/T2,
—1/Tl, ) for 90 and o for L, and similarly lt1„2 with
eigenvalues —3/T„—2.2(1/T2, —1/T„) for 50 and X

for L,. In terms of these functions, one has

while the explicit form of A» in terms of Euler
angles,

f(it I+X y) g

tt (1 +c)/2 —is/W2 (1 —c)/2)
C,„=~ is/v 2 -c is/v 2

((1 —c)/2 is/v 2 (1+c)/2 )
c = cosa, s = sins (A11)

gives (too}.,=3, (coo, coo)=4(»)', (Ill 411)
= 2(2w) . Combining (A2), (A6), and (A9), one gets

(A2) J„~= ——,
' &2i &u PQQ1»ae„(D )„„. tA12)



1548 LE BLOND, PAPON, AND KORRINGA

&I„(f)—&I„(0)= d Tr(%' ' (i)I„W'(I)}„, (a2)

APPENDIX 8: RELAXATION, GENERAL EQUATIONS

Equations for two-spin relaxation for the under-
lying model have been derived earlier under the
simplifying assumption T„=T~. The general equa-
tions are obtained as follows: With 3C, = 0 (~, =0) and

choosing &v =0, the interaction Hamiltonian has the
form as in Eq. (12), but A is now real. In Eq. (11),
5, and 5z are zero and, correspondingly, the matrix
D of Eq. (22) is diagonal:

50A~„=X~A~„, A.„=—1/T~, Xo
———1/T)0 5 (Bl)

where T„and T~ are the S-spin relaxation times
in absence of the dipole coupling. The deviation of
the spin polarization from thermal equilibrium is
given by

&S„(f)—e""'&S„(0)= —,
' Tr (~ "(f)Z„A„„(f)S„~'(I) },„,

(as)

where '()t)'(I) satisfies Eq. (12) but with arbitrary
initial w(0) and corresponding &I„(0) and &S„(0).
(The subscript zero is synonymous with z. } The
right-hand side of Eqs. (82) and (83) can be ex-
pressed as the integral of a double commutator, as
in Eq. (14), where X is now Hermitian. With the
approximation of Eq. (20} for A(t ') in (82) and the
corresponding

A, (t')A, (i)-e"'-""[A,(f")e"-' "A,(f")] (B4)

in (B3), and with the truncation that averages of
p(t")dtd(f') are taken separately, the double commu-
tator can be evaluated. Using the relations between
A„„of Eqs. (24) and (25), we obtain

t
t l(t) —5!„[0,)= —C fdt f,dt" 5'(1 —5,„)f„,(t' —t")dt„(t") 5„,Z df, (t' —t )55,(t ))""

at ll
(B5)

t g'
r S„(f)-e"'~S„(0)=-ej df' j df" 5„,Zc(uf. „(f' I")nI,(f-")+g (1 —e„„)f.„(f' I")nS„(f") e-"~"-0'),

p p Og fzg

(B5)

where

f (I) f (I) ((0( td 5( )505)))5 )5

f~„(t) is defined in Eq. (17), and C in Eq. (19).
A Laplace transform gives

I

p+c Q ~~ p p+ +c p, f

(B12)

0 CZ((-5„)f;.(0)) dt,'(5)

uf'. (p)»'o(p) = », (0),

(as)

(als)

giving the decay of &I, , respectively, and

the two (real) roots giving the characteristic times
for the simultaneous decay of &Ip and &Sp,

p+ cZ (1-5.„,)f'.„(p) = o,

C5„()Zauf', (p)I) I„(p) I + +C&(1 —5...&)f'.,(I ) =0
Be eg

(B14)

+ p-x, +c 1-~,„f'.„p ~s„' p =~s„o .

(B9)

When Eqs. (30) and (35) apply, f ~(I5} takes the form

f,(fd) = f (f5+io(v+iuQ+X„—1/&) ', (B10)

The characteristic times are given by

for the decay of Ds, . The roots of (B13}and (B14)
have a nonvanishing imaginary part.

Equation (B12) shows that longitudinal relaxation
times for the spins individually can be defined only
if the right-hand side is small. One then has

p+ eQ o'f'.„(p)= o (B15)

for the relaxation of &Ip and

(all) I+ T +e&u'f.'.(p)=0
le op

(B16}

where P; are the zeros of the determinant of Eqs.
(BS) and (B9). The equations fall apart in two si-
multaneous equations for &Ip and &Sp and four sep-
arate equations for &I„and for ~S„, y=+1. One
has

for the relaxation of esp. Typically, this can be
expected when the rates 1/T), and 1/Tz, are much
larger than the rates produced by the dipole inter-
action, or when the spins have quite different Lar-
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mor frequencies, 0» co, and the field is "high" so
that 07'» 1, where v is the correlation time of the
dipole term. When the former condition holds and
more generally when the dipole rates are small
compared with 1/v+1/ T„Eqs. (B13)-(B16)can be
solved by iteration. Thus the familiar expressions
from the I-spin relaxation are obtained by putting

p = 0 as the argument of f, in Eqs. (B13) and
(B16), and the first-order corrections to the S-spin
relaxation follow from (B14) and (B16) by taking

p = —1/T~ and p = —1/T„ in f ~„, respectively. In
order to apply the Eqs. (B10) and (B13)-(B16)to an
inhomogeneous system, they must, in principle,
first be solved for p which is then to be averaged
over an appropriate ensemble for the values of C
and 7'. In the above approximatinn this amounts to
averaging the equations, which makes this case in-
distinguishable (as far as relaxation is concerned)
from the case of a homogeneous system with a non-
exponential cor relation function.
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A description of the stability properties of a plasma under the influence of an external elec-
tric field oscillating near the plasma frequency is presented.

1. 1NTRODUCTION

We investigate the stability properties of a homo-
geneous plasma under the influence of an alternating
electric field oscillating at frequencies near the
plasma frequency. Describing the stability proper-
ties of this system represents a first step in the
understanding of a mechanism for absorption of en-
ergy in a plasma from laser radiation. This
problem has been studied by many authors' using
various analytic expansion techniques. The basic
results of their work have been the discovery of
two distinct instabilities which occur when the driv-
ing frequency is either slightly above or below the
Bohm-Gross frequency. It is our aim in this paper
to consolidate and expand upon their work by solving
the equations numerically, thereby obtaining solu-
tions for a wide range of parameters. From these
results it is possible to obtain a relatively simple
picture of the structure of the two fundamental un-
stable modes.

Il. THEORY

In the collisionless approximation the equations

governing the behavior of a homogeneous plasma
under the influence of an electric field

E,„,= yEo sinmot

are

~~f - ~~f ~e E ~~f

Bt By m, Bv

BE Bp
Zqy f~dv,

By By

where j is e for electrons and i for ions. The oscil-
lating solution about which we linearize is given by
f, =f, (v,*), where

v&* = v+ (q&Ep/m, ur p) cos&upt = v+ v&
D

We shall take f, to be a Maxwellian:

fq(vq*) = (&p/m' v») exp[ —(v'/v»)'I .
We consider perturbations of the form

0( y, v, f) = Q(v, &)e"' .


