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electron-molecule interaction potential, agrees
with the "measured" elastic cross section to with-
in 13% for the energies used in this study.
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An eikonal theory of elastic electron-atom scattering in the region of intermediate energies
is proposed. In addition to the effects of the static and polarization potentials, we also take
into account the leading absorption corrections, using the equivalent-potential method. De-
tailed calculations are performed for elastic electron-helium scattering in the energy range
100—500 eV. Our results are in good agreement with the recent experimental data.

I. INTRODUCTION

Present calculational techniques yield reliable
results for electron-atom scattering processes when

the relative incident energy is either low enough
or sufficiently large with respect to typical target
binding energies. In the former case only a few
channels play an important role, so that close-cou-
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pling, polarized-orbitals, variational, or related
methods are applicable. At high-incident energies
the Born series or its modifications have been used
extensively.

In the region of intermediate energies we do not
expect these techniques to give accurate results.
An alternative approach, long popular in nuclear
collisions, is then to use the optical potential
method in which a reasonable form is chosen for
the real and imaginary parts of the interaction be-
tween the projectile and the target, and parameters
are adjusted to fit the experimental results. Such
an approach has been used lately in the case of
elastic electron-helium scattering.

A less phenomenological point of view, in which
one attempts to derive the optical potential from
first principles, was presented3 some time ago and
recently applied4 to the case of intermediate elec-
tron-atom scattering. The theory describes elastic
scattering by the equivalent potential method which
explicitly accounts for the imaginary part of the po-
tential. The basic equations and the approximations
involved in the theory are briefly recalled in Sec.
II. In Sec. III, we show that the eikonal approxi-
mation considerably simplifies the solution of the
equations and allows the removal of several approx-
imations. Incidentally, we construct an eikonal
solution to the special form of nonlocal potential
appearing in the problem. In Sec. IV, we apply
our eikonalized equivalent potential method to the
case of elastic electron-helium scattering at inter-
mediate energies, a process which has recently at-
tracted considerable interest, both experimental
and theoretical. " We show that not only pol..~riza-
tion effects but also absorption corrections —induced
by unitarity from the open channels —are important
in the energy range considered (100-500 eV). Our
results are in good agreement with the recent exper-
imental data ' and yield differential cross sections
much larger at small momentum transfers than
those obtained from the first Born approximation.

II. BASIC EQUATIONS

We consider an elastic electron-atom scattering
process for which the equivalent one-body Schro-
dinger equation reads

(2. 1)

where p is the energy of the incident electron (in
rydbergs), T is its kinetic-energy operator,
is the optical potential and P;, is the scattering wave
function corresponding to an incident electron
with momentum p, Under the approximations of
(i) neglecting the Pauli principle between the inci-
dent and target electrons and (ii) evaluating the
equivalent potential to second order in the multiple-
scattering expansion, one can write the optical po-
tential as3

V(1) + V(2)
opt (2. 2)

The first-order part of the optical potential, ex-
pressed in configuration space, is simply the
static potential of the atom,

V'"(r)=(0~ VIO)= f ~4,(x)~' V(r, x)dx, (2. 8)

where 40(x) is the initial wave function of the tar-
get, x denotes all the target coordinates, and
V(r, x) is the electron-atom interaction potential.

The second-order part of the optical potential
operator is given by'

~~) p (Ol Vin) (n I VIO)

„gg p —T —(zU„—$00) + 1,E'
(2. 4)

P =P —b. (2. 6)

and the function A(r, r') is defined by'

A(r, r') = fC g(x) V(r, x) [5(x, x') —cj(x)4,(x')]

x V(r', x')4 (x') dxdx' . (2. &)

The resulting equation [Eq. (l. 6) from Ref. 4],
obtained by substituting in Eq. (2. 1), is then

[p2 T Vtl&(r)] g (r)

—fC, (r, r ') A (,r, r ')g;,. (r ') d' r ' = 0 . (2. 8)

The approximations (i), (ii), and (iii), leading
to the basic equation (2. 8), are reliable at suffi-
ciently high energies but the details of each and the
three in combination have yet to be investigated
In Ref. 4, hereafter referred to as paper I, three
further approximations were made in order to
solve Eq. (2. 8): (iv) a separable approximation to
the function A(r, r'), namely,

A(r, r'}= v(r)v(r'), (2. 8)

which thereby replaces all inelastic channels by
a single average one. '4 (v) The quantity & was set
equal to zero and the potential in G~. chosen to be
V"'. The choice of potential is not important as
we shall show below, but neglecting b, results in
a logarithmic divergence of the cross section in the

where the summation runs over all the intermediate
states of the target. Here uo and ge„represent the
internal target energies, respectively, in the initial
and in the intermediate state In), while e-0', as
usual. The summation appearing in Eq. (2. 4) can
be simplified if a further approximation is made,
namely (iii) replacing the excitation energies of the
target by an "average excitation energy" h.
yields for V ' ' the nonlocal potential

(r~ V' '~r')=G~, (r, ')rA(r, r ), (2. 5)

where G~. is the Green's function describing the
free" propagation of the projectile in some average
intermediate state with energy
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forward direction which turned out to be numerical-
ly significant in the electron-helium example worked
out in I. (vi) The resulting decoupled equations
were treated in the eikonal approximation.

The first purpose of this paper is the removal of
approximations (iv) and (v). This is accomplished
in Sec. III, where the eikonal approximation" is
applied directly to the basic equation (2. 8). The
difficulty in the forward direction will thereby be
eliminated.

III. EIKONAL APPROXIMATION

Let us first analyze the free propagator G~, ap-
pearing in Eq. (2. 8). We write it in momentum
space as

(8- P' )

G .(r, r ') = —(2 ) 'f d'k (3.1)

or

—2p, VA —V"'(r) —(VA)'+ iV'A+(i/2p')

Xf e((& -& &
-

A(b Z. b Z )
(( (S, )- (&uS, )&(0u

(3. 5)
Now, consistent with our previous approxima-

tions, we assume that A is slowly varying on the
scale of the de Broglie wavelength of the incident
particle. Then the quantity A(b, z') —A(6, z) may
be dropped inside the integral in Eq. (3. 5) and the
higher-order terms (vA)z and vzA may be neglected.
The remaining first-order equation for A is then
easily integrated with the result

elf| ~ (I- P )

G, , (r, r')= —(2&() Se(S ' &' ~)) dsq
2p q+Q

(3. 2)

where we have changed the variable of integration
to q=k —p'. We take p' in the direction of the in-
cident momentum so that for small-angle scatter-
ing-consistent with the eikon approximation-the
vector q is essentially the momentum transfer during
a scattering. Since q«p' in the region contributing
to the scattering we may neglect the q term in the
denominator. '6 ' With this approximation' the
linearized propagator G~, may be written as

G(). (r, r') = —(i/2i&') e" ' ' ' 5(b —b') e(z —z'),
(3. 3)

where z is the component of r along the incident
direction and the impact parameter vector 6 is per-
pendicular to it. The step function e(z —z') is unity
for positive argument and zero otherwise. If we
now substitute Eq. (3. 3) into Eq. (2. 8) and use the
eikonal form of the scattering wave function

f g~ ~ P+ f A(S, «) (3.4)

where p, is the incident momentum (of length p), we
obtain

A(b, z) = —(I/2)I)) f dz' V' '(b, z')+ (i/4i&p')

where p& is the final momentum. If we again use
Eq. (3. 3) and make the Glauber approximation" of
neglecting the longitudinal component of the mo-
mentum transfer in the exponent, then the z integra-
tion may be performed with the result

f= —(iP/2&() fd be' [e''"' ' —1], (3.8)

where K=p, —
p& is the momentum transfer and the

phase y(b) is given by

g(b) = —(I/2p) f„V'"(b, z) dz+ (i/4'')

x f„dz f„dz' e ""' 'A(b, z; b, z') . (3. 9)

Direct integration of the last term in Eq. (3.9) for
even the simplest target is laborious and not com-
pletely consistent. In making this lowest-order ap-
proximation for the eikonal, additional real higher-
order contributions from the static potential V"'
are neglected. The real part of the second term of
Eq. (3.8) would combine with these terms contribut-
ing to the same order (in P '). We therefore neglect
the real part of this second term, since we have al-
ready dropped higher-order terms in V"', so that
the eikonal becomes

&(6) = —(I/2P) f V")(b, z) dz+(i/8PP')

xf '
dz f dz'e-""-"'A(6 z 6, z')

w (&0

(3. 10)
where we have used the fact that A is real and sym-
metric.

Before we proceed with Eq. (3.10) let us digress
shortly on the separable approximation (2. 9). With
this approximation for A the scattering amplitude
(3. 8) becomes

f= —(i/(&/2&() f dzb e(

[ -((/P) (S) u&(&/2P )luz(S) I 11 /u a I)
where

~(b) =-,' f V"'(b, z) dz (3.12)

&(f dz' f„dz"e ' " ' 'A(b, z';b, z"),
(3. 8)

where $ = p —)I)' =A/2p. We now proceed in the
standard manner by writing the scattering amplitude
as

f= —(I/4&() f e "/' "[V"'(r)5(r —r')

+ G~, (r, r')A(r, r')]

xe' (' " ' ' 'drdr', (3.7)
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uz(b)=-,' f e '"v(b, z)dz. (3. 13)
Wz(b) =2 dze' ' d xi fr 3

lx —1l I

In I the separable approximation for A and the re-
maining approximations resulted in the form (3. 11)
with the factor exp[ —

I uz(b) I /2P ] replaced by
cos[ I u2(G) I'/p'], where uz(b) is given by Eq. (2. 13)
with $ =0. These two expressions are identical up
to terms of order p

' and a numerical evaluation of
the two forms (with $ =0) yields very similar re-
sults. The only difference in the assumptions used
in deriving the two forms is that in I the propagator
G~. was chosen to correspond to the potential V"'
instead of being the free propagator. This choice
is therefore seen to be unimportant, as we had
anticipated. We note, however, that we are now
able to retain nonzero values of the quantity 6, so
that the difficulty in the forward direction encoun-
tered in I is avoided here.

We now return to Eq. (3.10) and proceed without
the separable approximation to the function A(r, r').
We choose a Hartree-Fock wave function 40 so that
only the ground-state orbitals are necessary to
compute A. As an illustration, we discuss the
case of elastic electron-helium scattering where
only one orbital g(x) is required. For simplicity
we shall analyze in detail the one-parameter ap-
proximation for this orbital

= 8I Ko(gb) —Ko(ab) —(2o b/a) K~(ab) I

(3. 19)

Here a = (f'+ 4o.')'~z, Jo is an ordinary Bessel func-
tion, and Ko and K, are modified Bessel functions.

The average excitation energy b,, which acts as
a cutoff parameter for the long-range behavior of
W [for large b, one has W —exp(- 2)b)] has yet to
be defined. An estimate of it can be obtained by
requiring that it be chosen in such a way as to
make the next-order correction term vanish. If
the method of I is followed, the correction to the
potential in Eq. (2. 8) is obtained as

elk
~ (8 - i" )

b V= —(2w) d k
k —P —i&

x Z dxc() (x) V(r, x)C„(x) [w„—~eo —a]
n&0

x d&' e+ ~')Vr', ~')e, x), 3.20)

where w„ is the energy of the nth atomic state. To
obtain a crude estimate of ~, we note that this

g(x)=(o'/w)'"e ", n=-P, . (3. i4)

We mention, however, that all the results of the
next section have been obtained by using an analyti-
cal fit to the Hartree-Fock orbital of Roothaan
et al. ,

' as shown in Sec. IV.
We now write the phase shift )t(b) of Eq. (3. 10)

as

20

W (Q.u. )

y(b) = —(1/P) u, (1) + (i/2PP ') W(b),

where we have used Eq. (3. 12) and defined

(3. iS)
10
9
8
7
6
5

W(b)= ~ f dz f dz'e '"* ' 'A(b, z;6, z') .' ' '(3. 16)

Returning to the definition of A, Eq. (2. 7), we
write

W(b) = W, (b) —W2(b),

where

(3. 17)

(x)
10

b (a,u, )

and

ujo(2$ b sinhu)" [1+(t/o)' sinhu]' (3. 18) FIG. 1. The function 8' of the text vs the impact
parameter b for elastic electron-helium scattering at
E =200 eV and for various values of the average target
excitation energy 4.
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—(a.u. )
do
dA E= iooeV

do
( )

dQ
E = &50 eV

I

10 20 25 e
{degrees)

I

10
I

20 25 8
( deg rees)

FIG. 3. Same as Fig. 2, but for E =150 eV. Here
d =2. 40 and 6=2.

FIG. 2. Differential cross section for elastic electron
scattering by helium at an incident electron energy E
=100 eV. The dots are the experimental points of Cham-
berlain et al. (Ref. 7). The curve is obtained from the
present theory with the choice d =2. 40 of the cutoff dis-
tance in the polarization potential and 6=2 of the average
target excitation energy. The dashed curve corresponds
to the first Born approximation. The wave function used
to describe the helium ground state is that of Byron and
Joachain (Ref. 20).

in I. The expression containing the quantity A in

Eq. (2. 8) comes from the second-order term in
the equivalent potential. This term also gives the
long-range (local) polarization potential V~(r)-r 4.

We have lost the latter in the approximations lead-
ing to Eq. (2. 8). At sufficiently large r these ap-
proximations are bad and the corrections would
lead to the polarization potential. We thus amend
Eq. (3. 10) by writing

quantity only plays a significant role at long range
so that we specialize Eq. (3. 20) to the case r, r'

Upon taking this limit and requiring that this
correction vanish, we obtain

4 (..)
dA

E = 2ooeV

f dxC(~)(x) x (rf, —wo)xe, (x)
f dxeg(x) 2e, (x)

(3.21)

where H, is the target Hamiltonian and x is the di-
pole moment operator of the atom. This can be
reduced to

n= 3N/(x')0=3t(x', ), + (N —1) (x, ~ x, ),] ',
(3. 22)

where the x, are the coordinates of the ith electron
in the atom, N is the number of electrons, and the
subscript 0 denotes a ground-state expectation value.
A crude evaluation of this expression for helium
yields ~ =2. 5 indicating that the average excitation
energy is somewhat larger than the ionization ener-
gy, a not unreasonable result.

Before we turn to our numerical results for
helium we consider a problem discussed briefly

10 15 20 25 e
( degrees )

FIG. 4. Same as Fig. 2, but for E =200 eV. Here
d2 = 2. 65 and 6 = 2.
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( Q, u. )
dA E =3ooeV

preserves unitarity at small scattering angles, is
to use the total (complete) cross section which can
be deduced from the absorption coefficient and is
related to Imf(e = 0) by the optical theorem.

IV. ELASTIC ELECTRON-HELIUM SCATTERING

l.5

We now apply the theory presented above to
analyze the elastic scattering of electrons by heli-
um in the intermediate energy range 100-500 eV.
We use the following analytical fit to the Hartree-
Fock orbital:

g(x) = (4v) '" [Ae " + Be "], (4. 1)

0,5

I

10 15 20 25 e
( degrees)

FIG. 5. Same as Fig. 2, but for E =300 eV. Here
d =3. 10 and 6=2.

where 4= 2. 60505 B=2.08144 +=1.41 and I3

= 2. 61. This function gives a Hartree-Fock energy
which agrees with that calculated from the 12-pa-
rameter function of Roothaan et al. ,

' to a few parts
in 10 . The equations of Sec. III are only slightly
complicated whenthe form (4. 1) is used instead of
(3. 14). We have computed the differential cross
sections arising from the eikonal amplitude (3. 8)
in which we have taken into account the effects of
the static potential, the polarization potential and
the leading absorption corrections as discussed
in Sec. III. In contrast to previous approaches, '
we first concentrate on the contribution of the
static potential and the reabsorption effects. Since
the angular distribution is rather insensitive to the
values of the parameter 6 (except at very small

X(b) = —(1/2p) [ f„V'"(6, z) dz+ f„V,(6, z) dz]

+(i/8pp') f dz f dz e ' " ' 'A(b, z;6, z') .
(3.23)

Choosing a polarization potential of the Bucking-
ham22 form (in rydbergs)

dK
( )

dA E =f.ooeV

where n is the polarizability of the atom and the
length d is a phenomelogical parameter, we may
rewrite Eq. (3.16) as

II(6) = —(1/p) [u, (6) + up(b)] + (i/spy') W(b),

where

up(b) = —vn/4(b +d ) (s. 26)

We note that the parameters 6 and d have signi-
ficance only near the forward direction. An en-
couraging fact is that the function W(b) given by
Eq. (3. 16) is fairly insensitive to the value of a,
except for large impact parameters b. This is
shown in Fig. 1, where the quantity W'(b) is dis-
played as a function of b for electron-helium scat-
tering at an incident electron energy E= 200 eV and
for various values of ~.

An alternative way of gaining information on the
values of the parameters b, and d, which takes ad-
vantage of the fact that the eikonal approximation

0,5

I

10
I

20
I

25 e
( degrees)

FIG. 6. Same as Fig. 2, but for E =400 eV. Here
d2=3. 60 and 6=2.
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(a.u.)
dA

E= sooeV
(a.u.)

dn E =300eY

1.5 — ~ 1.5

05— 0.5

I

Io
I

15

I

20 25 8
( degrees)

scattering angles), the absorption corrections are
determined without ambiguity. The cutoff param-
eter in the polarization potential is then adjusted
in order to fit the absolute magnitude of the exper-
imental data at a scattering angle 8=5 .

Our results are displayed in Figs. 2-7 where
they are compared with the experimental datas'

FIG. 7. Same as Fig. 2, but for E =500 eV. The dots
are the experimental data of Bromberg (Ref. 6). Here
d =3 40 and b =2.

I

15
I

Io0 5 20 25 6
(degrees)

FIG. 8. Comparison of various theoretical predictions
for the differential cross section of elastic electron-hel-
ium scattering at E = 300 eV. Solid line: present theory,
including the polarization potential and absorption effects;
dash-dot line: polarization potential neglected, absorp-
tion effects included; dotted line: both polarization and
absorption effects neglected; dashed line: first Born
approximation. The experimental points are those of
Chamberlain et al. (Ref. 7).

and with the predictions of the Born approximation.
Our values represent a considerable improvement
over the Born approximation, which even at 500 eV

TO, (&0')

FlG. 9. Total cross section for elec-
tron-helium scattering (in units ao) as a
function of the incident electron energy,
for 6=2 and the values of d reported in

Figs. 2—7.

100
I

200
I

300
I

400 500 E(gV)
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yields much too small intensities at small momen-
tum transfers. Owing to the presence of 6, our
angular distributions are free of the forward direc-
tion divergence which appeared in I and also when
the many-body eikonal approximation of Glauber'
is applied to the elastic scattering of a charged
particle by an atom. " The fact that our angular
distribution falls off too rapidly at larger angles is
probably due to the breakdown of the eikonal approx-
imation which is certainly less accurate in this
angular region.

In order to display separately the various con-
tributions to the differential cross section, we
show in Fig. 8 the results of several calculations
at F. = 300 eV which omit the polarization potential,
or the absorption corrections, or both. The dash-
dot line, which accounts for the effects of the static
potential together with the absorption corrections,

exhibits the correct trend near the forward direc-
tion. It emphasizes the importance of abso~tion
effects which are ignored in such treatments as the
"extended polarization approximation. "' A recent
analysis' of elastic electron-helium scattering,
based on forward dispersion relations, lends strong
support to the results obtained here in showing that
absorption corrections play a key role in understand-
ing elastic electron-atom scattering at intermediate
energies.

Finally, we display in Fig. 9 the total cross sec-
tion o„, (electron+helium- anything) as a function
of the incident energy, using our best values of 6
and d. Measurements of 0„„together with addi-
tional experimental data on the angular distributions
at small angles, would obviously be of great inter-
est in order to determine accurately the quantities
b, and d.
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