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The linked-cluster many-body perturbation theory has been applied in a calculation of the
correlation energy of the neon atom in the ground state ( S). The pair-correlation energy,
obtained by summing the correlation energy between all pairs of states in the atom, is found
to be —0.413 26 a.u. About 5% of the pair-correlation energy comes from excitations to g,
h, and i states. Pair-pair interactions are found to be important and contribute 0.02244
a.u. to the correlation energy. Correlation diagrams involving simultaneous excitations of
three and more particles are found to be relatively unimportant and lead to a net contribution
of only about 0.003 a.u. Our final value for the correlation energy is —0. 38914 a.u. , which
is in excellent agreement with the nonrelativistic experimental correlation energy of —0.389
a.u. A detailed comparison is made with the available configuration interaction calculations
both with respect to numerical results as well as to the relative importance of various phys-
ical effects which contribute to the correlation energy.

I. INTRODUCTION

The study of many-body effects in atomic sys-
tems is currently in an accelerated state of develop-
ment judging by the increasing number of publica-
tions in this field and the variety of atomic proper-

ties for which many-body effects are being ana-
lyzed. The procedures in most frequent use at the
present time can be classified broadly under two
categories: variational and perturbation types.
All the current variational approaches for atoms
with more than two or three electrons use the con-
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figuration interaction (CI) procedure, and attempts
have been made to classify the configurations in a
manner representative of the relative importance
of two-, three-, and more-particle contributions.
In the per turbation method, referred to as LCMBP T
(linked-cluster many-body perturbation theory),
one utilizes the linked-cluster expansion developed
by Brueckner' and Goldstone. The various terms
in the perturbation series are classified according
to diagrams which are evaluated using a complete
set of basis states.

In some of the articles on the CI procedure, com-
ments have been made about the need to establish
detailed contact between the CI and LCMBPT pro-
cedures, particularly with respect to the descrip-
tions of various many-body effects in the two pro-
cedures. A beginning in this direction, beyond
qualitative analysis, has been made by Lyons and
Nesbet, ' who made a quantitative comparison be-
tween the contributions to the hyperfine constant
from the contact, orbital, and dipolar terms in the
lithium atom in the excited I' state. A detailed CI
calculation of the hyperfine structure (hfs) constant
in boron ( P) has also been reported recently' by
Nesbet and attempts are under way using the
LCMBPT procedure to make a detailed comparison
with the various types of many-body contributions
obtained by Nesbet.

One aim of the present paper is to make an ac-
curate calculation of the correlation energy in neon
using the LCMBPT procedure. A related calcula-
tion on the isoelectronic hydrogen fluoride molecule
has recently been reported. ~ The second aim is to
make a detailed identification of the contributions
from classes of diagrams in the LCMBPT procedure
with classes of configurations in the CI procedure.
Neon is in fact a rather good example for attempting
such a comparison for two broad reasons. First,
it is a simple enough system so that one does not
require an inordinate amount of computational ef-
fort to obtain contributions to the correlation energy
to a high degree of precision. Yet, it is complicated
enough with three shells (1s, 2s, and 2P) to allow
one to make definitive conclusions about the im-
portance of intershell and intrashell correlations.

The second reason for choosing neon is that a
rather substantial amount of effort has already been
devoted to the study of its correlation energy by
a number of CI calculations. ' ' These calcula-
tions have utilized two different approaches to the
CI procedure. The first of these is the Bethe-
Goldstone procedure of the type described by Nes-
bet' in which interactions between pairs of spin
orbitals are treated by admixing configurations
which are not restricted to eigenfunctions of L and
S . The second approach is one developed by Har-
ris and collaborators' who have drawn attention
to the need for using symmetry-adapted configura-

tions. In this procedure, each nl shell is con-
sidered as a whole, and all the excitations from
this shell are included in the atomic wave function
through the addition of configurations which are
eigenfunctions of L~ and S~. Harris and collabora-
tors have pointed out that such a procedure in-
corporates interactions between different pairs
within each shell, which was neglected in Nesbet's
procedure. This pair-pair correlation has also
been studied by Barr and Davidson, "who have
shown that for the 2P shell such an effect can be
about 15 /~ as important as the total pair-correla-
tion energy between spin orbitals.

The next question of importance is the question
of convergence with respect to the angular mo-
mentum of the one-electron excited states that are
used for the excited configurations in the CI ap-
proach. The most extensive CI ealeulation on neon
has been performed by Bunge and Peixoto'~ who
have pointed out that excitations to states involving
l = 4 and higher angular momenta contribute about
8% of the correlation energy

The last point of importance is the question of
contributions from configurations involving three-,
four-, and more-particle excitations. Estimates
of such effects have been made by Barr and David-
son, Bunge and Peixoto, and also by Kestner. "
These estimates vary between 1 and 5 % of the net
correlation energy.

Our LCMBPT calculations to be presented here
can also provide answers to these questions by
partitioning the diagrams into various classes and
also collecting contributions from various l com-
ponents of 1/r, a Micha. ' has recently made a. di-
agrammatic study of the importance of pair-pair
correlations and excitations involving more than
two particles, for the 2p shell, using a hydrogenic-
type basis set. The relation between this work and
ours will be pointed out in Sec. III.

Section II contains a brief review of the LCMBPT
procedure as applied to the neon atom. In Sec. III,
we present our numerical results on the correlation
energy of neon; we also make a comparison of our
results and conclusions with those from CI calcula-
tions.

II. DESCRIPTION OF PROCEDURE OF CALCULATION
AND DIAGRAMS

Since the details of the LCMBPT procedure are
available elsewhere, " "we shall give here only
the barest essentials for the sake of completeness.
The total nonrelativistic Hamiltonian X for a sys-
tem of N fermions in interaction via a two-body
Coulomb potential is given by (a.u. )"

where T; is the sum of the kinetic energy and nu-
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clear attraction energy operators. The exact
ground-state wave function 4'0 has to satisfy the
eigenvalue equation K+0= E4'0, where E is the ex-
act nonrelativistic ground-state energy. In applying
perturbation theory, we utilize an approximate
Hamiltonian Xo for which a complete set of basis
states can be obtained. Using this basis set, the
perturbation is evaluated to various orders in X
=BC-3Co through the linked-cluster perturbation
approach. For an atom, the most convenient choice
of Ko is the V" ' Hamiltonian, " the corresponding
lowest eigenstate 4 0 being the determinant com-
posed of X lowest solutions p& having eigenvalues
E, of the equation

the subscript L indicating that only linked terms
should be included in the expansion of E. The cor-
responding total wave function 4'0 is given by

(6)

The correlation energy &E„„ofthe atom is re-
lated to E through the equation

(T+ V) )p, =e;p, . (2) corr H F (6)
It has been shown that the actual energy E of the
system could be derived from the zeroth-order en-
ergy Eo defined by

&0@o=Eo@o

through the linked-cluster expansion2

where E„Fis the Hartree-Fock energy.
The V"-' potential utilized in the present calcula-

tion can be described as follows. For the s-basis
states, the potential used involved omitting the
Coulomb and exchange contribution from one of the
2s electrons. The one-electron equations for the
s wave functions is then given by

——[4Y,(1 ', 1 ';r) ~ 2Y,)2*',2 '; )+12Y (22', 22': )I 24'.,) P); )dr2 r r

+ —[ p(ls; r) Yo(ls, ns; r)+ P(2 p; r) Y, (2p, ns; r)] = 0 .
2

The 2s wave function from these equations is exactly identical to the HF 2s wave function' from the V~ po-
tential. The wave function for the 1s state, however, is a little different, because the potential used for
it does not correspond to the true HF potential. For the non-s states, the potential used involved omitting
the spherically averaged Coulomb and exchange potentials due to one of the 2 p electrons, the corresponding
differential equations for the non-s wave functions being

d2
~—— —— 4 Y ()4, ls; ) ~ 4Y (2, 2; ) ~ O)Y (2 ,222 ) —,

1 1„21 2)Y (2)s, 2)s 1 ))dy2 y y2 y

1+2e„, P(n fr)+ 2P(iso;r) Y,(ls, nl;r)+2P(2so, r) Y)(2so, nl;r)

+ z P(2P';r) Y, , (2P', nl;r)+ 2 P(2P'; r) Y„,(2P', nf;r) =0,8l(l —1) 0 0 8(l+ 1) (l+ 2)
(8)

where

Y, (nl, n'l'; r) = sf "(x &/r ~&")P(nl; r') P(n 'f '; y ') dr
' .

The diagrams originating from the various terms
in Eq. (4) will now be discussed. The process of
construction of these energy diagrams is greatly
facilitated by first considering the wave-function
diagrams given by the various terms in Eq. (5).
The first-order corrections to C 0 are given by the
diagrams in Fig. 1. Diagram 1(a) represents the
correction to 4 0 due to the effect of the V -' poten-
tial. Diagrams 1(b) and l(c) represent the influ-

ence of single-particle interactions among the hole
(occupied) states and diagram 1(d) represents a
true two-body correlation correction. Higher-
order corrections to 4 0 are obtained from these
diagrams by inserting additional interaction v'er-
tices at the appropriate places. Once the wave-
function diagrams are known, the requisite energy
diagrams are obtained by terminating the outgoing
lines from the wave-function diagrams with appro-
priate vertices, as required in Eq. (4).

The first term in Eq. (4) is simply the sum of
the single-particle energies obtained in our V" '
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FIG. 1. First-order wave-function diagrams.
Pi/ qj Q

potential. The second term represents the first-
order correction to Ep, and when added to Ep gives
the exact HF energy if the one-electron states are
generated in the HF potential. However, owing to
the use of the V~ ' potential in this calculation and
the consequent small but finite differences between
the energy and wave function for the calculated 1s
state and those for the HF 1s state, we obtain an
energy which is not exactly the HF energy, but very
close to it. The difference is incorporated by some
of the higher-order diagrams to be described be-
low.

The first- and second-order energy corrections
to Eo as given by Eq. (4} are shown in Fig. 2. Di-
agrams 2(a)-2(c) are the first-order corrections
to Eo Diag.rams 2(d)-2(f) and their counterparts
with one or both vertices replaced by the V ' in-
teraction represents single-particle excitation con-
tributions to the energy that arise due to our choice
of the single-particle potential, and which shift the
one-electron energy towards the true HF energy.
With our choice of V"-' potential, diagrams 2(d)-
2(f) involve only ls states as hoie states. Diagrams
2(g) and its exchange counterpart 2(h) describe the
lowest-order pair-correlation energy between the
pair p and q.

Algebraic expressions can be written down for
the various diagrams through rules given else-
where. ' ' These rules will not be repeated here,
but instead we shall quote the expressions for typi-
cal diagrams in Figs. 2(g} and 2(h) which describe
the mutual polarization for electrons in the states
pandq:

( ) p ((kql )/, Ikk )(kk') )/, )kq)
E2 p, q =p' fp+ 6q —6y —Eyc

(c„)

FIG. 2. First- and second-order energy diagrams.

(pq I 1/r, z I kk ) ( kk I 1/r» I qp)
(9)+ 6'

a

the first term arising from the diagram 2(g) and the
second term from the diagram 2(h). It is under-
stood that in Eq. (9) sums are taken over all excited
states, including continuum, summation being re-
placed by an integra. l in the latter case together with
an appropriate density-of-states factor. It should
be remarked again that whenever p or q represents
a 1s state, some corrections have to be applied
owing to our choice of potential, these corrections
being obtained by adding the necessary interaction
vertices to the hole line of the type indicated in
Figs. 2(d}-2(f).

Figure 3 gives the third-order energy diagrams,
with Fig. 3(a) representing hole-hole interactions
and Figs. 3(b) and 3(c) corresponding hole-particle
interactions. The diagrams 3(b) and 3(c}represent
the influence of the interactions of particles in ex-
cited states k and k with the passive unexcited
states and with the potential V" '. The influence of
particle-particle interaction (ladder) is shown in
Fig. 3(d) which describes the effect of the scattering
between particle states on the pair-correlation di-
agram 2(g). The hole-hole EPV (exclusion prin-
ciple violating) diagram in Fig. 3(a) and its higher-
order ladder counterparts can be shown to form a
geometric series, leading effectively to a change
in the energy denominator'6 in Fig. 2(g), namely,

D(ek, e,, ) = e~+ e, —e, —ek, + ( pq I 1/r, z I pq) —(pql 1/r» I qp) .

Equation (9) is thus modified to

( pql 1/r» I kk ) (kk I 1/r» Ipq) —(pq I 1/r» I kk') (kk'l l/r» I qp)E2. (p, q =
D(&k, &k)

The summations of hole-particle and particle-par-
ticle diagrams in Figs. 3(b)-3(d) to all orders are
more involved since they cannot be shown analyti-
cally to form exact geometric series. However,
an examination of the numerical contributions from

successive orders of such interactions indicates
that a geometric series is a fairly good approxi-
mation. To evaluate the contributions of diagrams
3(b)-3(d), we use the standard definitions" ' in
the literature for the ratios
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p I' i--"- k& ~& q p "k )(--) Iq

(c)

FIG. 3. Third-order energy diagrams involving only
one electron Dair pq.

(p, q) = Es.' (p, q)IE (p, q)

«p q)=E's'(p, q)IE2.(p, q),

(12)

(13)

where E~ ~ is the contribution from the sum of di-
agrams in Figs. 3(b) and 3(c) with the modified en-
ergy denominator given in Eq. (10). E~ ~ refers to
a similar contribution from the diagram in Fig. 3(d).
The contribution to the pair-correlation energy
from the pair pq as given by diagrams 2(g) and 2(h)
is then modified by the hole-hole, hole-particle,
and particle-particle ladder to yield

E2 (P, q) = Ea (P, q} l(1 —s(P, q) —t(P, q)) . (14}

The third-order diagrams in Fig. 3 involve the
influence of ladders on the second-order correla-
tion-energy diagrams in Figs. 2(g) and 2(h}. These
ladder diagrams involve essentially multiple scat-
tering between two electrons in two specific-hole
states p and q. However, we can have an analogous
set of third-order diagrams which are similar in
structure to the ladder diagrams in Fig. 3, but
which involve different states on either side of the
interaction line representing the ladder. Such di-
agrams will be referred to as nondiagonal third-
order diagrams. Typical diagrams of this class
are shown in Fig. 4. Figures 4(a), and 4(b) and
4(c) are hole-hole and hole-particle diagrams while
Fig. 4(d) represents a ring diagram which is known
to make significant contributions to the correlation
energy of an electron gas. There are a number of
exchange counterparts of these diagrams and these
have been included in our calculations. In earlier
investigations on atomic-correlation energies using
LCMBPT procedure diagrams of the type shown in
Fig. 4 were assumed to be small and were neglected.
However, in view of the fact (which will become
clear when we present the results in Sec. III) that
the diagram 2(g) involving correlation between 2s

D (el!I a') ( ki ea')++2(p& q} ~
(10')

D (e, , e„}=D'(e»e,,)+ p dz(q, r)+ p E2(p, s).

(10 )

D'(g„s,,) was used to evaluate the correlation en-
ergy between a particular pair of spin orbitals P
and q, whereas using D"(e„e,.) leads to a correc-
tion to the correlation energy between p and q due
to three- and more-particle effects. Figure 5(c)
is in many respects similar to Figs. 5(a) and 5(b)
in that it also represents the effect of three par-
ticles being excited at the same time. This effect
is included to study the relative importance of
three-particle diagrams involving simultaneous
three-particle excitations as compared to those in-
volving three particles excited at different times
in Fig. 4(d). Figures 5(d)-5(f) are higher-order
counterparts of diagram 4(d) involving one more
order. The effects of these diagrams and their
higher-order counterparts were included by an ap-
proximate geometric series procedure through an

q

p kk'

(c)

and 2P hole states and two different 2P hole states
makes very important contribution to the correla-
tion energy, it is important to examine quantitative-
ly its third-order partner which is represented by
diagrams in Fig. 4, before arriving at any definitive
conclusions as to the importance of the latter. As
a matter of fact, these are the diagrams which con-
tribute to the pair-pair interactions" in CI calcula-
tions. This point will be discussed further in Sec.
III.

Figure 5 represent some important fourth-order
diagrams. Figures 5(a)-5(b) are typical rearrange-
ment diagrams, and it has been shown earlier in
the literature' that the effect of such diagrams can
also be taken into account to infinite order by shift-
ing the energy denominator. Thus, we modify
D(s~, e~, ) in Eq. (10) to

(a)

p' k k

'tl 'J
(c)

p4 &It

t-7'II,

p k k' s

(e)

FIG. 4. Third-order nondiagonal energy diagrams
involving more than one electron pair.

FIG. 5. Typical fourth-order three —and four-body
diagrams.
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examination of the ratios of contributions from di-
agrams 5(d}-5(f}with respect to diagram 4(d}.
These diagrams allow a comparison of contributions
from simultaneous four-particle excitations with
those from four-particle excitated at different times.
Comments about the importance of such multipar-
ticle contributions will be made in Sec. III.

III. RESULTS AND DISCUSSION

There are two aspects to the results we have ob-
tained from the various diagrams discussed in
Sec. II. First, we would like to present quantita-
tive results for such physical effects as pair cor-
relation, pair-pair correlation, and other effects
outlined in the Introduction. A comparison of these
results will then be made with corresponding re-
sults obtained by CI calculations. The second as-
pect of our results is the total correlation energy,
its comparison with experiment and with previous
calculations. For the first, we require combina-
tions of contributions from various classes of dia-
grams that are pertinent to the physical effects of
interest. The comparison of our results and con-
clusions with those from CI calculations will be
greatly facilitated by first summarizing the results
that have been obtained from the latter.

A. Review of CI Calculations

A summary of the main results obtained by vari-
ous CI calculations is presented in Table I, together
with results of similar type that we have obtained
from our diagrams. The second column lists the
maximum value of l that was used for the excited
states in the CI calculations. The third column
gives the net correlation energy obtained from ex-
citations of a pair of orbitals at a time without re-
quiring the net excited wave function to be an eigen-
function of L and S . Such a, correlation mecha-
nism will be referred to as pair correlation be-
tween spin orbitals. The next column gives sym-

metry-adapted pair correlation energies where pair
excitations are considered from one or two nl shells
at a time, taking care to make the wave function for
the excited state an eigenfunction of L~ and S~. The
next column which is called the full CI up to pairs
describes the results obtained when all the sym-
metry-adapted pair excitations are considered to-
gether. These last two procedures allow for what
are called pair-pair correlation interactions. The
first of these incorporates diagonal pair-pair cor-
relation such as, for example, the interaction be-
tween two 2s-2p excitations or two 2p-2p pair ex-
citations. The second full CI calculation includes
also the nondiagonal pair-pair correlation effect,
such as the interaction between 2s-2p and 2p-2p
pairs. The last column represents contributions
from triple and quadruple excitations. Triple and
quadruple excitations are defined in this context as
involving excited configurations in which three and
four particles are excited simultaneously.

A comparison of the results in one column or
between results in various columns then allows con-
clusions to be drawn regarding the dependence of
the correlation energy on l, the importance of pair-
pair correlations with respect to pair correlations,
and finally, multiple excitations compared with pair
excitations. Additionally, a comparison of results
in any one column, for the same value of l, by two
different groups of investigators, leads to informa-
tion on the dependence of the calculated correlation
energies on the choices made for the radial func-
tions for the one-electron orbitals.

Nesbet's earliest calculation' refers to spin-or-
bital correlations. As may be seen from Table I,
he obtained a very good answer for the correlation
energy, namely, 98% of experiment, by going only
up to l= 3. Nesbet, Barr, and Davidson's (NBD}'
later spin-orbital correlation result including ex-
cited states up to l = 6 exceeds Nesbet's correlation
energy by about 7. 5 /g (of the experimental correla-

TABLE I. Summary of various CI calculations and results from present calculations (in a.u. ).
Reference

Nesbet
(Ref. 8)
NBD
(Ref. 9)
vHs
(Ref. 10)
BD
(Ref. 11)
BP
(Ref. 12)
Present
calculation

Max
E

3
E&3
3
6

Spin-orbital
pair sum

—0.382 227

—0.410 300

—0. 373 774

—0.395 88

—0.394 89
—0.413 26

Symmetry-
adapted pair

—0.335 55

—0.367 58
—0.385 95

Full CI up
to pairs

—0.329 216

—0.333

—0.350
—0.385
—0.372 45
—0.390 82

Triple and
quadruple

—0.005 74~

—0.004

0.003

The second line includes estimated contributions from all values of l.
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tion energy), leading to a larger correlation energy
than experiment. It would have been interesting to
compare NBD's spin-orbital correlation energies
with those from symmetry-adapted pair correlation
and full CI calculations with the same choice of
basis functions, but no such results have been re-
ported by NBD. The next set of results in Table I
is that due to Viers, Harris, and Schaefer (VHS) 0

which is the first calculation beyond Nesbet's that
included pair-pair correlation within the CI frame-
work. VHS's results in the first column of Table
I refers to spin-orbital correlation and should be
comparable with Nesbet's earlier work, because
they used the same upper limit on l (up to 3) for
excited states. However, there appears to be a
difference of about 2. 5% between the two results,
which is an indication of the effect of using two dif-
ferent radial basis sets. The result of VHS in the
second column indicates that when they used sym-
metry-adapted pairs, the diagonal pair-pair inter-
actions led to a decrease in the correlation energy
by about 10%() . Finally, when they utilized the full
CI procedure, there was a smaller but finite addi-
tional decrease (1.5%) in the correlation energy
due to nondiagonal pair-pair interactions. Their
results thus indicate that both diagonal and nondi-
agonal pair-pair interactions lead to contributions
to the correlation energy of opposite sign than that
from pair correlation effects. The next row in
Table I refers to the results of Barr and Davidson
(BD)." These authors do not give results for sym-
metry-adapted pair-correlation energies for vari-
ous shells. Instead they have presented their re-
sults from spin-orbital pair correlations and from
full CI calculations. In agreement with the trend
observed by VHS, the pair-pair correlation energy
(of about 15% of net correlation energy) has op-
posite sign to the pair-correlation energy. There
is again a small difference between the spin-orbital
pair-correlation-energy results of VHS and BD due
to the different radial basis sets chosen. BD also
performed a perturbation calculation to estimate
the contribution from triple and quadruple excita-
tions, and obtained about 1.5% of the net correla-
tion energy with the same sign as for pair-correla-
tion energy. The next row lists the results of the
most extensive CI calculation of Bunge and Peixoto
(BP). '2 Unfortunately, BP did not present numbers
that strictly belong to the second and third columns,
but they do Pave two results for the fourth column:
one for l &3, while the other is stated to include
contributions from all l. These results indicate
that wheng, h, and higher harmonics are included,
the correlation energy is increased ' by about 8%O,

bringing the theoretical results into very close
agreement with experiment. They also studied the
importance of triple and quadruple excitations, and
arrived at the conclusion that about 1% of the net

correlation energy originated from these many par-
ticle excitations. It should also be noted that there
is a small but significant difference (5%) between
the full CI results of BP for l ~ 3 and the corre-
sponding results of VHS and BD. This difference
is perhaps again the result of different radial basis
sets used in the three cases, BP's choice being
more flexible.

Summarizing, we arrive at the following con-
clusions regarding CI results. First, convergence
in l seems to be rather important and accounts for
about 8% of the net correlation energy. Second,
pair-pair correlation effects are important mainly
for the L shell and account for a decrease in the
correlation energy by about 10-15%. In the pair-
pair correlation mechanisms, nondiagonal effects
are seen from the VHS calculation to be an order
of magnitude weaker than the diagonal effects and
account for only 1.5% of the correlation energy.
As indicated at various points in comparing differ-
ent calculations using the same value of l, there
seems to be a small but finite dependence of the
calculated correlation energy on the radial basis
sets that have been used in the various CI calcula-
tions. Finally, the full CI calculation by BP with
substantial flexibility in the radial basis functions
and in angular excitations (l), does lead to very good
agreement with the experimental correlation en-
ergy.

B. One-Electron Energy by LCMBPT Procedure—
Comparison with HF Energy

The contributions from the various LCMBPT di-
agrams will now be presented and analysed. The
emphasis in the discussion that follows will be both
on obtaining detailed understanding of various types
of correlation effects that occur in neon and also
on studying whether conclusions from LCMBPT
procedure agree with those just listed from an anal-
ysis of various CI calculations.

In Table II, the numerical results for the one-
particle contributions to the energy of the neon
atom are presented. The numbers in the first three
rows are the eigenvalues of 1s, 2s, and 2P states
in the V" ' potential. Since Clementi's HF wave
functions were used to generate the V ' potential
from which the basis set of states was calculated,
the close agreement for 2s and 2p between the
eigenvalues that we have obtained and Clementi's
values is a good indication of the numerical accu-
racy of our procedure for basis-set calculation. The
sizable difference between our 1s eigenvalue and
that of Clementi was anticipated from our choice
of V ' potential, described in Sec. II. The effect
of this departure from the HF 1s energy on dia-
grams involving 1s states is incorporated through
the laddering procedure which has been discussed
earlier in the literature and will be utilized in this
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TABLE II. Single-particle contributions to the energy
(in a.u. ) .

Diagram Description Contribution

Subtotal
2(~) + 2(b)

+ 2(c)

Subtotal
Total
2(d) + 2(e)

+ 2(f)

Grand
total

2 6@

6 E'2p

n =1s;
n= ls;
n —1s
n=2s;
n= 2s;

2p j
(Co( X

m =1s
m =2s
m =2p
m =2s
m =2p
m =2p

'~ C'o)

Single—
particle
excitation

68. 25404 (- 65. 545 52)
3.86116 (- 3.86096)
5.103 18 (- 5. 102 88)

77. 218 38
25. 599 23
5.619 59

16.714 89
17.338 98
10.699 24
41.425 42
51.329 91

128.548 29 (- 128.547 01)

0.000 03

—128.548 32

Numbers in parenthesis are from Clementi's calcu-
lation (Ref. 19).

work. The 5th-10th rows of Table II show the con-
tributions from the first-order diagrams 2(a)-2(c).
The sum of the single-particle energies Eo and the
first-order correction to the energy adds up to
—12&.548 29 a.u. , which is very close to Clementi's
HF value (- 128.547 01 a. u. ). It is interesting to
note that while the sum of the one-electron energies
for V ' potential differs from the corresponding
HF value by 2. 70902 a.u. , the first-order correc-
tions given by Figs. 2(a)-2(c) neutralize" most of
this difference, bringing the final total energy up
to the first order, in close agreement with the cor-
responding HF value.

C. Pair-Correlation Energy —Comparison with CI Results

Figures 2(g) and 2(h) represent the pair-correla-
tion contributions to the energy. The algebraic ex-

pression for the contributions to the energy from
these diagrams is given in Eq. (9).

In our calculations, we have included all bound

states to n = 10 for each value of the angular mo-
mentum quantum number. For continuum states
we employed 12 Gauss-Laguerre points with k
= 15 Qo ~ The most important contribution to the
correlation energy from the continuum states came
from k= 0-2a~'. The continuum states were found
to contribute about 90% of the pair-correlation en-
ergy. This is not unexpected, because of the fol-
lowing reasons. The closest bound excited state to
2s and 2P is the 3s state, and the energy differences
for excitation involving this excited state are not
very different from those for low-k states with en-
ergy differences comparable to ionization energy.
However, the matrix elements that occur in the
numerators of Eq. (9) are much larger for the con-
tinuum states because of greater overlap with 2s
and 2P states than is the case for the bound excited
states. A combination of these two factors explains
the preponderance of the contributions from the
continuum states.

In Table III, a detailed breakdown of contributions
to the pair-correlation energy among the states of
the 2p shell, from excited states corresponding to
various l values, are presented. The major contri-
butions to the pair-correlation energy arise from
2P'-kpk p Ind 2p -kdk d excit3tions correspond-
ing, respectively, to the monopole and dipole com-
ponents of I/r, 2. The radial matrix elements that
occur in the evaluations of diagrams for these ex-
citations are comparable in order of magnitude for
the monopole and dipole cases, the actual magnitude
being about a factor of 4 or 5 larger for the latter
case as compared with the former. However, the
net contribution to the pair-correlation energy from
the two types of excitations is comparable in mag-
nitude because of the larger angular factors that oc-

TABLE III. Contributions to the 2p-2p pair-correla-
tion energies from diagrams 2(g) and 2(h) (in a.u. ).

TABLE IV. Modified 2p-2p pair-correlation ener-
gies in a.u.

Excitations

(s, s)
V, p)
(d, d)

(f,f)

(a, a)
(i, i)
(s, d)

(p,f)
(d, g)
(f, h)

(g, i)
Total

Direct

—0.008 91
—0. 143 84
—0.11556
—0.017 55
—0.004 76
—0.001 76
—0.000 59
—0.015 32
—0.006 28
—0.005 68
—0.00201
—0.000 71
—0.322 88

Exchange

0.005 94
0.01970
0.014 25
0.003 02
0.001 45
0.000 60
0.000 ll
0.007 61
0.001 93
0.001 68
0.000 62
0.000 15
0.057 06

Total

—0.002 97
—0.124 14
—0.10131
—0.014 53
—0.003 31
—0.001 16
—0.000 48
—0.007 62
—0.004 35
—0.004 00
—0.001 39
—0.000 56
—0. 265 82

Exci-
tations

(s, s)
V, p)
(d, d)

(f,f)

(h, a)
(i, i)
(s, d)

(p,f)
(d, g)
(f, h)

Total

Direct

—0.007 60
—0.122 58
—0.10572
—0.015 85
—0.004 25
—0.001 60
—0.000 53
—0.01374
—0.005 65
—0.005 07
—0.001 80
—0.000 63
—0.28502

E2m(2p, 2p)
Exchange

0.005 07
0.017 11
0.01302
0.002 81
0.001 28
0.000 56
0.000 10
0.006 90
0.001 75
0.001 47
0.000 55
0.000 13
0.050 75

Total

—0.002 53
—0. 10547
—0.09270
—0.01304
—0.002 97
—0, 001 04
—0.000 43
—0.006 84
—0.003 90
—0.003 60
—0.001 25
—0.000 50
—0. 234 27

E2 (2p 2p)
Total

—0.002 86
—0.11527
—0.097 07
-0.01398
—0.003 13
—0.001 07
—0.000 44
—0.007 21
—0.004 24
—0.003 72
—0.001 30
—0.000 53
—0.250 82
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TABLE V. 2s-2P pair-correlation energies in a.u.

Exci-
tations Direct

E2m

Exchange Total
E fit

2

Total

(s, P)
t'P, d)

(d,f)
(f, g)
(g, h)

(h, i)
Total

—0.06676
—0.030 00
—0.022 64
—0.007 13
—0.003 07
—0.000 98
—0.130 58

0.020 20
0.01176
0.004 62
0.00244
0.001 40
0.000 29
0.040 71

—0.046 56
—0.018 24
—0.018 02
—0.004 69
—0.001 67
—0.000 69
—0.089 87

—0.049 68
—0.018 56
—0.019 27
—0.004 93
—0.001 75
—0.000 72
—0.09491

TABLE VI. 2s-2s pair-correlation energies in a.u.

Excitations

(s, s)
(P, P)
(d, d)

(f,f)
(g, g)
(h, h)
(', ')

Total

E2m

—0 ~ 003 30
—0.001 89
—0.004 85
—0.001 26
—0.000 46
—0.000 19
—0.000 09
—0.01204

@m
2

—0.003 54
—0.001 93
—0.005 09
—0.001 34
—0.000 49
—0.000 20
—0.000 09
—0.012 68

cur in the monopole case. The net 2P-2P pair con-
tribution from diagrams 2(g) and 2(h) is seen to be
—0. 26582 a.u. , which is composed of the direct
contribution —0. 32288 a. u. and the exchange con-
tribution + 0.057 06 a.u.

We next discuss the question of ladder" correc-
tions to these pair-correlation energy diagrams.
Inclusions of hole-hole interactions in Fig. 3(a) and
rearrangement corrections in Figs. 5(a) and 5(b)
up to all orders give the modified correlation en-
ergy Ez (p, q} as in Eq. (11), with the denominator
D(e„,e~ )bein. g replaced by D'(e, , e;}in Eq. (10 ).
These modified correlation energies E2 (p, q) are
listed in the second, third, and fourth columns of
Table IV. These corrections were found to be quite
important and amounted to about a 12% decrease
of Ez(P, q} as given in Table III. The hole-particle
and particle-particle interactions shown in diagrams
3(b)-3(d) were included using Eq. (14), with the
appropriate ratios a and t given in Eqs. (12) and
(13). Typically, we found a(2p, 2p) = —0. 20 and
t(2p, 2p) = 0. 29 for monopole excitations. This leads
to the net 2p-2p pair-correlation energy Ez (2P, 2P),
which is shown in the last column of Table IV. As
ean be seen from this Table, inclusion of hole-
particle and particle-particle ladders cancels out
more than 50% of the contributions from the hole-
hole and rearrangement corrections terms.

It should be remarked that we have used only the
monopole component of X interaction in the ladders.
Use of higher-multipole component of $C would re-
quire at least two interaction vertices at a time to
conserve the angular momentum. Thus, the first

TABLE VII. Pair-correlation energies involving 1s
states (in a. u. ).

Pair

1s-2P

Exci-
tation

(s, P)
(p, d)

(d,f)

Direct

—0.004 54
—0.015 89
—0.006 09

Exchange Total

—0.001 93 —0.006 47
0.003 39 —0.012 50
0.001 52 —0.00457

Total —0.026 52 0.002 98 —0.023 54

1s-2s (s, s)
(P, p)
(d, d)

(f,f )

—0.002 58
—0.002 84
—0.000 61
—0.000 10

0.001 25
0.000 62
0.000 18
0.000 04

—0.001 33
—0.002 22
—0.000 43
—0.000 06

Total —0.006 13 0.002 09 —0.004 04

1s-1s (s, s)
(P, P)
(d, d)

(f,f)

—0.009 06
—0.016 78
—0.001 22
—0.000 21

—0.009 06
—0.016 78
—0.001 22
—0.000 21

Total —0.027 27 —0.027 27

finite correction will come from diagrams which
are two orders higher than the parent diagram.
Corrections due to these effects are expected to be
much smaller than the monopole interactions and
were neglected. A conservative error estimate
of this approximation is only 0. 002 a. u.

In Tables V and VI, we have presented the pair-
correlation contributions from 2s-2p and 2s-2s di-
agrams. The contributions are listed in two stages,
namely, after incorporation of hole-hole interac-
tions and rearrangement diagrams, as in Table IV
for the 2p-2p correlation, while the last column
presents the numbers, including hole-particle and
particle-particle ladders as well. The net correla-
tion energy from the 2s-2p diagrams, modified by
its ladders, is thus a little more than one-third of
the 2P-2P correlation energy. The 2s-2s correla-
tion energy, on the other hand, is an order of mag-
nitude smaller and only about 5% of the 2P-2P cor-
relation energy.

For correlations involving 1s states, namely,
1s-2P, 1s-2s, and 1s-1s interactions, the net con-
tributions are listed in Table VII. In this case we
have listed only the net contributions to the direct
and exchange diagrams after incorporating all the
ladder corrections, namely, hole-hole interaction,
rearrangement diagrams, hole-particle, and par-
ticle-particle interactions. The convergence with
respect to l for correlations involving the 1s state
was very rapid, and it was found sufficient to in-
clude particle states with L~ 3. The major correla-
tion effect involving the 1s states arises from the
ls-1s and 1s-2P interactions. While the net con-
tribution from the 1s-2P correlation including all
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TABLE VIII. Comparison of pair-correlation energies from LCMBPT procedure with those of CI calculations
(in a.u. ).

Max
pairs

This work
Nesbet
(Ref. 8)

NBD
(Ref. 9)

VHS
(Ref. 10)

BD
(Ref. 11)

2p-2p
2p-2s
2s-2s
L-
shell
total
2p-1s
2s-1s
1s-1s
Total

—0. 240 63
—0.087 51
—0.01190

—0.340 04

—0.023 54
—0.004 04
—0.027 27
—0.394 89

—0. 250 82
—0.094 91
—0.012 68

—0. 358 41

—0.413 26

—0. 224 89
—0.081 55
—0.010 83

—0.317 27

—0.019 89
—0.005 14
—0.039 93
—0.382 23

—0.24307
—0.090 55
—0.01173

—0.34535

—0.410 31

—0.216 46
—0.082 65
—0.01133

—0.31044

—0.01935
—0.00502
—0.038 97
—0.373 78

—0.23345
—0.084 78
—0.01117

—0.329 40

—0.021 27
—0.005 28
—0.039 93
—0.395 88

2P states is comparable to the 1s-1s contribution,
the 1s-2p correlation energy per 2p state is a fac-
tor of 7 smaller than the 1s-1s interaction. This
is expected because 1s-states overlap much more
strongly with each other than with 2s or 2P states.
The net contributions to the correlation energy
from interactions involving 1s states is found to
be —0.05485 a.u. and is about 20% of the 2p-2p
correlation energy. Combining all the pair cor-
relation contributions from Tables IV-VII, we find
a total of —0.41326 a. u.

Table VIII presents a comparison of various in-
dividual pair-correlation contributions to the en-
ergy obtained by us with those from CI calcula-
tions. A comparison is also made of the net L-
shell pair-correlation energies. The main fea-
tures of the relation between our results and the
CI results are the following. For L-shell corre-
lation energies, there is a substantial increase in
going from / &3 to l ~6 (about 5%). A similar ob-
servation can be made for the CI calculations,
namely, in going from Nesbet's results to those of
NBD where an increase of about 8% is observed.
The second feature is that the difference between
our L-shell correlation energy and that obtained
by CI calculations is actually somewhat smaller
than the variation among the various CI calcula-
tions. This feature is again an indication of the
sensitiveness of variational calculations to the
choice of radial basis functions, which makes their
exact comparison with perturbation calculations
a little ambiguous. The third feature is the 1s-1s
correlation energy. Our 1s-1s pair-correlation
energy is about 0.012 a. u. lower than that from
CI calculations. While this difference is within
the error limit of our calculation, it is still sig-
nificant, and deserves some comment. We feel
that the origin of this difference can be traced to
our use of the V" ' potential which makes the 1s
energy and wave function somewhat different from

those for the HF (V") case. The effects of the
difference in single-particle energy on the individ-
ual diagrams, as pointed out earlier, are cor-
rected by various ladder diagrams. However, the
difference in the wave functions could still influence
the values of individual diagrams. We feel that
this difference is distributed among other pair-
correlation energies, with the sum of all the pair-
correlation energies being comparable in the two
cases, where one starts with the V" or V" ' po-
tentials.

D. Pair-Pair Correlation Contribution to the Energy

The diagrams 4(a)-4(d) are the nondiagonal
third-order energy diagrams discussed in Sec. II.
Their diagonal counterparts have already been in-
corporated as ladders to pair-correlation dia-
grams. These nondiagonal third-order diagrams
represent pair-pair correlations because they
consist of interactions between initial and final
states involving different pairs excited from the
vacuum. Some of these pair-pair correlation ef-
fects are incorporated in the symmetry-adapted
pair CI calculation, while some others require a
full CI calculation. In Table IX, the numerical
contributions from the diagrams 4(a)-4(d) are
summarized. Unfortunately, the series associated
with various higher-order counterparts of these
diagrams cannot be summed exactly as geometric
series. However, since the diagram 4(d) gives
the major contribution, we felt it necessary to in-
corporate its higher-order effects represented by
diagrams 5(d) and 5(e) and associated higher-order
diagrams, assuming the geometric series behavior
to hold approximately. For this purpose, the geo-
metric-series ratio was obtained by comparing the
contributions of diagrams 5(d) and 5(e) to the dia-
gram 4(d). The higher-order counterparts of Figs.
4(a)-4(c) are expected to be small and the neglect
of these diagrams should not give rise to an error
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TABLE IX. Concributions from the nondiagonal third-
order energy diagrams (a.u. ).

Diagrams Desc riptions Contributions

4(a) (p, q; r, s)
= (2p, 2p; 2p, 2p)
= (2s, 2p; 2p, 2s)
= (2s, 2s 2p 2p)

(p, q; ~)
=(2p, 2p 2p)
=(2p, 2s 2p)
= (2s, 2p; 2p)
= (2s, 2s; 2p)

(p, q;~)
=(2p, 2p 2p)
= (2p, 2s 2p)
= (2p, 2p 2s)
= (2P, 2s; 2s)

(p, q; s)
=(2P, 2P 2P)
= (2P, 2s; 2s)
=(2s, 2p 2p)
=(2p, 2p 2s)
=- (2s, 2p; 2s)

—0.000 27
0.000 56
0.001 65

4(b)
—0.000 03
—O. 000 31b
—0.001 69
—0.000 92

4(c)
—0.004 03
—0.002 14b
—0.008 38
—0.002 64

4(d)
0.025 42
0.002 05
0.006 06b

0.004 85
0.002 26

Total 0.02244

Diagonal pair-pair interaction between two 2p-2p pairs.
Diagonal pair-pair interaction between two 2s-2p pairs.

'Nondiagonal pair-pair interaction between the pairs
of 2s-2s and 2p-2p.

Nondiagonal pair-pair interaction between the pairs
of 2s-2p and 2p-2p.

'Nondiagonal pair-pair interaction between the pairs
of 2s-2s and 2s-2p.

greater than 0. 0015 a. u. [about 10 /p of the net con-
tribution from diagrams 4(a)-4(c)j. In addition
to presenting the net contributions of these various
pair-pair diagrams 4(a)-4(d) in Table IX, we have
also broken down the contributions from different
pairs of hole states. This allows us to examine
contributions from different modes of pair-pair
interactions, namely, diagonal ones such as those
between two 2p-2p pair excitations, or two 2s-2p
pair excitations, and nondiagonal ones such as
those between the pairs of 2s-2s and 2p-2p, 2s-2s
and 2s-2p, or 2s-2P and 2P-2P.

The net contributions from these different modes
of pair-pair correlations, obtained by making ap-
propriate summations from Figs. 4(a)-4(d), are
listed in Table X. We notice that the major con-
tribution arises from the pair-pair interactions
involving 2p-2P pairs. On adding this contribution
to our 2P pair-correlation energy (I (3), we obtain
the net 2p-2p correlation energy which can be
compared with the symmetry-adapted pair-corre-
lation energy involving the 2P states. Our value
for this energy is —0. 21954 a. u. (l (3) as com-
pared with —0. 18562 a.u. from the CI calculations
of VHS. ' The corresponding number we obtained
on including excitations up to L = 6 in the pair cor-

E. Importance of Various Multipole Contributions
to the Pair-Correlation Energy

We would like next to remark on the question of
convergence in l and its influence on the correla-
tion energy. Already, while discussing the pair-
correlation energy, it was remarked that we found

TABLE X. Contributions from diagonal and nondiag-
onal pair-pair interactions (in a.u. ).

Pair- Pair Contributions

Diagonal
(2p2p) —(2p 2p)
(2s2p) - (2s 2p)

Nondiagonal
(2s2s) —(2p2p)
(2s 2p) —(2p2p)
(2s2s) —(2p2s)

Total

0.021 09
0.006 22

0.001 65
—0.005 22
—0.001 30

0.022 44

relation energy was —0. 229 73 a.u.
Some other theoretical numbers with which our

pair-correlation and pair-pair correlation ener-
gies can be compared are those from recent cal-
culations by BD" and Micha. ' BD examined only
p-p excitations, and found that pair-pair inter-
action amounts to about 15%%up of the pair-correla-
tion energy. They also found the same ratio be-
tween the pair-correlation energy and the correla-
tion energy from the full CI calculations, their re-
sults for the two cases being —0. 396 and -0.333
a. u. , respectively. As far as Micha's perturba-
tion calculation is concerned, it is difficult to make
a detailed numerical comparison of individual con-
tributions from our calculations and his because
of his choice of a different basis set and the approx-
imations that he used in evaluating the continuum
contributions. However, his ratio of the contribu-
tion from pair-pair interaction to that from pair
correlations for the 2p shell is 0. 10, which is com-
parable to our ratio of 0. 084 for this case.

We do not have any numbers available from CI
calculations to compare with the nondiagonal pair-
pair correlation energies listed in Table X. How-
ever, their net sum could be compared with the
difference between the full CI and symmetry-
adapted pair results of VHS. While we find a net
negative contribution of —0. 00487 a. u. for this
difference, VHS found a net positive contribution
of 0. 006 34 a. u. It would have been interesting if
results were available from the other CI calcula-
tion to make a similar comparison. In view of the
smallness of this net contribution, however, the
difference between our results and those of VHS,
as far as the total correlation energy is concerned,
is not very serious.
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about a 5 /p increase (with respect to experimental-
correlation energy} in the pair-correlation energy
in going from l & 3 up to 1=6. This result is in
reasonable agreement with a similar increase of
8% found by comparing Nesbet's pair-correlation
energy' with l = 3 with the NBD result for l = 6.
Bunge and Peixoto'~ have carried out the most de-
tailed CI calculations on neon. Unfortunately, they
have not split up their correlation energies into
pair and pair-pair contributions. However, their
result from the full CI calculation has been split
up into two parts, the first being the contribution
from l = 3 configurations and the second from g, h,
and higher harmonic excitations. They also found
about an 8% increase from l excitations higher than
3. From both CI and our perturbation calculations,
it thus appears that the contribution to the correla-
tion energy from l &3 varies from 5 to 8%p, and is
comparable in importance to the pair-pair correla-
tion energy. It appears then that if one is interested
in the kind of accuracy that we are now interested
in in terms of comparison with experiment, it is
very essential to include both pair-pair correlation
energy and l excitations higher than I = 3 and at
least up to l= 6. This variation with range of l
combined with the calculated pair-pair contribu-
tions, allows us to make estimates of the errors
expected in some cases where we neglected con-
tributions from both higher l states beyond l = 3 and
from pair-pair interactions. This is the case for
our calculated correlation energies involving 1s
states. The contribution to the total pair-correla-
tion energy from pair interactions involving 1s
states was found to be only —0. 054 85 a. u. If we
assume the above-mentioned trend that we found
in l convergence, then the inclusion of higher l
beyond 3 would increase pair-correlation energy by
about 5% of —0. 054 85 a. u. Also assuming the ob-
served trend in pair-pair interactions found for the
L shell, pair-pair interactions involving the 1s
states would be expected to reduce the pair-corre-
lation energy (-0.05485 a. u. ) by about 6/q. The
combined effects of the neglect of l & 3 and pair-
pair interactions are thus seen to mutually cancel,
leading to only about a 1% net decrease.

F. Many-Particle ()2) Contributions to the Corre-
lation Energy

We would like to consider next the question of
many-particle excitation contribution to the corre-
lation energy of neon. By many-particle contribu-
tions, we mean contributions from more than two
particles. In diagrammatic language one can try
to make some conventions as to what to call three-,
four-, and more-particle excitation diagrams as
compared to two-particle ones. For example,
while the pair-excitation diagrams in Figs. 4(a)-
4(d) involve more than two one-electron states,

q p k

(a)

FIG. 6. Some wave-function corrections due to many-
particle (&2) excitations.

one cannot call them many-particle excitation di-
agrams, because at any instant only two-hole states
are excited. The same remark applies also to
diagrams 5(d) and 5(e). Figure 5(f) represents
another interesting example, where some discre-
tion is needed in deciding whether to regard it as
a two-particle diagram or not. If one makes a
convention that an n-particle diagram will be one
in which at any instant there are n particles ex-
cited simultaneously, then the diagram 5(f} would
be called a four-particle diagram. In the CI cal-
culation, when one talks about pair excitation, what
one is really talking about is that in the wave func-
tion of the atom there are only two-particle exci-
tations at one time. However, since CI calculations
are not carried out perturbationwise but rather us-
ing variation procedures, the pair-excitation wave
function could involve both diagrams like the ones
in Fig. 1(d) as well as diagrams of the type in Fig.
6(a). The latter diagrams get incorporated through
interactions between matrix elements between vari-
ous pair functions in the process of solving the
secular equation for the variation procedure. If
the CI calculation in fact incorporates the type of
(averaged) three- or more-particle excitations
represented typically by Fig. 6(a), then some of
of the four-particle contribution from Fig. 5(f)
could come from the pair-excitation wave function
of the CI procedure. However, diagram 5(f) could
also be constructed from four-particle functions
of the type in Fig. 6(b} and contributions of this
type to the correlation energy are referred to as
four-particle contributions. Thus, in order to
compare the CI results with the correlation energy
contribution we have obtained from diagram 5(f)
it is necessary to make a separation of the CI con-
tributions to this diagram from pair excitations
and four-particle excitations of the CI language.
Unfortunately, such a separation has not been pro-
vided for available CI calculations.

This situation is reminiscent of a similar situa-
tion that occurs in variational unrestricted Hartree-
Fock (UHF) and PUHF (projected unrestricted
Hartree-Fock) calculations, where in trying to
make the one-electron orbitals different from one
another because of the different exchange with
outer electrons, one introduces an inadvertent
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TABLE XI. Summary of contributions to the corre-
lation energy.

Descriptions

Eo+ &+o ~'~ @'o&

Single excitation
ZE2 9, e)
Third-order
nondiagonal
Many-particle
excitations
Total
EHF (Clementi)
~Corr

Contributions
(a.u. )

—128.548 29
—0.000 03
—0.413 26

0.02244

0.002 99

—128. 936 15
—128.547 01

—0. 389 14

amount of correlation. This can be seen in the
case of PUHF calculations, from the fact that a
combination of more than one determinant is used
and in the case of UHF calculations, through the
fact that the difference in the wave functions for
different spin states may not just be due to ex-
change, but also due to the intrashell correlations,
which keep the electrons apart from each other.

In our LCMBPT calculation, we regard the con-
tributions from the diagrams of the type in Fig.
5(f) to represent the influence of quadruple exci-
tations on the energy. In view of the above re-
marks about the nature of many particles in CI
procedures, one cannot make an exact quantitative
comparison between our many-particle contribu-
tions and those from CI calculations. However,
the two should be of comparable order of magni-
tude. We obtained 0. 006 03 a.u. from diagrams
5(a,) and 5(b) (p4 }rand —0. 00348 a. u. from the
diagram 5(f). The sum of these two numbers is
listed under many-particle contribution in Table
XI together with various one- and two-particle
contributions. Estimates of three- and four-par-
ticle excitation contributions made by Barr and
Davidson and by Bunge and Peixoto vary from 1-
1.5% of net correlation energy and this conclusion
is in reasonable order-of-magnitude agreement
with ours. There are a number of diagrams with
similar topological structure as 5(c) but with dif-
ferent arrangements of interaction lines. We have
not included any of these diagrams as well as 5(c)
in our many-particle result. Additionally, there
are some other diagrams with the same structure
as diagrams 5(a} and 5(b} but with different choices
and arrangements of hole and particle lines.
These diagrams were also neglected. The upper
limit of error due to this neglect of some of the
higher-order diagrams was estimated to be less
than 0. 004 a. u. From Table XI, the final result
of our calculation of the correlation energy of neon
is seen to be -0.38914 a. u.

G. Comparison of Total Correlation Energy with
Experiment and CI Results

In comparing the theoretically calculated energy
with experiment, there are two ways that one can
proceed. One is to add the relativistic and radia-
tive corrections to the calculated total energy and

compare this sum with the sum of the experimental
ionization energies for all the electrons. The
other procedure is to subtract from the experi-
mental energy relativistic and radiative correc-
tions, and then obtain the experimental nonrela-
tivistic energy. From the experimental energy
obtained in this way one can subtract the HF en-
ergy and get the nonrelativistic correlation energy
which is to be compared with the results of our
LCMBPT and the various CI calculations. This
latter process of comparison between experiment
and theory is the one that has been used in the lit-
erature on neon and we would like to summarize
briefly the situation regarding the experimental
nonrelativistic correlation energy obtained in this
manner. The experimental total energy for neon
as quoted by Scherr et al. ~3 is —129.0601 a. u.
For the relativistic correction we have chosen to
use the results of Kim's Dirac-Hartree-Fock
(DHF) calculations. One can obtain the relativis-
tic correction to the energy by subtracting from
Kim's DHF result the nonrelativistic HF energy.
By this procedure one gets a relativistic correc-
tion of —0. 1330 a. u. This number has to be sub-
tracted from the experimental energy to incorpo-
rate the relativistic correction. There is an ad-
ditional correction to be considered which is con-
nected with the interaction of the electron with its
radiation field. This effect arises mainly from the
Is electrons and is estimated to be about 0. 0086
a. u. by Hartman and Clementi. ~' This number also
has to be subtracted from the experimental total
energy. Combining the relativistic and radiative
corrections, one obtains the net correction of
-0.1244 a. u. , which has to be subtracted from the
experimental energy. This correction to the en-
ergy compares very well with the corresponding
value of —0. 1226 a. u. obtained by Hartman and
Clementi, the small difference of 0.0018 a. u. owing
to the fact that Hartman and Clementi's relativistic
correction~' was obtained using a perturbation ap-
proach instead of using the DHF results for the en-
ergy which was done here. On combining these ef-
fects, one gets the "experimental nonrelativistic
energy" of —128.9357 a.u. which, using HF en-
ergy of —128. 5470 a.u. , leads to —0. 3890 a. u.
+0. 001 a. u. for the correlation energy of neon.
There are some additional corrections to be con-
sidered which are expected to be quite small.
First, there is the mass polarization effect which
is a correction to the electron-electron interaction
due to the influence of nuclear motion. The esti-
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Authors

Experiment
Present calculation
Nesbet
NBD
VHS
BD
BP

~„„(a.u. )

0.3890 +0.001
0. 389 14+ 0. 01
0.382 23
0.410 3
0.335 55
0.333
0.385 + 0.008

TABLE XII. Comparison of the total correlation
energy with experiment and various CI results.

overshoots experiment. As pointed out earlier,
this is a consequence of the fact that although the l
convergence was well taken care of in this calcula-
tion, pair-pair correlations were not included.
Nesbet's earliest result for the correlation energy
is in surprisingly good agreement with experiment.
As remarked already, this good agreement is due
to the compensation of errors due to limitations in
the range of l excitations and the absence of pair-
pair interactions in Nesbet's calculation.

mate of this effect on the energy for Ne' is only
—0. 00007 a. u. The second correction is the in-
fluence of relativistic effects on the correlation en-
ergy itself. It is our feeling that this effect will
not alter the correlation energy any more than in
the third significant figure, because this effect is
expected to be significant only for the 1s states
and the correlation diagrams involving 1s states
contribute only 15%%uo of the total correlation energy.

In Table XII, the total correlation energy from
the present calculation is compared with the vari-
ous variational calculations that have been dis-
cussed earlier in the section. Our result is listed
with an error limit +0. 01 a. u. This error limit is
based on a consideration of the various limitations
of our procedure that have been pointed out at dif-
ferent places in the text. Our results are in ex-
cellent agreement with both experiment and the
most comprehensive variational calculation, name-
ly, that of Bunge and Peixoto. The differences be-
tween our result and that of Viers et al. and Barr
and Davidson are mainly due to the smaller range
of l excitations that these authors utilized in their
calculations. Nesbet, Barr, and Davidson's vari-
ational result included only the pair-excitations

H. Concluding Remarks

It is gratifying that the perturbation and the vari-
ation approaches which are so different in their
technical details and in over-all procedure, have
given results which not only agree very well nu-
merically with each other with respect to the cor-
relation energy, but also provide similar conclu-
sions about the role of various physical effects such
as pair-pair interactions, l dependence of the multi-
pole excitations, and many-particle effects. It is
hoped that similar comparisons will be possible in
the future in more complicated systems. The con-
clusions from this work and earlier CI calculations
also suggest that if one is interested in the type of
accuracy for the correlation energy that has been
attained in neon, proper account has to be taken of
pair-pair correlations and the l dependence of
multipole excitations in pair correlations which re-
quire the inclusion of excited angular momentum
states up to l = 6. Additionally, the comparison be-
tween various CI calculations among themselves,
suggests that in such calculations, one has to be
careful to incorporate substantial flexibility in the
choice of one-electron radial functions, since
choices of limited basis sets in neon have been
found to give changes in the correlation energy by
as much as 5%%uo.
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