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We present a clarification of the often misunderstood concept of rearrangement that affects

particle removal from finite fermion systems.
on the speed of removal as a result of physical rearrangement processes.

A separation energy is defined which depends

It is shown how

single-particle eigenvalues can be observed when a single-particle description applies to the
many-body system. Calculations of atomic rearrangement energies are discussed, and a
linear Z dependence is derived. The photo-ionization spectrum for 1s electrons from Ne is

used as a quantitative example to extract rearrangement energy and time.

Possible applica-

tion to nucleon-removal data analysis is discussed.

I. INTRODUCTION

Extensive theoretical and experimental effort has
been expended to calculate and measure single-
particle binding energies in many-body systems.

If a particle is removed, it is evident that the re-
maining particles are affected and will generally
respond with some sort of rearrangement. This
rearrangement contributes to the energy needed to
remove a particle and must be considered in com-
parisons between experiment and theory. However,
the observability of rearrangement is not a well-
accepted fact. Model-dependent unobservable
quantities have been defined as rearrangement en-
ergy. In this paper we will discuss quantities that
are related to physical rearrangement processes
and describe how to observe them, i.e., how eigen-
values can be measured and compared with calcu-
lations.

Physical intuition suggests that if a particle is
removed suddenly (vanishes instantly) or, on the
other hand, adiabatically (is dragged out very slow-
ly), the remaining particles will respond different-
ly. This is the basis for the concept of a relaxation
or rearrangement time of the system—the time re-
quired for a collective response to the removal. In
a sudden removal the system will be shattered. In
quantum-mechanical terms, other particles are
“shaken”?! into the continuum or previously unoc-
cupied bound states. There is no time to rear-
range. It was suggested that a “frozen orbit %2
picture applies in this limit. In the other limit, the
particle is dragged out and the remaining system
adjusts at each stage. Shaking can be made arbi-
trarily small.

Let us introduce specific definitions for the ex-
ample of the 1s-electron photo-ionization of a Ne
atom (details will be discussed in Secs. III and IV).
The rearrangement energy A, is defined here as
the distance of the centroid s;,(7) for the spectrum
of states with one hole at the 1s level to the position
$15() of the peak with the lowest missing energy,

4

i.e., A,(T)=s,(T) —s,(=). The variable T denotes a
removal time constant. One can calculate the quan-
tity s,(«) as the total energy of the Ne ion with one
hole at the kth level minus that of the Ne atom. The
Hartree-Fock (HF) approximation is good enough

in this specific case to compute s,(») as well as
s,(0) to an accuracy of about 1 eV; —s,(0) is

simply €,, the ls-electron eigenvalue in Ne. In
other words, s,(«) is the separation energy for
“coldest” or perfectly adiabatic removal where

the system is allowed to fully rearrange or relax;
sp() is a removal threshold. In atoms, the re-
arrangement energy 4, has also been called the
“cloud adaption process” energy.

In order to determine the rearrangement energy
A,(7) from a given particle-removal spectrum which
starts with a peak at s,(«), one has to know the de-
gree to which the removal is not adiabatic (cf. Sec.
III). The position s,(») of the leading peak is prac-
tically independent of the speed of removal. The
observed agreement of “relaxed” or adiabatic total
energy difference calculations with the leading pho-
to-ionization peaks has led to the erroneous view
that removals of strongly bound electrons are es-
sentially adiabatic.®® The relevant spectra clearly
exhibit nonadiabatic, i.e., shaking effects which
have recently been correctly identified.* However,
the present literature about HF calculations still
contains various confusing notions on the relation
of HF eigenvalue spectra, photo-ionization spectra,
and removal energies. We, therefore, attempt a
clarification by reviewing the theoretical signifi-
cance of the methods used in calculating separation
energies.

In Sec. II, we consider the first-order deviations
from the adiabatic and sudden limits in particle re-
moval. Section III describes the relation of ob-
served spectra, spectroscopic factors, and re-
arrangement energies. As an illustrative example,
the photo-ionization removal of 1s electrons from
Ne is analyzed in detail in Sec. IV. The general
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4 OBSERVABILITY OF REARRANGEMENT ENERGIES. ..

relationship of HF calculations and rearrangement
is discussed in Sec. V. We also show that the re-
arrangement energy for the removal of inner elec-
trons (and for 8 decay) is a linear function of nu-
clear charge, in contrast to previous results in the
literature.®'® Section VI contains our conclusions
and suggestions.

II. SUDDEN AND ADIABATIC LIMITS

Consider a Hamiltonian which changes by a finite,
tixed amount H' during a time interval 7:

H'(7)=H(t) —H(0)=7(8H /3t ) = T(3H/3a){a) . (2.1)

The average is over the “switch-on” interval 7 and
a is the rate of change of the Hamiltonian which

is time dependent through a time-dependent
parameter a(¢), with a(0)=0 and a(7)=1. A typical
example would be a=1 -n,, where 5, is the occupa-
tion probability for the #th (HF) orbital. We are
interested in the limits 7— 0 and - = for fixed H'.
Let

H(a)u,(@) =u,(a)E,(a) (2.2)
and write the total time-dependent wave function
Y(8) = 2ipc,(B)u,(0)e Bt (2.3)

Inserting this into the Schrédinger equation i/ ¥
=HY¥, we get, after the usual''” multiplication with
fdau:ew‘m(ﬂ)t/n’

B C(t)= Ly (t)e  EmO-En@iMp ! (1) (2, 4)
with
Hopla®)) = [ dquX0)H ' (@)u,0) . (2.5)

We denote the initial state by 1, i.e., c,(0)=5,.
For sufficiently weak relative changes (perturba-
tions) in the Hamiltonian, we can start an iterative
solution by setting c,(f)= 6, on the right-hand side
of Eq. (2.4) for m#1 and integrating:

T
cn(T) = - h%f dt ! Em O FLOWMY L (1) (2.6a)
0

R (O-E ()17 /h
E,(0) - E4(0)

f’ i Em@-Ey@1tM 5
— 7 T Hm -
t) TR -E© s m

H (1)

(2. 6b)

We restrict ourselves to such changes in the Hamil-
tonian where 8H ,, /8¢ does not vary rapidly in a
time interval that is small compared to 7. That is,
we consider an essentially trapezoidal H ,,;(¢) from

0 to 7, so that 8H ,,, /8¢ has a width of order 7. Then
the integral term in Eq. (2.6b) can be made arbi-
trarily small if 7 is sufficiently large as compared
to #/[E,(0) = E;(0)]. Therefore, in the adiabatic
limit,
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T &max >>Em(0) —El(O) ’ (2-7)
4 2
o) 2= pim] 12 =0(d®) . (2.8)

[E,.(0) - E,(0)

That is, the transition probability to any state m #1,
the amount of “shaking”! is given by a function
proportional to the square of the rate of change in
the Hamiltonian. Hence, shaking vanishes for

@ pax—~ 0 Or T~ and fixed H'. Note that the depen-
dence on speed, or the amount of shaking at a given
low speed is proportional to both the square of the
perturbation matrix elements and the level densi-
ties.

If the change occurs arbitrarily fast, 7-0 for
fixed H', we expand the wave function in terms of
the eigensolutions of Eq. (2. 2) for any time and
obtain

-7 % e ua)=2 en®una)Eq(a) ,

. (2.9)
- ?2 c,.(t)u,,(a)|0=f at 23 ¢ x(t)unla) Eqla) .

0

Since ¢,(0)=6,,

20 cp(Mu,(1)=u,(0) - %f at 25 cpt)unla) E(a) ,
n 0 m

(2.10)
and

cn(T)=fm - %[ dat 23 ¢ () E(a?))
0 m

X fdau,*,‘(l)um(a(t)), (2.11)
where
Fom= J dQut(Lu,(0) . (2.12)

Hence for 70 we get for the transition probability
to any configuration m

len™)|2=] fu1] 22 Sy (2.13)

i.e., the “spectroscopic factors” S. The difference
between this result and Eq. (2.8) must come from
a contribution of the integral term in Eq. (2. 6b).
We, therefore, have a necessary condition for the
sudden limit:

1 n

<

T SEN0) - EL(0)
where 7 is the width of 8H,,, /3. A comparison
with the 7— limit, Eq. (2.7), shows that for all
finite transition times, the probability of remaining
in the initial configuration will be enhanced (relative
to the sudden limit), whereas shakings, transitions
tom#1, are reduced relative to the value given by
spectroscopic factors. This is readily seen in cases
where one can set fdau,",‘(a(f))um(a(t))zém in the
time integral, which is then

(2.14)
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i i cyl0)EL0) — ¢ (1) E (1)
~ L fo dte ) Ea)~ L 1 - ,
(2.15)
so that
C,,(T) ~ fnl - (i/zﬁ)TEJ(O)Gﬂl (2 16)

1+G/2n)7E,Q1)

For finite shaking where | f;;1<1, we get le;| >1f1; !
(whereas no change occurs for fy;=1) and lc,4!
<| fu! to first order in 7.

[II. OBSERVABILITY OF REARRANGEMENT

The spectroscopic factors defined in Egs. (2.12)
and (2.13) can be determined by an analysis of the
photo-ionization spectrum. In this section, we will
show that the spectroscopic factors are also related
to the rearrangement energy and the single-particle
eigenvalue so that these quantities can indeed be
observed under certain conditions.

Consider a photo-ionization experiment using hard
x rays. In this case, the photoelectron is removed
very rapidly and final-state interactions between
the outgoing electron and the residual ion can be
neglected. Then the final state is given by

|¥,)=allN-1, a), (3.1)

where |N -1, a) is the ath excited state of the

(N -1)-electron system, and a} creates an electron
with energy €,. The number of transitions per sec-
ond from an initial configuration of a photon plus an
N-electron atom in its ground state |N) to the final
state above is®

w=2r/B)[(N-1, a|la, 2V Palay|N)|?
ij

X 6(€y+E*(N -1) -fiw -E(N)) , (3-2)
where V °™ is the electromagnetic interaction.

For hard x rays, the energy ¢, is large enough
so that we can set a,| N) =0. Of course, this is al-
ways the case in a pure single-particle approxima-
tion for the ground state. Then

where w,, the transition probability for the removal
of the electron with quantum numbers #, is given by

w,,=(27r/h—)l<N"1, ahianlN”z[V::l'z

X (e +E“M(N-1)-Fw-E(N)). (3.3)

The density of states represented by the 6 function
above can be included in the normalization of the
states IN -1, a;). For fixed photon energy, w,

will display peaks as a function of €, corresponding
to the discrete energies E**(N -1). There will also
be a continuous part of the spectrum beginning at
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the threshold for shake off of another electron. In
the case of rapid removal, we expect the energy
range of the ion states which contribute to w;, to be
small compared to €, and, therefore, we ignore the
dependence of V ;' on €,. Then the area under the
curve of w;, as a function of €, is proportional to the
spectroscopic factors [{(N -1, a,la,|N)|? intro-
duced by Eqs. (2.12) and (2.13).

In actual experimental measurements, there will
be other contributions to the spectrum (e.g., in-
elastic scattering of the outgoing electron) which
disturb the extraction of the spectroscopic factors.
These must be accounted for as shown in the analy-
sis of the Ne photoelectron data in Sec. IV.

From the derivation above and the discussion of
the sudden and adiabatic limits of time-dependent
perturbation theory in Sec. II, we see that the
spectroscopic factors are displayed only when the
particle is removed with sufficiently high velocity.
If the removal were completely adiabatic, only the
lowest energy state in the group |IN -1, a;,) would
be populated.

Let a,=0, denote the (N —1)-electron state with
one hole at the level # and no further excitation.
Define the rearrangement energy A,(T) as the dif-
ference of the single-hole state energy E™(N - 1)

- E(N), and the centroid

M) =2 ca, M| [E*MN -1 -E(N)], (3.4)
i.e., “h
8,(7)=5,(1) —E(N =1) +E(N) . (3.5)

In Eq. (3.4), the sum over «, includes the state 0,
and implies integration over the continuous part of
the spectrum.

In the sudden limit, 7=0, the rearrangement en-
ergy 4A,(0) is given by the spectroscopic factors
[see Eq. (2.13)], and peak energies, i.e., by the
ionization curves. It is thus an observable.

We now show that this, in turn, can be related to
the eigenvalues of a single-particle Hamiltonian.
Consider

(N|a}Ha,|N)Y=(N|{a}, H}a, -Ha}a,|N)

=(N| - 2 tyala,
i
1
-z gz(vmx ~vim)aiala; ay|N)

+(N|Ha}ay|N), (3.6)

where

H=2 tyala;+3 25 vypalalaa; . 3.7)
i ikl

In the single-particle approximation where |N) is

given by a determinant of orthonormal single-parti-

cle wave functions (see Sec. V), it is easy to show

that

(N|a} Hay|N)= - €, + E(N) , (3.8)
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where €, is the eigenvalue of H for the hth single-
particle function of an orbital occupied in the N-
particle ground state. Also,

(N|ajHay|N)= Z [(N =1, @] ay] N)|2E*H(N -1)
h

=5,(0) + E(N), (3.9)
where E*A(N -=1)=(N -1, a,|H|N -1, a,). There-
fore, comparing Eqs. (3.9) and (3.8) and using
Egs. (3.4) and (2.13),

€=E(N) -=8,(0)-E®N-1)=-5,0). (3.10)

Thus, when a single determinant is a good descrip-
tion of the ground state, the single-particle eigen-
values can be related to measurable quantities.

If one moves from the sudden to the adiabatic
limit 7, the coefficients c,(7)~ 8, ¢ in Eq. (3.4)
and the centroid moves from —¢, to E%(N -1)
—E(N). Thus, it is clear that s,(~) is a removal
threshold, i.e., it is the separation energy for
coldest or perfectly adiabatic removal. Also, Eq.
(3.5) can be written

8, (T) = 54(T) =54(0) ,

demonstrating how the rearrangement energy goes
to zero in the adiabatic limit. For any finite re-
moval time, the quantity 4,(7), as defined in Eq.
(3.5), is the energy left due to incomplete re-
arrangement in the residual system with one hole
in the ith level.

(3.11)

IV. ANALYSIS OF PHOTO-IONIZATION OF K
ELECTRON FROM Ne

We illustrate the results of Sec. III by examining
the photo-ionization spectrum for the removal of a
1s electron from the Ne atom. There are extensive
data available in the literature for this experiment.
Also, Ne has a relatively simple spectrum for which
HF theory gives a good description. As discussed
in Sec. V (see Fig. 2), relativistic and correlation
effects for low Z are very small compared to re-
arrangement energies.

TABLE I. Main peak and shake-up states for the 1s
photo-ionization spectrum of Ne from Ref. 4.

Excitation Relative
Line No. energy intensity State

0 870.2 0.74 1s 2s? 2p°

7 907.5 0.018 1s 2s% 2p° 3p

8 910.9 0.019 1s 252 2p° 3p

9 912.5 0.011 1s 2s? 2p° 4p
10 914.4 0.004 1s 2s% 2p° 5p
11 916.6 0.004 1s 2s% 2p° 4p
12 931.2 0.004 1s 2s 2p% 3s

I I I T I I I I I

x0.03 | |

COUNTING RATE - ARBITRARY UNITS
I

106 104 102 100 98 96 94 92
EXCITATION ENERGY - keV

| |
.9(1] 88
A0) =

s sk
€

FIG. 1. Schematic representation of the Ne ls photo-
ionization spectrum. The main peak, denoted by 0, has
a width of 0.8eV and the shake-up peaks 7—12 have been
given a width of 1.2eV. The positions and strengths of
these peaks are from Ref. 4. The dashed line represents
shake off of one electron from Ref. 10. The dot-dash
segment is an extrapolation from the data. The dotted

curve is our estimate of the spectrum for two-electron
shake off.

The most accurate measurement of the photo-
electron spectrum from Ne was reported by Siegbahn
et al. [see Fig. 4.1 in Ref. 4], and is presented
schematically in Fig. 1. The origin of each of the
peaks in our figure is described in Table I. Com-
parison between the original spectrum and the
schematic representation of Fig. 1 demonstrates
some of the difficulties in extracting spectroscopic
factors even from data as detailed as those of the
ESCA experiment. The original plot of the spectrum
in Ref. 4 had three peaks (labeled there numbers
2, 3, and 4) due to inelastic scattering of electrons
which left the ion in the single-hole ground state.
They should be added to the strength of the 0 peak
(the state we have denoted by a=0 and given by the
peak denoted 0 in Fig. 1). Peaks 1, 5, and 6 of the
original data, as well as those to the right of the 0
peak, must be discarded since they result from
satellite x rays in the incident beam. Peaks 7-12
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are due to shake up and, therefore, contribute to
the sum determining the rearrangement energy.

However, before we can extract their spectroscopic
factors, we must know whether the removal is sud-
den. From the data of Carlson and Krause® (see
Fig. 1 of their paper), we see that at 1. 354 keV,
the energy of the Mg K« x ray used in the ESCA
experiment, * we have approached the sudden limit
to within better than 3%. Thus, we may expect a
small underestimate for the rearrangement energy.

We also mustdetermine what part of the photo-
ionization cross section represents shake -off elec-
trons. The probability of single-electron shake
off was measured to be 16%. %! Double and higher
shake off is about 4%.%!' Using these numbers to-
gether with the relative strengths of the shake-up
peaks as given in Table I, we find 6% probability
for shake up and 74% probability for leaving the ion
in the single-hole state.

The energy spectrum of the single shake-off
electrons!® (with the same x rays as in Ref. 4) is
presented schematically in Fig. 1. Numerical in-
tegration from Fig. 1 gives a centroid for the
single shake-off electrons of about 90 eV relative
to the single-hole peak S;4(«). Our estimate for
the center for double and higher shake off is double
shake-off threshold plus 55 eV, i.e., ~120 eV.
Inserting these values in the equation for the re-
arrangement energy, Eq. (3.5), gives A,,=0.06
X40+0.16X90+0.04%X120=22 eV. The value
determined from comparing HF calculations with
method A and method B is 24 eV ¥'2 (cf. the solid

T T T T T T
t Is Electron Orbit //j
o A(0)=15+2 eV /o
10 = / 3
E ———— € (relat HF)-€(HF), Ref. 2| / 3
& —.—-— magnetic , Ref. 22 / B
i /
e a— self energy, Ref. 23 1
3
107 == = vacuum pol., Ref 24 , —
3 Ao 3
s / A
= ~ A
r C T
10? £
- . =
- B
10" = =
= 3
i ]
10° N
10 20 30 z 40 50 60 7080 100 30
FIG. 2. Comparison of the magnitude of various cor-

rections to nonrelativistic HF 1s electron energies calcu-
lated for finite nuclear charge distributions. The curve
for A(0) is a fit to the calculated points as given in Fig.
3.
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< 4 S s
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?9 9/ o
20 7 G? / 1
/Gj
EP o]
0 | L I L

0 20 40 60 80 100
7
FIG. 3. Rearrangement energies from relativistic HF
calculations in Refs. 2, 3, and 12.

curve in Fig. 2), in very good agreement with the
value we infer from the data. Our approximate
formula, plotted in Figs. 2 and 3, Eq. (5.14), also
agrees within 1 eV with this result. A recent de-
termination of 4,,, based on a similar analysis of
Manne and Aberg, ® gave only 16 eV, probably be-
cause it referred only to a restricted part of the
Ne spectrum.

The reduction of shaking probability as the re-
moval goes from the sudden toward the adiabatic
limit was demonstrated by the experiments of Carl-
son and Krause.® The intermediate situation is
estimated to be reached with 0.97-keV x rays,
namely, 100 eV above threshold or “absorption
edge.” Removal of a 1s electron with this energy
leaves the residual ion with only one-half as much
shaking or excitation in addition to the 1s hole. The
rearrangement energy as defined above is also
about one-half its maximum value 4,,(0). Such
variations of the x-ray energy from the threshold
to the point of approximate saturation of shaking
allow a measurement of the characteristic time
constants in the rearrangement process.

V. CALCULATION OF REARRANGEMENT ENERGIES AND
PHOTO-IONIZATION THRESHOLDS FOR ATOMS

The features of atomic structure which we have
discussed in the preceding sections can be calculated
in the HF approximation. Adding recent results on
various corrections to HF then allows us to predict
rearrangement energies and thresholds within a few
eV. For the outer electrons, correlations are the
dominant correction. The order of magnitude is
given by E,../Z=~-(1.306+0.5851n Z)eV.*® A
comprehensive review of recent theoretical ap-
proaches to correlation energies is given in Ref.
14. The major deviations from nonrelativistic HF
for inner electrons are shown in Fig. 2, which re-
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fers to the 1s-electron orbit.

The solid curve in Fig. 2 is a fit to the rearrange-
ment energy calculated with relativistic HF (cf.

Fig. 3). It is the result of a variational calculation
for the removal threshold relative to the HF eigen-
value.

At this point we want to specify our terminology
by briefly reviewing the essentials of the HF varia-
tion. The eigenvalue there is a Lagrange multiplier
in a variational determination of the energy where
the space of admissible functions consists of Slater
determinants of orthonormal single-particle wave
functions. Tofirst order inthe two-body interaction
v, the HF energy is

EHF[{(P;'H= iz__?{ (eile ]+ ze. [0, {¢j¢¢}]) . (5.1)

This is a functional of a set {¢;}, where

eddos]= f d’x [( %‘ﬁ—‘)ﬂ V(x)(ﬁ?(x)] ’

N
ele, {0sui}l= 121 f d*xd’x"[p¥x)o(x, x)@3")

(5.2)

-0,(0)e,; (" lx, ) ; (e .
(5.3)

Restriction to a space of N orthonormal ¢’s is

taken into account by N constraining functionals in
a given ¢; variation

C[‘Pn {‘Pj}] = f dx¢¢(x)¢j(x) -0y

= [ dxcy(x)=0, ji=1 ..
(5.4)
The optimal ¢, is determined from
5 N
5—‘< E* o, - 2 A Cloy, {‘Pj}]> =0, (5.5)
iz =1

where \;; are the Lagrange multipliers for the con-
straining functional C. Substituting Eq. (5.1) into
Eq. (5.5) gives

2 N
(— %2— + V(x)) (%) + #ZZ <[ x'[o(x)vlx, x") @3x")

-0 wlx, 2@ (x")]- MJ‘Pj(x)> =x04(x) .

(5.6)

We fulfill the constraint (5. 4) by choosing the set of
Lagrangian parameters to be 2;;= €;6,;, since we
can prove straightforwardly that the above equation
with this choice, i.e.,

8° al ' o2/t
<‘a 3 +V(x))<p,(x)+ Zfdax [ (x)vlx, x")3(x")
x J#
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-0 wle, X000 (N =€0,x),  (5.7)
yields orthogonal functions ¢; which are normaliz-
able for certain (at least N “eigen”) values €;—if v
is physically appropriate.

As we have shown in Sec. III, the eigenvalues
should not be compared with the lowest missing-
energy peaks or removal thresholds. The thresh-
olds are determined variationally by comparing the
above ground-state energy [from Eq. (5.1) using the
self-consistent solutions ¢; of Eq. (5.7)] with anoth-
er variationally determined first-order energy,
namely, the “excited” state energy of an (N —-1)-
Fermion system obtained by putting a hole at a pre-
viously occupied level, i.e., by requiring one ¢,
say ¢,, to have zero norm. In this case, we have
the orthonormality constraints

C'[i1, {05 })= [ dxo,(0)e,(x) -6,,=0,

j=2,..., N
(5.8)

plus the hole constraint
C'ley, ¢11= [ dxoilx)=0 . (5.9)

By the fundamental theorem of variational calculus,
this latter constraint implies that ¢, vanishes every-
where, i.e., ¢, “cannot be varied.” For the other
values of i, j the variational derivation is identical
to the steps leading to Eq. (5.7) with ¢, being al-
ways zero. The extremal energy for Slater deter-
minant wave functions fulfilling the hole constraint
(5.9) is, therefore, obtained by self-consistently
solving a system of Egs. (5.7) with ¢,=0.

The threshold for removal of a particle in the
orbit “1” is, of course, the difference of the total
energies, computed with the two extremal sets {¢}
from two differently constrained variations as de-
scribed above. An inconsistent and unsymmetrical
approximation in this framework would to be take
for the second, i.e., the N —1 system, the first
extremal set with ¢, =0. Then the removal energy
is simply €,, the first term in Eq. (5.10) below, the
latter result often being defined as Koopmans’s
theorem; although this definition does not give full
credit to Koopmans’s work. The correct expres-
sion using Eq. (3.10) is

€,+4,(0)=E(N)-E®(N -1)
=€+ E(ﬁi—ez)_ EUU'% Z (U““'Ulij) .
i#1 j#1 i,j#1
(5.10)

If the changes in the wave function Ag, and in the
eigenvalues Ae¢; are defined by the equations

Ag =€ -€y, Mgz -0, (5.11)

it can be shown that
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-2 [dxa* ' {ag 0o ("ol = )@ ) (%) = @, (¢ ) ()]}

i#1

- 2 [ @ad* {ae,(x)ag;x" wix - x)e; (") s (x) - 0,(x)ae,(x)]}

i,j#1

+3 ZZ [ @xad®' {8 (x)ag;(x" Wwlx - ¥')[Aag,(x")ap,(x) - ap,(x)ap,(x")]} .
i, 7#¥1

After the removal of an inner electron, each elec-
tron in the ion sees one more charge than in the
atom. We schematically represent the screening
of each electron by imagining that each electron in
succession screens another charge. Then for hy-
drogenlike wave functions,

0~ (Z-i+1)¥% | @i~ (Z —i+2)%?
and

~(Zz-i+1)%  €~(z-i+2)%,
This gives

Jop@dx~1/(Z -i+1),
A¢;~Z-i+1,
f AQD{A(P,'dst 1/(Z—l+1)z .

Therefore, we have

A =CZ+Cy+CyZ +CZ278+0(27%) . (5.13)
The constants C; and C, arise from terms which are
third and fourth order in the small quantities Ag;
so we expect them to be small.

Therefore, for the removal of an inner electron,
A, should be a linear function of the nuclear charge
Z. Figure 3 shows a plot of the A; determined by
SCF calculations®?®!2 as a function of Z for several
of the inner levels. For the 1s, 2s, and 2p,,, (and
2p 32, not shown in the figure), there is a linear
dependence on Z. Of course, we would expect some
deviations from a strict linear dependence and this
seems to be particularly strong for Cu (Z=29). For
the 3dj,, level, the linear dependence no longer
seems to hold. As can be seen in Fig. 3, the for-
mula

5,0)=Z +15 eV (5.14)

fits the values for the 1s orbit to about +3 eV. This
linear dependence of the rearrangement energy on
Z differs from previous estimates. Brenner and
Brown® claimed A, was independent of Z, whereas
Serber and Snyder® determined a Z'/? behavior from
the Thomas-Fermi model.

(5.12)

VI. CONCLUSIONS

In this paper we have discussed the concept of a
separation energy which depends on the speed of
removal. It is the properly gauged centroid energy
in single-particle transfer spectra. This concept
allows a unified description of certain features ex-
hibited in electron- as well as nucleon-removal
data.!®'® We have shown the following.

(i) This centroid moves from the threshold to a
single-particle eigenvalue as the experimental setup
is switched from adiabatic to sudden transfers. The
threshold is also called the “absorption edge” or
“mass difference” and is given by the peak with the
lowest missing or excitation energy in the removal
spectrum for the specified particle.

(ii) The shift in the centroid energy is the result
of rearrangement in the residual system. If the
particle is removed suddenly, the system is “shat-
tered” and no rearrangement energy is passed on.
Thus the maximum extra energy a particle can pick
up in a slow removal is the difference of the eigen-
value and the lowest missing energy peak.

(iii)In practice, a very detailed measurement of
the spectrum is required in order to allow a deter-
mination of centroids. We treated an atomic exam-
ple which, in fact, was the only one we could find
with practically sufficient spectrum measurements.
Also, all quantitative theoretical questions were
settled in that case to about 1 eV. An important
result was that the shake off or continuum part of
the spectvum plays a major vole in shifting the cen-
troid to the single-particle eigenvalue. In this ex-
ample, the centroid shift due to shake up, i.e.,
discrete states, is only 2.4 eV of the total 22 eV.
Centroids determined from discrete states alone
can, therefore, at best establish lower limits on
the amount of rearrangement when compared with
the lowest missing-energy peak. That is, this peak,
the removal threshold, is always of significance
in comparisons with theory, whereas centroids of
incomplete spectra, as usually obtained from nu-
cleon transfer experiments, are of dubious value.

We have shown that agreement of a mass-differ-
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ence calculation, for instance, the method B result
of Refs. 2, 3, and 12, with the position of the lowest
missing-energy peak or absorption edge indicates
the applicability of the many-body formalism. How-
ever, nothing can be inferred about the rearrange-
ment time of the system from such an agreement.
The degree of relaxation involved in a given re-
moval case can be determined from the difference
of the centroid position and the lowest missing-en-
ergy peak. However, it would be incorrect to con-
clude that removals were adiabatic for inner and
sudden for outer electrons just because threshold
peaks agree better with method B and A results in
the two respective regions. 2

Obviously, the strength of the threshold peak de-
creases when the centroid moves away from it as
removals become less and less adiabatic. This
feature also seems to be present in nucleon-removal
data. For example, MacFarlane!” presented a
compilation of neutron spectroscopic factors which
indicates that the strength in the threshold peak
does decrease with increasing removal speed (see
Fig. 15 of Ref. 17). However, it is not easy to
establish this trend quantitatively due to the many
uncertainties in nuclear DWBA analysis. In addi-
tion, the determination of centroid energies is even
more difficult than in the atomic case because there
could be some very widely separated small compo-
nents in the removal spectrum due to strong short-
range repulsion in the NN interaction.!®

A quantitative description of nucleon removals
cannot be made in the HF framework outlined above.
A “renormalized” HF is required and partial occu-
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pation probabilities must be considered. For this
reason, the symmetrical expression19 (Nla, Ha,I
-a}Ha,| N) seems to be more useful than Eq.
(3.6). Here, the index k is no longer restricted to
refer to particles below the Fermi surface. In the
limit of pure HF, we have

(N|ayHa} - a}Ha,|N) - E(N) sgn(k - F)
=206 (N +1, By|al|N)|2[E®(N +1) = E(N)]

—2Za[{N =1, a,|a,|N)[2[E**(N -1) - E(N)]
(6.1a)

=€,, (6. 1b)

where sgn(k - F) is +1 or —1 for k referring to
levels above or below the Fermi surface [cf. Eq.
(3.9)].

An attempt to establish a HF-type formalism was
made by defining the nuclear single-particle poten-
tial to have the “observable” right-hand side of Eq.
(6.1a) as eigenvalues.® A discussion of “renor-
malized” nuclear HF potentials and rearrangement
effects will be given in a separate paper. We ex-
pect the qualitative features of the present results
to be observable also in nuclear spectra.
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The purpose of this paper is to show by a model calculation that the internal conversion
theory may be used to obtain auto-ionization rates for Av;=1 vibrational transitions in Hy,
within the right order of magnitude. Thus, the present calculation remedies the apparent
inability of the model to predict desirable rates as calculated by previous authors. The re-
sults obtained compare fairly well with the experimental estimates of Chupka and Berkowitz,
but are closer to the alternative theoretical calculations of Berry and Nielsen for Av;,=1.

It explicitly shows the 1/7° dependence of rates for increasing principal quantum numbers 7,
and follows the so-called “propensity rule” for vibrational transitions involved. Limitations
and possible refinements of the present model are discussed, and the generalization for mol-
ecules other than H, is indicated. Within the approximation of the model, it provides a simple

formula from which rates may be easily estimated.

I. INTRODUCTION

In molecular H,, if one of the electrons is re-
moved sufficiently away from the nucleus, it may
be considered to move in an approximate Rydberg
state around the residual H,* ion core. High-res-
olution experiments!=® on photo-ionization and pho-
toabsorption have not only confirmed the presence
of such states for H, but have also yielded quantita-
tive rates of auto-ionization from these states.

The results further reveal that the auto-ionization
process, in fact, dominates over the photo-ioniza-
tion process in the neighborhood of the threshold

of ionization. Several theoretical calculations*~"
have already been done to estimate the auto-ioniza-
tion from these states. In the first kind of calcula-
tions, initiated by Berry,* the auto-ionization is
assumed to be mediated by the nuclear kinetic-
energy terms which break down the Born-Oppen-
heimer separation by coupling the core vibrations
with the electron motion. In the second kind of
model, first used for the present purpose by Rus-
sek et al. ,® the energy of vibration is assumed to
be mediated to the Rydberg electron directly through
the internal conversion process, much used in
nuclear problems before.® Recently, Ritchie® has
calculated rates of auto-ionization within a semi-

classical model, which are in qualitative agreement
with experimental estimates for high-vibrational
states with single~quantum transitions.

In their first applications, the initial theories*'®
failed to produce the experimental rates by falling
short by an order of magnitude or more. Subse-
quently, however, the calculations of Berry and
Nielsen®” using detailed adiabatic molecular cal-
culations have improved the results to within a
few times the experimental results.

The experimental estimates? may be uncertain
within a factor of 2 or so and it may be considered
that the nonadiabatic model is adequate enough to
describe the auto-ionization process. However,
due to the very nature of the theory, extensive
numerical calculations are necessary to arrive at
the estimates. The internal conversion model, on
the other hand, is attractive for its simplicity and
would be useful if the model could be shown to yield
the appropriate rates.

From results of calculations within nonadiabatic
models’ it has emerged that the monopole nuclear
interaction is principally responsible for trans-
mission of vibrational energy to the Rydberg elec-
tron. It has been previously demonstrated by Rus-
sek et al.® that there is an essential equivalence
between the nonadiabatic and the internal conversion



