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In the local-effective-potential approximation of the Kohn-Sham self-consistent scheme ap-
plied to an atomic system, it was reported that while the calculated exchange energies for
various atoms were accurate to within 10%, the correlation energies of atoms were too large
by a factor of 2. A model system is set up to study the reason why the exchange energy esti-
mates are so much better than those of the correlation energy even though they were treated
on the same footing. It was found that, in using expressions derived from an infinite electron
gas system to study finite systems, the major source of error comes from the fact that the
low-lying levels of a finite system are discrete and have finite spacings. The replacement of
summation by integration in the perturbation diagrams results in an overestimate of correla-
tion energy, and a small error in the exchange energy in a finite system like an atom.

1NTRODUCTION

In an earlier paper (hereafter referred to as I)
the Kohn-Sham self-consistent scheme was ap-
plied to study atomic systems. The local-effective-
potential approximation was used. In this approxi-
mation, the defined exchange- and correlation-
energy functional E„,[n] (for definitions of various
terms, see the review article by Kohn ) was ap-
proximated as

E„,[n]= J e„,(n(r))n(r) dr,
where e„(n) is the single-particle exchange and
correlation energy of an infinite homogeneous in-
teracting electron gas of density n equal to the local
density of the system at r.

The exchange and the correlation energies of
atoms were estimated in a way described in detail
in I. It was reported that while the calculated ex-
change energies for various atoms were accurate
to within 10/p, the correlation energies of atoms
were too large by a factor of 2. The accuracy for
both quantities improves for larger atoms. These
statements were illustrated by the numbers listed
in Tables II and GI of L Kelly and Lundqvist and
Ufford' also observed that correlation energies of
atoms calculated by using the Gell-Mann and
Brueckner formula for a homogeneous electron
gas is too large by a factor of approximately 2 for
small atoms.

It is the purpose here to look for the reason why
the exchange-energy estimates are so much better
than those of the correlation energy in the calcula-
tion in I, even though they were treated on the
same footing. The result illuminates the appli-
cability of such general methods as using the knowl-
edge obtained from an infinite homogeneous elec-
tron gas to study finite electron systems like atoms.
In a way it also clarifies and answers some of the
comments made by various authors ' on such

methods. These will be discussed in Sec. III.
A major difference between an infinite electron

gas system and a finite system is that one has a
continuous energy spectrum and the other has dis-
crete levels. In an infinite system, the excited
states form a continuum above the ground state.
The system is therefore "soft, " i. e. , the electrons
have low-lying levels available to adjust them-
selves to some disturbance, as for example, their
mutual Coulomb repulsion. The correlation energy,
which is a measure of how well the electrons man-
age to avoid each other, is high. On the other
hand, in finite systems like atoms, the excited
states have a discrete spectrum. Virtual excita-
tions of the electrons, to avoid their Coulomb re-
pulsion, involve finite energy increments. Thus
these systems are "harder, " and their actual cor-
relation energies per electron are smaller.

That this effect can be quite substantial can be
seen as follows. To the second-order perturbation
theory, the correlation energy diverges logarith-
mically near zero excitation energy. Thus to this
order, the low-lying states contribute overwhelm-
ingly. Even when higher-order corrections are
introduced, which make the correlation energy
finite, low-lying intermediate states still contribute
a large share of the total correlation energy. In
atoms these low-lying states are missing. In Eq.
(I), we used for e an expression obtained from
studies of an infinite homogeneous interacting elec-
tron gas. Hence it is not altogether surprising
that our calculated correlation energy exceeds the
actual correlation energies by as much as a factor
of 2.

The exchange energy, on the other hand, is a
first-order correction and does not involve virtual
excitations. The discreteness of energy levels does
not affect it as much.

To give a more quantitative foundation to these
arguments, we shall study a model system with a
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finite number of electrons in a finite "periodic"
box. In Sec. I the model is defined and explained.
The exchange and correlation energies of this model
system are analyzed in Sec. II. Further discussion
will be given in Sec. III. In order to give a more
fluent presentation, side discussions and details
are put in Appendices A and B.

9I] 0 I)
etc.

I. MODEL SYSTEM

Consider a cubic box containing an interacting
homogeneous electron gas of a finite number N.
Let the electron density in the box attain that of
an average atom. Such densities n correspond
roughly to r, less than 0. 3, where r, = (3/4wn)
We shall examine the local-effective-potential ap-
proximation when it is applied to this system.

In the high-density regime, the Gell-Mann-
Brueckner method of evaluating the correlation
energy by summing up the most divergent ring dia-
grams [Fig. 1(a)] is valid. We shall, therefore,
concentrate on such ring diagrams. In order to see
the effect of finite N, we shall examine the contri-
bution of the second-order ring diagram in which the
interaction is replaced by a screened Coulomb po-
tential

FIG. 1. Ring diagrams. The dashed line is the Cou-
lomb interaction V(r) = —1/r. The wavy line is the
screened Coulomb interaction V(~) = —e "/x.

In a way, it substitutes for all the higher-order
ring diagrams summed by Gell-Mann and Brueck-
ner (Appendix A; see also Pines, Ref. 9).

We shall explicitly evaluate the second-order
ring diagram with a screened interaction (a) for
the model system of finite N, and (b) for an infinite
homogeneous gas system at the same density. The
results are compared.

The exchange energies can be evaluated for both
systems without the introduction of screening.

II. CORRELATION AND EXCHANGE ENERGY

V(o, r) = ( —e'/r) exp(- o~), (2)
The second-order ring diagram contribution to

the correlation energy of the model system is
where a is the screening constant. The choice of
n is discussed in Appendix A. For electron densi-
ties corresponding to those found in atoms, the
relevant value of a is approximately 0. 2. ~ is
always measured in units of k~, the "averaged"
Fermi momentum defined by

«„„(n,N)

1 g ~~ g 2M2' ~y(I1 ~]~~~~~~ ~,~ ~~y~ k]+ k~ k~ —kff

(k„/2v) = 3N/8mQ, (3) x I(" k.
I

V(o) Ik~k~& I

where N is the total number of electrons in the box
of volume Q. We shall study two cases: a=0. 18
and n = 0.25. The conclusions do not differ by
much.

The use of a screening constant is roughly equiv-
alent to the inclusion of all the polarization parts.

I

Here V(n) is given by expression (2), and k~ is de-
fined as in Eq. (3). M is the mass of an electron.

In the evaluation of the summations both the
Pauli principle and the conservation of momentum
k;+k~=k +k„must be satisfied. If we let A=a~,
and express energy in rydbergs, this becomes

«. , (o~)=—,Z Z Z . - -, - - - - -. . . (6)
b~. (E&+b&-b~&~bz [(k —k&) + (k~ —k;) (k& —k&) ] l(k~

P—k~)c+]

where n is the screening constant. For N ~ 114,
the summation can be carried out term by term
(Appendix 8). In the case of N = 162, the Monte
Carlo method was used.

In the limit of an infinite system 1V- ~, at density
n we can replace the summation by an integration

using the rule

Q 3-(2), dk.
The integration has been carried out by Huby with
the result

«ebb~( ) =lim«, ~, (o, N)
g» cO

2 -1n2+ &n 1n 1+ 2 a) —~+ ~ln2+81n2 —;n} + —,'cot ' 2 n)
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tan ~(2/ o) ' ln(1 — ')
p-,' [(I/o)+ ,'n-+-'(-,'o) ] ln(2cosx)dx +-,'[3+(-,'n) ] z 2/, dx

0 0
+ 2 o

1

2(2/ )a X X

x[x'+ (2/~)']

We can write the above as

~.(&)= ~.(")8.(&),

where

&„(~)= —0. 916/r, ,

(9)

(10)

16k
9fV (k( —k))

and kr r, = (~9) . $,(hl) can be evaluated by direct
summation (Table II).

III. DISCUSSION

We see from Tables I and II that as the number
A' increases, g, (fV) attains the value 1 much more
rapidly than g,(iV). For example, when fV = 54,

TABLE I. Correlation energy ~,~(&,X).

14
38
54
66

114
162

~ carr (Ry~

—0. 1183 0. 5757
—0. 1316 0. 6404
—0. 1219 0. 5932
—0. 1469 0. 7148
—0. 1764 0. 8584
—0. 184 0. 895
&Huby =—0.21055 1

& =0. 18

—Q. 1263
—0. 1430
—0. 1316
—0. 1629
—0. 2029
—0. 214
&Huby = —0.2453

0.5149
0.5830
0.5365
0.6641
0. 8272
0. 872

1

Evaluated by the Monte Carlo method.

The integrals left in the above expression can be
evaluated numerically for the chosen n.

The final results are stated in Table I. The
values of &„„for our model systems are charac-
terized by the number N. The last row gives the
infinite homogeneous case & H„b„at the same density.
The ratio g, (fv) —= q „„(A)/&„„»is also shown. We
see at once that as A increases, q „„(fV)approaches
f H b„very slowly. In a moderately large system
(fV- 54), g, (lv) is around 0. 6. This may be com-
pared with the ratios of the actual correlation en-
ergies in atoms to those calculated from our infinite
gas model, which are in the vicinity of 0. 5 (cf.
Tables II and III of I).

The exchange energy of a homogeneous electron
gas is

1 4me

n ~ ~ (k k)SPfII k]&~~~@

g, = 0. 94 and |t), = 0. 59 for a chosen to be 0. 25. In
expression (6) we have excluded the "self-interac-
tion" terms k, = k~. Their absence accounts for
the small values of g„when 1V is small. Such terms
are present in the exchange energy of Kohn and
Sham and are subtracted away by the self-interac-
tion terms of the direct Coulomb energy. In other
words, for small Ã, q„ is a better approximation
of the true situation than what we see in Table II.
From these considerations we can conclude that it
is not surprising to get a proportionally better
value of the exchange energy than that of the cor-
relation energy even though the same approxima-
tions are used in the functional E„, [n] [Eq. (1)].
It is quite amazing that in such model calculations,
the correlation energy of an infinite system at
average atomic density is indeed about twice that
of the finite system of A =14-28, corresponding
to medium sized atoms. This may be accidental,
but the idea of the "softness" of an infinite system
and the "hardness" of a finite system is well dem-
onstrated.

Thus a major obstacle in using expressions de-
rived for an infinite system in the calculation of
properties of a finite system comes from the dis-
crete nature of the excitation spectrum. This is
true not only in the local-potential approximation.
These ideas had also been commented upon by
Sinanoglu, who said "The behavior of the electron
correlation in atoms and molecules is very dif-
ferent from that in a uniform electron gas due to
geometry, finite spacings of orbital levels, ex-
clusion effects, and the very different nature of the
potentials responsible for correlation in the two
distinct types of systems. " It seems to us that in
the above statement other factors can either be
eliminated by a correct formulation or else be in-
directly related again to the finite spacing of the
levels. Take exclusion effects as an example.
It has been observed by Kelly '" that in the calcu-
lation of the correlation energy of atomic systems
using Brueckner-Goldstone perturbation theory, ' '
there is a class of exclusion-principle-violating
diagrams which are among the major contributors.
These diagrams do not contribute in the homoge-
neous interacting infinite electron gas systems.
Perhaps the correct way is to evaluate the ex-
change and correlation energies & in Eq. (1) for
the true atomic orbitals instead of using the ex-
pressions of an interacting infinite system. The
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TABLE II. Exchange-energy ratio g„(V) = ~„(V)/~„(~). TABI.E III. Relation between & and x~. For a given
&, x, is obtained from equating (a) ~H„~(&) = ~G~(r,), (b)

~Htl~(+) ~ogg, (&g) (c) ~g (+) ~Gpb g) (d) ~p(+) ~Gag, (&$) ~

14
38
54
66

0.3257
0.5941
0. 9423
1.1576
1

0. 18
0.20
0. 25

(a)

0. 091
0. 115
0. 172

0. 190
0.240
0.360

+s
(c)

0. 104
0. 128
0.200

0.215
0.266
0.416

rapid variation of electron densities near the center
of an atom is certainly another source of error in
the local-effective -potential approximation, but

perhaps it is less severe than what has been
pointed out.

Ma and Brueckner commented that higher terms
in the gradient expansion give an even larger esti-
mate than a factor of 2 in the correlation energies
of atoms. It led them to conclude that a gradient
expansion gives diverging results for atomic sys-
tems. Their study was based on infinite electron
gas expressions and the discrete nature of atomic
levels was not considered. If the latter is accounted
for, it is not clear that their conclusion on the
gradient-expansion approach will remain as it is.

Finally we repeat our previous remark on the
local-effective-potential approximation of the Kohn-
Sham self-consistent scheme as applied to the
study of atomic systems. The method has been
proved to be a simple efficient scheme in getting
excellent electron densities. Its estimates of en-
ergies are fairly good except for the correlation
energy. Even the latter gets better for larger sys-
tems. In large atoms or in molecules where a de-
tailed Hartree-Fock calculation and the beautiful
scheme of Sinanoglu in calculating correlation en-
ergies" become tedious, this scheme may prove to
be the most useful. The difficulty of discrete ex-
citation levels does not exist in a good metal. Its
application to the study of a, metallic system is the
therefore quite successful. "
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APPENDIX A: SCREENING CONSTANT n

diagram has been estimated to be about —0. 046 Ry.
Including this, the correlation energy becomes

boa(r, ) = 0. 0622 lnr, —0. 096 . (A2)

~- 0. 56 ~"' (A4)

If we include only the ring diagrams, we compare

In the case of a screened Coulomb interaction
[Eq. (2)] the second-order ring-diagram contribu-
tion is given in Eq. (4). At very high densities,
an approximate result can be obtained (using a sim-
ilar procedure described by Brueckner'8):

es(n) = —0. 0622(in[1+(2kr/n) ] —1 j . (A3)

The exact expression e „„»(n) is given by Huby'

[Eq. n)].
We shall estimate the value of ~ at atomic densi-

ties by equating es(n) or e„„»(n) to 'Eosa(r, ). This
procedure is equivalent to the random-phase-ap-
proximation (RPA) result of replacing the contribu-
tion of the polarization diagrams by an effective
screened potential (Fig. 2). On the other hand, if
we choose n by equating these with z» (r,), we
include the corresponding exchange contribution
of these polarization diagrams as well. Hence in
Sec. II although we only discuss the second-order
ring diagram for a screened Coulomb interaction,
we have already approximately included all the
ring diagrams and their exchange counterparts.
a obtained from these various comparisons are
listed in Table III. We see that for n- 0. 18-0.25,
the corresponding r, are within the reasonable
range found in atoms which is about 0. 2-0. 4.
[For example, the second peaks in the radial
density curves of Ne and Ar (Figs. 2 and 3 of I)
correspond to r,- 0. 35 and 0. 20, respectively. ]

Equating c e (n) with sos (r,), we get

The correlation energy of a high-density homoge-
neous interacting electron gas has been calculated
by Gell-Mann and Brueckner by summing over all
the ring diagrams (R) [Fig. 1(a)], giving

co»(r, ) = 0. 0622 lnr, —0. 050 . (Al)

The exchange diagrams contribute very little in
the high-density limit. The second-order exchange FIG. 2. Summation of polarization parts.
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TABLE EV. Correlation-energy calculation for N = 38,
n =0. 25; contribution from shells outside L = 20 is
—0.0039 By giving a total estimate of e~= —0.1316
Ry.

Shell
number

L Type Multiplicity k E~L) (Ry)'

7
8
9

10
11
12
13

15
16
17
18
19
20

(111)
(2OO)

(21o)
(211)
(220)
(221)
(3oo)
(31o)
(311)
(222)
(32o)
(321)
(400)
(322)
(410)
(33O)
(411)
(331)
(42o}
(421)
(332)
(422)
(43o)
(5oo)

8
6

24
24
12
24

6
24
24

8
24
48

6
24
24
12
24
24
24
48
24
24
24

6

3
4
5

6
8

9
9

10
11
12
13
14
16
17
17
18
18
19
20
21
22
24
25
25

—0. 038 998
—0. 051 241
—0. 085 346
—0. 101744
—0. 105 668
—0. 110767
—0. 111978
—0. 115489
—0. 118215
—0. 118 885
—0. 120 544
—0. 123 060
—0. 123 260
—0. 123 930
—0. 124 588
—0. 124 867
—0. 125 413
—0. 125 879
—0. 126 268
—0. 126 929
—0. 127 213
—0. 127 426
—0. 127 614
—0. 127 660

it with e osR (r,), giving

n- 0. 39 r,'~' . (A5)

It is interesting to compare these values with the
RPA estimate of Pines "which gives a ™0. 353 r',
and with the Thomas-Fermi value which gives

Ec(L) is the correlation energy evaluated by summing
k~ up to the Lth shell.

APPENDIX B:EVALUATION OF CORRELATION ENERGY
e FOR FINITE SYSTEMS

When the number of particles A in the system
is small, we can evaluate e „„(o,6) of the model
system through term by term summation [Eq.
(5) j. For a given Aj, we first calculate the "av-
eraged" k~ defined by Eq. (3). The k space is a
lattice of simple cubes of sides ko= 2v/a, where
a = 4= volume of the model system. All points
within a sphere of radius k~ are occupied, and
the k must lie outside this sphere. For a fixed k

we can evaluate all other summations. The Pauli
principle and momentum conservation must be sat-
isfied. Staring from a point k closest to the Fermi
sphere, we finally add all the terms of differentk
points as I k I becomes larger and larger. Let us
characterize k by (abc) corresponding to all poin~ 'n
k space having coordinates formed from all con
binations of the plus and minus values of a, b, and
c and their rearrangements in different orders.
The total number of such k points of the type (abc)
will be denoted by multiplicity. " Ec (f,) is the
value of the correlation energy obtained by sum-
ming k up to the Lth shell. A sample case of
& =38 is given in Table IV. In all cases the summa-
tion over increasing magnitude of I k I converges
rapidly. It is, therefore, possible to carry out
the explicit summation up to I k I

~ mk~, where
m is a suitably large number depending on the rate
of convergence, and add to this the estimated con-
tribution of all the rest k points outside mkF. In
estimating the latter, we can replace the summation
over kF by integration, because now we are far
away from the origin and the k points are numerous.
There is no more vanishing denominator in the
integrand. The details of such estimation will not
be presented here. In all cases, m is chosen such
that the upper bound of the contribution from the
k summation outside mk~ never exceeds —0. 004
By.

The above method becomes tedious as the number
of particles A increases beyond 100. The Monte
Carlo method was used in the evaluation of q, ,
for the case A = 162.
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Electronic structures of hypothetical molecules containing quarks, or fractionally charged
particles, are treated. By regarding the quark charge Q as a continuous variable, approxi-
mations satisfying a consistency condition at small-Q values are formulated. Their validity
is checked with the exact solutions of the one-electron two-center problem and applied to two-
electron two-center problems of H -quark and He-quark molecules.

I. INTRODUCTION

The idea of Gell-Mann and Zweig' about quarks
or hypothetical elementary particles bearing frac-
tional electrical charges initiated a series of ex-
periments in search of such particles —so far with-
out success. Quark- search experiments may be
classified into two types: namely, those of the first
type making use of high-energy quarks expected to
be produced by accelerator beams or cosmic rays
and those of the second type which make use of
thermalized quarks. Experiments of the second
type usually rely on some assumptions about the
physicochemical properties of thermalized quarks.
Although the existence of quarks themselves is an
unsettled fundamental question of theoretical phys-
ics, the physicochemical properties of thermalized
quarks, if they do exist, are governed by a well-
established law of nature, namely, quantum mechan-
ics and quantum chemistry. This is particularly
the case because the failure of high-energy acceler-
ator experiments in the search for quarks has set
mass limits on quarks well over the proton mass
so that the Born-Oppenheimer approximation can

be applied with a high degree of confidence for quan-
tum-mechanical calculations of the properties of
molecules containing quarks. If quantum- chemical
calculations of quark molecules are performed
reliably and extensively, they will provide sound
bases for quark-search experiments of the second
type and will also supply useful information for the
design of further experimentations of this type.
Predictions about the binding energy of quarks to,
or the quark affinity for, various ordinary matter
will provide valuable information for the design of
such experiments.

Quark chemistry in the broadest sense will have
to treat all nuclear species bearing charges of Z
= + 3Ne, where e is the magnitude of the electronic
charge and N can be any integer. In this paper,
however, we shall consider only particles bearing
charges of + Qe, 0 —Q —1. On the other hand, our
treatment will not be restricted to the quarks of Q

3 or 3 as sugge sted by Gell- Mann and Zweig,
but shall regard Q as a continuous variable. Such
a treatment will be useful to gain more insights in-
to the nature of quark-containing molecules and
hopefully of hydrides as an extreme case of Q= 1.


