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The moments of a spectral line are evaluated in a general way and compared with results
which invoke standard assumptions of line-broadening theory. Cesium —rare-gas systems are
analyzed for a variety of experimental conditions in the hope of extracting useful information
about excited-state interactions. The computation uses atomic-beam results for the ground-
state interaction and assumes that the excited-state potentials are represented to a first ap-
proximation by V&=G/R —D/R . The calculation, which includes a comparison of line shapes,
indicates that the following numbers (in cgs units) are reliable for the long-wavelength compo-
nent of the resonance lines of cesium: with argon, G =4.87x10, D=4. 74x10 5; with helium,
G =0.459 x10 and D = —0. 614 x 10 . Analysis of the cesium-xenon system yields results
which illuminate the practical difficulties associated with an otherwise attractive technique.

I. INTRODUCTION

Realistic calculations of spectral line shapes of
gases is a matter of importance in a variety of sit-
uations. Significant progress has been made in the
case of plasmas, but relatively little has been
achieved for the case of (charge) neutral perturbers.
The most general formulations of the theory are
appropriate for comparison with experiments in
which the impact approximation is warranted. An-
other class of experiments can be analyzed correct-
ly using theories which make the adiabatic approxi-
mation. However, in many cases, especially those
in which interesting information about excited-state
interactions is available, the computation of line
shapes with existing theories cannot be justified.
The fact that improvements in the theory are diffi-
cult to achieve suggests that something simpler than
the line shape itself be studied.

The moments of a spectral distribution have been
considered profitably in a number of contexts. For
example, they have been evaluated for the absorption
of light by atoms and molecules'; they have been
used to establish error bounds on forces between
atoms, and to study the potentials involved in colli-
sion induced absorption. Moments have been used
in line-shape theories, and to infer intermolecular-
force information from experiment.

The use of moments to infer information about
interactions and to calculate line shapes is an at-
tractive prospect. Using P moments, it would be

possible, in principle, to obtain P parameters in a
realistic model of an excited-state potential. More-
over, since the line shape is the Fourier transform
of a correlation function C(t) and since C can be
viewed as a power-series expansion in t with coeffi-
cients proportional to the moments, a knowledge of
the moments would then permit an accurate deter-
mination of C for small times.

These prospects raise several significant ques-
tions. What is the general quantum-mechanical
form for the first few moments, and how is it sim-
plified when various commonly employed approxi-
mations are introduced~ Is it possible to infer re-
liable information about interactions from the mo-
ments and if so, how much~ The present paper
seeks an answer to these questions. Specifically,
the first three moments are calculated using an
adiabatic representation. '0 These results for the
diabatic case are then compared with that obtained
by making the adiabatic approximation, the quasi-
static approximation, and the approximations used
by Fox and Jacobson. " Then the problem is
restricted to a detailed analysis of data on a cesium
resonance line when the cesium is pressurized by
helium, argon, and xenon. ' The reliability of
the results, which differs in each case, is discussed
at the appropriate point and summarized in the con-
clusions.

II. CALCULATION OF MOMENTS

A. Diabatic

The spectral density F(~) for a line-shape prob-
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(~")= (-i)" „C(s)l=o
. „d"C

(3)

Thus we have

C(s)= g (i)"{ (d)s "/n! .
n~O

The correlation function is to be calculated from

C(s)=»(po f «p(t) p(t+s)), (4)

where p, is the dipole moment of the system and oo
is the density matrix. For the sake of definiteness,
consider an isolated spectral line between the initial
state i and final state f In the .event that more
complicated spectra are of interest the additional
sums over final states and averages over initial
states can be readily included. [A sum and average
over degenerate levels is already implied in Eq.
(4). l

The adiabatic representation is convenient for
calculation, displays the time dependence, and fa-
cilitates comparison of the general results with those
obtained using the adiabatic approximation. The
adiabatic basis functions satisfy

H(t) &.(t)=E.(t) &.(t),
while the functions to be used in (4) satisfy the
Schrodinger equation

ih H{t)—g .-8|t)
at

If the solutions of (6) are expanded in terms of the
set (t), i. e. , (t = ga((t&„and if an operator A is de-

(6)

lem can be written in terms of a time correlation
function C(s):

F (o&) = (2o) ' f ds e '"'C(s) .

Here the frequency {d is understood to be measured
from the unperturbed line center. The nth moment
of the line shape {(d") is defined here to be

{(d")= f (d"F (~)d~/ f F ((d) d(d . (2)

Using the rules for manipulating Fourier transforms,
these moments can be written as

fined by a(t)=A(t)a{0), then A satisfies

ih = (H —D)A, A(0)= 1,aA

at

where
d

D= iki-
dt

Also, in this representation the equation of motion
for an operator B is

dB . 8B(t)
i@—= BD —DB+N

dt

Now if at time t, (t&(t)= Q&{t}, then the correlation
function {4)can be written as

C(s)l,~=»&pol p t(t)I')(, (10)

—i = Tr(h pol p(z(t) I
[Ez(t)-E, (t))), , (11)dS s=o

and the mean frequency, according to Eq. (3), is
the ratio of (11) and (10). Equation (11) follows di-
rectly from the derivative of (9) when the equations
of motion for A', A, and p. [Eqs. (7) and (8) ] are
inserted and evaluated at s = 0. The important fea-
ture of Eq. (11) is that no diabatic terms appear';
the result is identical to that which will be obtained
later by making the adiabatic approximation at the
outset. The energies which appear in (11) are the
solutions of Eq. (5} and they include the interaction
energy of the absorbing or emitting atom with all
of the perturbers. If the interactions happen to add
as scalars, the energies in (11) would be replaced
by the one-perturber result multiplied by the num-
ber density.

The evaluation of the second and third derivatives
is rather more complicated. The results are

C(s)= Tr(po p(t(t)A'{t+ s)z, p (t+ s)»A (t+ s)», ), , (9)

where each of the matrices is computed using the
functions Q and oo= p(- ~)6;; .

Since A(t)», = 6»(,

( &=T (» P (wu(&)I (%(&) E (t))&&('( &i
—7 (' a v Il&)

qq
v i(&) in(t) ) (( )i

(12}
~ 0 ~ e ~ ~ ~

((d )= Tr{po[h
I

p, (&l [Et(t) —E;(t)] —h 'p;&[(H)&&p&; —p&&(H}&(]+ih p o 2[E&(t)—E, (t)][p&&(H)&; —(H)&, p&(]

+ih p, «(E&{t)—E~{t)]pz, (H)&, +[E,(t) —E, {t)](H}&~. p~;I),/C(s) .l,~ . {13)

The terms which contain first derivatives of H do
not survive when the average is taken. Thus, the
first diabatic terms occur in the third moment. Be-
fore discussing these results it will be helpful to

obtain the moments using the adiabatic approxima-
tion and the general pressures theory, "which fur-
ther assumes that the interactions add as scalars
and that the perturbers follow classical paths de-
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termined by the equations of motion.

B. Adiabatic

path as a function of time. Specifically, if V;=A/r
—B/r' and r(0)=R, the series is

In the present notation the adiabatic approxima-
tion is described by letting

A(t+s);, =5;&, A(t+s)=0. (14)

Using (14) in (9) and the derivatives of (9) and omit-
ting all of the terms which contain &E/St, the mo-
ments become

&~) = »&h 'po
I ~~t(t) I'[Et(t}—B;(t}]),/C(~) Iso,

&~ )= »&h 'po
I t;t(t) I'[Bt(t) -B;(t) )'),/ C(s) l.~,

(15)
&~') = Tr(po

I pit(t) I
~h '[Et(t) —E, (t)]'

V;[r(t}]=QD„t",

where

Do= V, (R)

D~ = v o(- PA/R + qB/R"),

P(P+ 1) A q(q+ 1) B
RP+2 2 RQ+2

2 p B q B 1 pA qB' 2 R" 2Ra' 2m R"

(18)

(19)

—h '[Et(t)-E , (t)]]'/C(s) l.-o

Comparison of Eqs. (15) with (11)-(13) indicates
that the results are identical except for the terms
(H);, , t &j in &~ ) .

C. General Pressures

Subject to the assumptions mentioned above the
correlation function is given by C(s)= exp[-nP(s)],
where

@(s)= (2m/kT) f" dvs exp[- mvs/(2kT)]

"f dv, exp[- mv,'/(2kT)]

& f „R'dRexp[ —V;(R)/(kT)]

x[1 —exp[ih ' f [Vf(t) —V;(t) ]dt])

= (1 —exp[i' ' f (V&- V, )dt]) (16)

Here v& and v~ are the radial and azimuthal speeds,
m is the reduced mass, R the interatomic distance,
and V; and Vf are the interaction energies between
one perturber and the absorbing atom in its initial
and final state. Taking the appropriate derivatives
and noting that C(0)= 1, the moments become

((u ) = n h ' (Vq —V, ),
&~') = n'h &V~ —V, ) + nh '

&(Vt - V;) ),
&ru )=n h &V&- V,) + 3n K &(Vt- V;) )(V& —V;)

—nh ((Vt- V() )-nh-3 d2Vf ~"V]
~S ~8 g=o

(17)
The averages required for (17) are the same as that
indicated in Eq. (16).

If a reasonable form is assumed for the potentials
Vf ]

' they can be written as a power series in time
by using the differential equation for the perturber

Thus the terms in &uF) which contain second time
derivatives require the velocity and radial average
of D2 written for the final state minus D~ as written
in (19). Note that D, depends on the speeds and the
reduced mass m.

The moments calculated using the adiabatic as-
sumption (Eq. 15) become identical in form to the
result (17), when the time average is replaced by
a, spatial average (ergodic hypothesis), po is re-
placed by a Boltzmann factor, and the interactions
are considered to add as scalars.

The moments obtained using the quasistatic ap-
proximation, i.e. , when (1 —exp[i' ' f~'(Vt- V;)dt))
in Eq. (16) is replaced by (1 —exp[ih '(Vt- V;)s]),
are the same as Eq. (17) except that the last term
in (~') does not appear.

III. INTERMOLECULAR FORCES FROM MOMENT
ANALYSIS

The moments of a spectral line should provide a
powerful tool for the analysis of excited-state inter-
actions. The fact that the first two moments con-
tain no diabatic effects implies that a systematic
study of the moments should permit easy inferences
about the gross features of the energy; additional
labor should provide detail about the influence of
motion, additivity, and inelastic effects. In order
to assess the usefulness and reliability of the rneth-
od a resonance line of cesium' perturbed by helium,
argon, ' and xenon has been studied. In each case
the ground-state interaction is assumed to be a
Lennard- Jones 6-12 potential with the constants
inferred from atomic-beam experiments. " Then
the final-state constants for a potential of similar
form can be obtained from the experimental first
and second moments at a given pressure and tem-
perature, and tested against moments of lines mea-
sured under other conditions. The objective of such
a test is, of course, to determine whether such con-
stants are generally useful and whether higher rno-
ments can be employed with confidence.

Using Eq. (17) and assuming that the final state
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TABLE I. Moments of the 6 Pf/2 6 S&&& cesium line
pressurized by argon (in cm i).

TABLE III. Comparison of widths and shifts for the

cesium-helium system, using the constants of case 1 (in

cm ~)

Relative Temp
dens ity ('K)

0. 81
2. 6 344

13.2 374
60. 8 410

Shift

—0.65
—5.4
32 ~ 2

1.8
10.2
36. 5

—0.49
—l. 58
—7. 37

—34. 6

Experiment
Width (v) (v'& —(v)'

10.8
3.72

55.0
790.0

—0.46
—l. 59
—7 ~ 63

—34. 6

10.5
28. 0

162.0
790. 0

Theory
('& —( )' Relative

density

7.1
21.2
40. 1

5.5
18.0
35.6

1.3
5. 5

13.0

Experiment
Width Shif t

7.80
20. 8
36.8

2. 47
7. 2

13.7

Theory
Width Shif t

also has a 6-12 potential, the first moment can be
calculated from

and

((d) = 4m@ ' J R e ""
(Vg —V, )dR (20)

A. Cesium-Argon

The results for the I'»2- 'S„,line are compared
with experiment in Table I. In the calculations A
=3.68&10 ' cm' ergs and J3=3.30X10 cm
ergs. The result of fitting the moments at rd=60. 8
(where rd is relative density) leads to the set of
constants 6=4. 87&&10 cm' ergs and D=4. 74
x10"cm' ergs, and to the set 6=3.65x10 '
ergs, D=4. 04x10 cm ergs. For the lines with
rd & 1, data were available' for about 6-8 half-widths
on either side of the line center, since the objective
of the experiments was an accurate determination
of width and shift. As the comparison indicates,
the mean frequencies are well calculated while the
second moments appear to differ significantly. For
rd= 0. 81, the data' extendfor about 300half-widths
into the red wing and 150 half-widths into the blue
wing. The agreement between theory and experi-
ment is excellent, but again the experiments were
not done with this comparison in mind. The most

Z-=(~') —(~)'=4'& '
5, R' e r~"r(V~- V, )'dR .

(21)
With

V~- V( --(G/R —D/R ) —(A/R'~ —B/R6)

/R~~ —P/Re,

the calculation using the first two moments is
straightforward. A quadratic equation for n(or P)
results, which leads to a pair of values for 6 and

D.

telling reason for caution is the fact that for rd
= 0. 81 the contribution to the second moment 100
cm ' from line center is as large as that at 8 cm '.
This suggests that inferences from third moments
of experimental line shapes will not be feasible with-

out extensive experimental effort, which in turn
means that motional and diabatic effects will be dif-
ficult to study in this way.

B. Cesium-Helium

In the case of helium and cesium, a difficulty
arises in the choice of a parameter to represent the
short-range interaction in the ground state. The
choice made is consistent with empirical formulas
for the position of the well" and independent calcu-
lations of the interaction. ' The most interesting
feature of the moment analysis is that no solution
is available for an excited-state potential which is
attractive over some range of intermolecular dis-
tances. The pair of potentials inferred from the
line at rd= 21. 2 for the I'1/p level have for case 1

I.O—

coI-
z 0,8

ft.'

K

g) 0.6

z04
LLII-z

TABLE II. Moments of 6 P&~2 —6 S&~2 cesium. line
pressurized by helium (in cm 1).

7.1
21.2
40. 1

2. 5 22. 5 4.0 76.0
11.9 227. 0 11.9 227. 0
22. 1 342. 0 23.1 440. 0

Experiment Theory
Relative density (v) (v ) —(v) (v) (v ) —(v)

-20 - IO 0 IO 20
FREQUENCY (cm )

40 50

FIG. 1. Comparison of experimental and theoretical
line shapes for the cesium 6 Pg]2 —6 Si~2 line pressurized
by helium at a relative density of 21.2. Intensity, normal
ized to maximum values of 1.0, is plotted vs frequency
("frequency" here measured in units of wave numbers)
from the unperturbed line position. Theoretical lines
were calculated using the general pressures theory with
constants for cases 1 and 2 which are given in text.
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TABLE IV. Moments of 6 Pf/2 6 Sf/2 cesium line
pressurized by xenon (in cm ~).

26. 7
41.3

—47 66 —84 6000 —84 6000
—68 81 —115 5400 —129 9300

The calculation was carried out using A = 12.3& 10
ergcm, 8=7. 9&&10 ergcrn .

Relative Experiment Theory'
density Width Shift (v) (v ) —(v) (v) (v ) —|',v)

gt is interesting to note the appearance of a red
satellite' in one of the calculations at about 100
cm . The depth of the well of the difference poten-
tial is about 90 cm '. The well in the other case is
225 cm deep. ) The disagreement could originate
in several places; the point seems to be that a mo-
ment analysis can produce useful insights, but can-
not be considered as a uniformly reliable way of
obtaining force information or calculating correla-
tion functions.

G = 0. 459~10 and D = —0. 614&&10 cgs units,
and for case 2, G = 0. 734 & 10 and D = —0. 373
&&10 . The results for the first and second mo-
ment are shown in Table II ~ The implication is not
that the van der Waals interaction is absent, but that
repulsive forces play a role at much larger dis-
tances than previously imagined. The disagree-
ment between the experimental and computed second
moments can be attributed, as in the case of argon,
to the fact that the low intensities in the wings were
not a matter of experimental concern, but contrib-
ute strongly to the second moment. In the calcu-
lation & = 0. 891 & 10 sos cmi2 erg and B = 0. 426 & 10 ~8

cm'erg.
In order to establish whether or not the repulsive

R term leads to agreement between theoretical
and experimental line shapes, a calculation using
the general pressures theory was carried out. The
results for case 1 are indicated in Table III, and
Fig. 1 shows that indeed, either choice yields good
agreement with the previously unexplained data of
Garrett and Chen. '

IV. CONCLUSIONS

In Sec. II, the moments of a spectral line were
calculated in a general way and compared with the
results obtained by invoking standard assumptions
of line-broadening theory. The most important as-
pect of the result was that diabatic effects do not
appear in the first or second moments. Analysis
of good line-shape data (which was not taken with
a moment calculation in mind) indicates that there
is little hope of obtaining reliable third moments
without extensive experimental effort. However,
in the case of the cesium-argon and cesium-helium
systems valuable information was extracted about
the excited-state potential. The cesium-xenon re-
sults confirm the conclusion that the moments of a
spectral distribution are very useful in developing
an understanding of excited-state interactions, but
that results must be critically evaluated by an in-
dependent analysis.

C. Cesium-Xenon

Finally, the situation was studied for the case of
cesium pressurized by xenon. Here the analysis
indicates additional difficulties which can be en-
countered in using moments of lines to infer force
information in the absence of other checks. Two
lines were studied. In the case of a relative den-
sity of 41.3, the model did not yield any solution
for G and D. The results of analyzing the other
line, rd=26. 7, are shown in Table IV. The agree-
ment of the first moments is satisfactory but the
second moments differ significantly.

Again, a pair of values of G and D result, but there
is no physical reason for preferring one set to the
other. A line-shape calculation with the general
pressures theory using each is compared with ex-
periment in Fig. 2, and it is clear that neither set
yields acceptable results. The constants used, in
cgs units, were: case 1, G= 24. 1&&10 ' and D
=17 lx10 case 2, G= 14. 1&10 and D=13. 6
&&10 . Thus, constants which reproduce the first
two moments of the line under favorable experimen-
tal conditions fail to yield a satisfactory line shape.

I.O—

i 0.8
z
D

+L0.6
lG
K

—0.4
z
ILII-
Z

OZ—

0
-250 -I50 - I 00 -50

FREQUENCY (cm )

FIG. 2. Comparison of experimental and theoretical
line shapes for the cesium 6 P&/2 —6 S&/2 line pressur-
ized by xenon ata relative density of 26.7. Intensity,
normalized to maximum values of 1.0, is plotted vs fre-
quency I', "frequency" here measured in units of wave num-
bers) from the unperturbed line position. Theoretical
lines were calculated using the general pressures theory
with constants for cases 1 and 2 which are given in text.
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A systematic convergent method of studying intermolecular forces in excited states is de-
tailed. Extensive comparison between theory and experiment indicates that high-resolution
line-shape experiments over a wide range of frequencies will permit the inference of param-
eters in realistic forms of the potential energy. The analysis focuses on the P&&2- S&~2 re-
sonance line of cesium pressurized by helium, argon, and xenon. When the model is used
with ground-state potentials inferred from atomic-beam experiments, and when the excited
state is described by V=G/R —D/Re, the following reliable parameters were determined:
helium, G = 0.459 + 0.060 and D = —0.614 +0.061; argon, G = 6.48 + 0. 20 and D = 5. 23 + 0.05;
xenon, G = 53.6 + 5. 8 and D = 19.1 +0. 57, where the units of G are 10 erg cm and of D are
10 5 ergcme.

I. INTRODUCTION

Information about intermolecular forces between
systems in the ground state is available from a

variety of experiments'; however, line-shape ex-
periments afford the only generally useful probe
of excited-state interactions. Extensive effort
has been devoted to the study of interactions in the


