
PHYSICAL REVIEW A VOLUME 4, NUMBER 3 SEPTEMBER 1971

Analytically Solvable Problems in Radiative Transfer. III

C. van Trigt
Philips Research Laboratories, ¹ V. Philips Gloeilampenfabrieken,

Eindhoven, The Netherlands
(Received 19 April 1971)

The density of excited atoms and the diffusely reemitted radiation is calculated for a homo-
geneous radiation field incident on a slab. The solutions of the Biberman-Holstein integral
equation are used in the calculations. The optical thickness is assumed to be large. The line
shapes of both the absorption line and the incident radiation are arbitrary.

I. INTRODUCTION

A homogeneous radiation field is incident on a
homogeneous layer of gas. The atoms of the gas
are excited by absorption of radiation from the in-
cident field. The excited atoms decay again and the
reemitted radiation can be absorbed elsewhere in
the slab. The expression for the reemitted radia-
tion must contain the density of excited atoms
everywhere in the slab. Therefore, the equation
describing the density of excited atoms is an inte-
gral equation. In Sec. II the pertinent equation will
be studied and its solution derived for large optical
thickness and for a wide class of shapes of the ab-
sorption line k(v). This class includes all line
shapes of interest (Doppler, Lorentz, Voigt, and
statistical line shape). The solutions depend on the
profile of the incident radiation compared to the
shape of k(v). Three cases are considered and
dealt with in Sec. II: (i) The intensity of the radiation
tion is constant over the absorption line; (ii) the
profile of the incident radiation is a 6 function in
frequency; (iii) the profile is arbitrary. Cases (i)
and (ii) admit of simple closed-form solutions.
Case (iii) is deduced from (ii) by integration.

It will be shown that it is possible to classify an
arbitrary profile of the incident radiation as a
"broad" or "narrow" line. This depends on its fre-
quency behavior compared to that of k(v), both far
from the line center. The density of excited atoms
for a narrow line is indiscernable from the one for
a 5 function in frequency [case (ii)]. The slab re-
emits diffusely the radiation absorbed from the in-
cident field. The reemitted radiation has various
interesting features, in particular, a characteristic
line shape. Expressions for the reemitted radiation
as a function of the frequency and direction of emis-
sion will be derived in Secs. IIIA and III B for cases
(i) and (ii), respectively. These situations have
closed-form solutions. Situation (iii) is not dealt
with. The solution for (iii) can be deduced directly
from the one for (ii) according to the methods given
in Sec. IIC. For deriving the solutions of Sec. II
(as for the treatment of self-absorption problems
in general) the eigenvalues and eigenfunctions of the

Biberman-Holstein integral equation'~ are needed.
They will be given in Appendix A for the class of
line shapes treated here, in the limit of large opti-
cal depth.

This paper has been organized such that the meth-
od of solution is explained in detail for case (i),
which is of the most practical interest (Secs. IIA
and IIIA). It may be advantageous to a reader to
pass directly from Sec. IIA to Sec. IIIA. Reading
of the other subsections can be postponed to a later
stage. Appendix A can be read independently of the
other results. The relation of the paper to the pre-
vious ones' (hereafter denoted by I and II) is as
follows. Section D of this paper generalizes the
solution for a Doppler profile obtained in Sec. III of
Payer II. Appendix A simplifies and generalizes
the results in I. The proofs in this appendix are
sketched only. Details will be given elsewhere.
The results admit of the straightforward general-
ization of the solutions of the problems dealt with
in Secs. II and IV of Paper II. This will be indi-
cated briefly in Appendix B. In Appendix 8 will be
calculated as well the mean number of scatterings
N a photon experiences before leaving the slab.

II. DENSITY OF EXCITED ATOMS

Let us consider a slab of thickness L, containing
atoms with a resonance frequency vo. Only transi-
tions between the ground state and the resonance
state will be considered. Therefore, a two-level
model is adopted for the atoms. The density in the
ground state, n(l), is assumed to be independent of
position and to be so high that the optical thickness
koi » I. The spectral line shape, normalized to
unity, is assumed to exhibit for certain values of
the parameters D and n the following behavior at
frequencies far away from the line center vo.'

8(v)dv= ~'(u)du DIuI'" "du

IuI = 2I (v- vo)«vI » I ~

The prime in 9'(u) is henceforth omitted for conven-
ience. To enable P, (u) to be normalized, we have
0 ( n ( 1. In particular, Lorentz or Voigt profiles
give D=m ' and n = —,'. Asymmetric line shapes will
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be considered in Appendix A. It follows that the
(asymmetric) statistical profile is described by
D=1 and n= 3.

A Doppler profile is not described by Eq. (1) for
any a. It has to be treated separately. This has
been done in Sec. III of Paper II. However, it ap-
pears to exhibit many features of the limiting case
n 1, o.'&1. It should be noted that in Eq. (1)
neither D nor n are affected by possible hyperfine
structure of the line. Therefore, this case is in-
cluded at once. The absorption line is defined by

k(v) —= k(u) = ko 8(u),

2we n(1)f k voB(1, 2)n(1)
mc 4p 2FAp

f is the oscillator strength, and B(1,2) the Einstein
coefficient for absorption. The homogeneous radia-
tion field is incident at an angle g with the normal

at the left side (x= ——,'L) of the slab. The incident

energy per cm and per sec in a frequency interval
dp within an element of the solid angle dQ is denoted

by I[2(v —vo)/&v]dv. Stimulated emission is ne-

glected. By equating the loss due to spontaneous

emission and the gain due to absorption of the inci-
dent and the reemitted radiation, the following inte-

gral equation for the density in the excited state
n(2) is obtained (- ,L & Xs ~L)—:

A(2, ()x(k;x)= l(v)k(v)exp — —+x) dv
1 k(v) L

&&0 0 COSH 2

ex((k, ))jkr((r —r'() x(k;x')dr'. (k)

The integration in the second term of the right-hand

side of Eq. (3) extends over the entire volume of the

slab. K(r) is the integral kernel derived by Biber-
man' and Holstein,

Ã(r) = f, 2(v) k(v)(e "'")"/4vr')dv

It is useful to outline briefly the principle of solving

Eq. (3). The main difficulty in Eq. (3) obviously

arises from the second term in the right-hand side.
This difficulty can be overcome if we expand as
follows:

lem is considered in Appendix A for the class of line

shapes defined in Eq. (1) and for kDL» 1. The re-
quirement koL» 1 means physically that the photons

are assumed to experience a large number of scat-
terings before leaving the volume (see Appendix B).
It should be noted that procedure (4) can also be ap-
plied if Eq. (3) is generalized by adding a term n,
xn(2)Z(2, 1) to the left-hand side and n, n(l)K(I, 2)

to the right-hand side of Eq. (3). These terms de-
scribe the loss and gain due to collisional deexcita-
tion and excitation by particles whose density is n, .
E(2, 1) and K(1, 2) are the rate constants. For sim-

plicity, these processes will not be dealt with in the

following. However, the calculations are analogous,

although, in general, closed-form solutions are not

possible. See Sec. D of Paper II for details.
As has been said, the expansion coefficients a& in

Eq. (4) have to be determined.
To this end, Eq. (4) is substituted into Eq. (3).

By using the definition of the g&($) [Eq. (5)], the

orthogonality relation [Eq. (A11)], and the definition

of ko [Eq. (2)], the following expression is obtained

for the a& .

A, (2, 1)a, = ' du k(u) I(u)
B(1, 2) t"'"

0

x (J)&($)exp — (1+$) d$. (6)
k(u)I.
2 cos'g

The integral with respect to $ is readily evaluated

by Eq. (A14). In this formula, applied to Eq. (6),
we get a Bessel function of imaginary argument and

order n+ —,'+ ,'c(, denoted—byI„„&z,„&2. Equation (6)
becomes [u) =ko 8(u)L/2cosq]

x u)"' "e I„„(„„,-(u)I(u)du (I).
~ CO

This expression cannot be reduced further analy-
tically if I(u) is not specified. We shall first con-
sider two cases: (i) I(u)=ID, independent of u; (ii)
I(u) =ID 6(u -u'). The case of arbitrary I(u) will be
considered in Sec. IIC.

n(2; $) g (])
2x

n(1)
(4) A. Very Broad Exciting Line

The coefficients a& have to be determined from Eq.
(3). The functions g&($)=—n&(2; $)/n(1) are the eigen-

functions of the following eigenvalue problem for the

Biberman-Holstein integral equation:

A(2, 1)n&(2; x) -A(2, 1)fK(~ r —r '
~
)n&(2; x') d r '

=A, (2, 1)n, (2; x); (5)

A&(2, 1) are the eigenvalues. The eigenvalue prob-

We put I(u) =Io in Eq. (7). The change of vari-
ables u) = k(u)L/2 cosp is easily performed by using

Eq. (1). The resulting expression is expanded

asymptotically for k()L» 1. If Il(u) is symmetric it
takes the form
-

( )
B(1, 2)IO(1 —c() 2cosl7

~D~ '
n=0

X u) e I„x kg perk y g(u))du)
0
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B(1, 2)f (1 —n) 2 cosy I'(1 ——,'o')
3/2gP-1 / P 2e /2-1/2

Substitution of the expression for A/(2, 1), Eq. (A5),
furnishes

B(1,2) . (I+o.)2"'-"
g/ ——

( )
Io(cos'g) 3/P F(y )

/( )

x L (-1)" F, c/ „(n). (9)I'ln+ 2

Note that, in fact, Eq. (9) gives the solution of Eq.
(3) since the eigenvalues X/(n) and the expansion
coefficients can be found numerically (see Appendix
A). A closed-form solution of Eq. (3) can also be
obtained. Equation (9) is substituted back into Eq.
(4) in which we have first replaced the eigenfunc-
tions g/($) by their expansion in Gegenbauer poly-
nomials C' "/ ($) [Eq. (A8)]. We then have

&&(I —$') ' E E Z x, (o.)c, , (o') c, „(n)
j= 0 n-"0 m~ 0

F(m+ 1) F(n+ n) (-1)" C'/2"/~($)
I'(m+ 1+ n) I'(n+ 2)

The summation over j can be carried out by the
orthogonality relation Eq. (A13). The summation
over n then becomes trivial and we are left with the
expression

n(2; $) B(1,2)
( )

2 I'(—+ —'o')
1 ~2) /3

s(I) A. (2, I) ' w"' I"(-'~)
00 1 1

I)m ( 2 2 ) C1/2+a/2(g)
(m+ n)(m+ I)

It can be verified that this expression is precisely
the expansion in Gegenbauer polynomials of the
function

Therefore, Eq. (10) is also valid in this case. For
the choice of &, see Appendix A.

For a simple Doppler profile an analogous treat-
ment given in Sec. III of Paper II yields

n(2; $) B(1,2) in(&of/2w'/ )
' ~ cos '(

n(I) A(2, 1) ' ln(kg/27/'/'cosy) v'

B(1,2) cos '(
(

I

The second term in the right-hand side of Eq. (11)
is the particular case n- 1 of Eq. (10). It is valid
for a line with hfs too (the first term is not). In
Fig. 1, n(2; $)/n(I) has been displayed for c.=1
(Doppler profile), a=2 (I orentz, Voigt profile), and

the limiting case &-0, n & 0. Its behavior as a
function of n can readily be understood. If
o.'(0& o. & 1) decreases, the contribution of the wing
to the total line increases [see Eq. (1)]. Since the
radiation for koL» 1 is predominantly transmitted
through the wings [see Eq. (A3)], the slab must be-
come increasingly transparent. Gradients in the
density of excited atoms must, therefore, become
less steep. Indeed, in the limiting case n- 0, the
gradient vanishes for —1 & f & + 1. The singularity
at $ = + 1 for all & should be noted.

Thermodynamic equilibrium. Suppose that radia-
tion from a blackbody at a temperature T„ is inci-
dent at x= —,'I from—alldirections (0& g&-,'v). For
kP» 1, local thermodynamic equilibrium must
exist between the radiation field and the two-level
atoms. Therefore, at $ = —1 the relative density
n(2)/n(1) must be given by the Boltzmann factor
corresponding to the radiation temperature T„. We
want to check whether this is indeed the case in Eq.
(10). Carrying out the integration over a half-
sphere in the right-hand side of Eq. (10) and making

$0

0.5-

Equation (10) is the solution of Eq. (3) for koL» 1.
The behavior in the wings, Eq. (1), is not affected
by possible hyperfine structure. Since all the deri-
vations use this behavior only, Eq. (10) is also valid
for lines with hfs. If p(u) is asymmetric, the right-
hand side of Eq. (8) has to be divided by 2. But
A/(2, 1) now takes half the value of a symmetric line
(see Appendix A). Both factors cancel in Eq. (9).

0
-1

FIG. 1. Density of excited atoms n(2; $)/n(1) for I(u)
= Ip as a function of $ = 2x/L/. Curve 1: & = 1 (Doppler
profile); curve 2: G. = ~ (Lorentz, Voigt profile); curve 3:
limiting case &—0. In the end points curve 3 is equal to
1 ($= —1) and to 0 ()=+1). See Eq. (10).
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use of the fact that blackbody radiatiox is isotrop-
ic, we obtain

n(2; $) B(1,2) I'(-,'+-,'o. )

n(1) A(2, 1) v'/' I'(-,'o.')

p/1 1~g2 e hvo/k-T„K2+ 2 ) (1 t.2)a/2 ]dg
g v"' I'(-,'o. )

(12)

Since the value of the integral for $ = —1 is g'
I'(2&)/I'(2+ 2o.'), n(2; —I)/n(1) is, indeed, equal to

the Boltzmann factor. In deriving Eq. (12) the term
caused by stimulated emission in Planck's law for
Ip was neglected. In fact, %ien s law, valid if APp

» kT„, was used. This is consistent with the re-
quirement —always imposed here —that n(2; $)/n(1)

Now let blackbody radiation also be incident
from all directions at x=+ ,'L. Fro—m Eq. (12) it
follows directly that the relative density is

n(2) n(2; $)+n(2; -t') g2 t„ /»„
n(1) n(1) g,

(13)

(Bl& 2)I(R ) I 1/2-at/2 e-'Mi'

xZ (- i)" c, ,„(~)I..&/2. ./2( ')
n=0

The formula for A/(2, 1) [Eq. (A5)] is substituted into
Eq. (14). We have

A(2, 1) (1 —o)

x w" /' '/' e
'

&,(&) Q (- 1)"c, „(a)I„„/„,/, (w').
n=0

(16)
Equation (15) is substituted back into Eq. (4), in
which the eigenfunctions have been replaced by their
expansion [Eq. (A8)]. In the same manner as in
Sec. IIA, the summation over j can be carried out

by the orthogonality relation [Eq. (A13)], and the

summation over n as a consequence. Because of
the complete analogy with Sec. IIA the details are
omitted here. The result is

n(2; $) B(l, 2) -, 1+o. sin( —,'&&)

n(1) A(2, 1) 1 —o! 2 w
I(u')

In other words, n(2; $)/n(l) is constant everywhere
and equal to the Boltzmann factor. Equation (13)
can be inferred also from thermodynamic principles
(it is even valid for all values of koL ' ). It has been
verified, therefore, that Eq. (10) yields the correct
thermodynamic limits.

B. Very Narrow Exciting Line

As a model for a very narrow exciting line I(u)
=I(s') 6(u-u') is taken. The substitution of this ex-
pression into Eq. (7) yields (w'= koL B(u')/2cos'0)

x cosy (keLD)' 'g(w', $). (16)

The function g(w', $) is given by

~/1 1~
p x ~ '12 + 2 ) I~ w2&al2 I V2-a/2 -w'

m2-

x Z (-1)"(m+ —,'+2o. )
I'(m + 1)

m=o 1 m+1+ o'.

x I .,l„,l,(w') Cg"'@($).

By using the addition theorem for Bessel functions"
it is not difficult to sum this series. The expres-
sion for g(u/, $) now becomes

-1/2-$ /2
g(w', 5)= g/2F„, (1- &')'/'w' e

x e '
&u

'/~ +2 I,/.../, ((u)dt. (1V)
0

In this formula e= (I —2$ w't+ w' )'/.
shown that Eq. (16) is also valid for a Doppler pro-
file (without hfs) if (1+ o)/(1 —n) is replaced by
4[in(koL/2wv2)]'/2 and the limit n- 1 is taken. It is
useful to discuss the differences between Eqs. (16)
and (10). In contradistinction to Eq. (10), n(2; $)/
n(I) in Eq. (17) is a function of w' and w'(=kox
x o(u')/cosy. Therefore, the relative density in the
slab varies already over distances of the micro-
scopic order of [kop(u')/cosg] ' and not only over
macroscopic distances of the order of L as in
Eq. (10).

As shown by Fig. 2 and also by the analysis be-
low, n(2„$)/n(I) for the situation of Eq. (16) re-
mains concentrated mainly within a layer of the or-
der of a few optical depths kp'. However, in Eq.
(10), n(2; $)/n(1) "fills" the whole volume. The rea-
son for the different behavior is the following. The
assumption, made in deriving Eq. (10), that l(u')
does not vary over the absorption line, requires an

energy input increasing without limit for kpL in-
creasing. In contradistinction to this, the absorbed
energy for Eq. (16) is at most I(M'). Equation (16)
is, of course, only approximately valid within a
sheet of the order of a few optical depths kp' near
by x= ——,'L. The photons have experienced an insuf-
ficient number of scattering events within this thin
layer. Therefore, the asymptotic solutions of the
Bibermann-Holstein integral equation do not apply
within this sheet, and hence, neither does Eq. (16).
In Eq. (17), w'= koL 9(u')/2cosn is not necessarily
large when kg» 1 since P. (u') may be small. How-

ever, let w' be large too. The new variables w's =t
and &g'= (sa —2$ s + 1)'/3 are introduced in Eq. (1V).
I,/2„+(w'ur') is replaced by the first term of its
asymptotic expansion. ~ The Laplace method' is
applied to the resulting integral for $W —1 in a
straightforward manner. Equation (17) then takes



FIG. 2. Density of excited atoms for I {g)=I (g')
0&6(N —I') as a function of $ =2x//I. . Curve1: ao' g(m', $)
for ao' »1 and 0. = 1 {Doppler profile}; curve 2;
xg(ge', () for u' »1 and e = 2 (Lorentz, Voigt profile);
curve 3: zu'of g(m', () for zv'=5 and 0 =j. See Eqs. (16)
and (18}.

the form

2-1-e/3
~I})n/3 g I-n/2 8-n'(I+I }ad

II I"(-,' n)

It should be noted that the next order term in
Eq. (18) contains terms which are smaller than the
first by a factor [I}'(I+$)] '. The asymptotic de-
velopment is therefore not uniform in $. In partic-
ular, Eq. (18) cannot be used for the calculation
of the reemitted radiation. Again, it is seen that
the behavior of Eq. (16) is quite different from that
of Eq (10), if .we substitute Eq. (18) into Eq. (16)
and let koL-~. The ratio n(2; $)/}I(1) now ap-
proaches zero everywhere outside a thin layer of
the order of 2cosI)/koL near $= —1. As has been
said already, the detailed description of the physi-
cal I'eRll'ty wl'tlllll tllls Biles't by Eq. (16) 18 ollly Rp-
proximate. Hence, not much can be inferred about
n(2; g)/n(l) in that region. The fact that Eq. (16)
describes correctly only the density outside such a
layer, explains also the following result, surprising
Rt fll'st sight: Fl'OIII tile fRC'tol' to ill Eq. (18), lt
follows that n(2; $)/n(l) increases when u' in-
creases, although, in fact, less energy is absorbed.
This effect, however, is negligibly small compared
to the following one. When u' increases, less ra-
diation is absorbed within the thin sheet near $ = —1.

Here Io is the peak intensity and Do and P are con-
stants. Since f(u) does not need to be integrable,
only p& 1 is required. 8(u) shows a similar behav-
ior [see Eq. (1)]. Therefore, both can be compared
by writing

I(u)-IOD}8"(u -uo), 7 0, i-u
i
» 1. (19)

Here uo describes a possible shift of the center of
f(u) from the center u=0 of i}(u). It will be assumed
that Eq. (19) holds good for a Doppler profile too.
In that CRse the parameter p hRS R dlx'ect physlcRl
interpretation. It describes that the incident radia-
tion is due to a source at a temperature different
from that of the slab if y0 l. In Table I, E(u) is
given for some values of y and D1 which are of
special inter est.

It should be noted that a different half-width of
X(u) caused by more or less pressure broadening in
the source emitting I(u), is described by Do and
therefore by D, and not by y. '

Equation (19) is substituted into Eq. (16) and the
integration over u' is carried out. The new variable
8}'=0@8(u')/2cosI) is introduced. We wish to ex-
pand the resulting expression asymptotically. It
appears that this has to be done in two different
ways according to whether —,'e+'Y & 1 or —,'n+ 'Y & 1.
The former case will be dealt with first. If f(u)
obeys Eq. (19) with ,'n+y& 1, it w—ill be called a
broad line. The Rsymptotic calculation in this case

TABLE I. I (I) for special values of D and y.

D1=1
&y -1) /2&1/2

Io Io Q(N-uo)

Io Q(u-eo) Io~ (If-uo)
(Doyyler&

Io 'tQ-Qo)
&Lorents)

Hence, more radiation is absorbed in the rest of the
volume, causing an increase of n(2; $)/n(1) there.

C. Arbitrary Exciting Line

From the solution for f(N) = f(u') 5(u —u') [Eq. (16)],
the solution for arbitrary I(u) can be deduced by in-
tegration. This point will be considered now. The
main result is that it is possible to classify the line
shape of the incident radiation as a "broad" or "nar-
row" line. The densities of excited atoms for both
classes exhibit a relationship with the special cases
considered in Secs. IIA and IIB, respectively.

For simplicity it will be assumed that I(u) is sym-
metric. As will be shown, the behavior of 1(u) for
lu ~

» 1 is particularly important. Therefore, the
additional assumption is introduced that I(u) exhibits
a negative power law dependence in the line wings:
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is as described in Sec. IIA. We have for kpL» 1

(20)

with

(
2+a/ (2 n g ( )

(n1+ ) 2+n
( )

(- 2+n24 -v)'
)

m-"0 tR+ +0

1-y 00

„, r(-,'+-,'n) r(1 —,'n —r)(1 ——]')"+ (-1) (m+-.'+-.'n)
( ) ( )- C."'/2(i).

with

xcos1) (kpLD) ' k2($), (21)

p(1 1

k($)= '
(1 —$)

p+ 00

XD1]
w" " e I .,/2. /2(u/) P. (u'-up)du'.

~ 00

For —,'n+'Y & 1, the asymptotic expansion of k2($) is
now derived by substituting for I „/2„/2(w') the first
term of its asymptotic expansion for w'=kpL 8(u')/
2cos1i» 1. The expression for k2($) then takes the
form

p/'1 1

h (()= '* *
2

'"~
(V

()'(ll' —ll )W' '
du')

~ 00

x (1 —$2) "/2 2 (- 1)"(m + -,' + ,'n)-
m"- 0

r(m + 1) 1/2. /2(()
r(m+1+ n)

It can be verified that this is precisely the expan-

Equation (20) is valid for a Doppler profile too if
we put up= 0, multiply by [1n(kpL/21/'/2)/in(kpL/21/'/2
xcos1))]'/2, and take the limit n-1. Though the
factor between the square brackets is asymptotical-
ly equal to 1, it makes the formulas somewhat more
precise. For D, =1 and Y=0 in Eq. (20), Eq. (10)
is immediately recovered. Only in the case @=1
has it appeared possible to obtain a relatively sim-
ple expression for k, ($) with the aid of the generat-
ing function of the Gegenbauer polynomials. ' In all
other cases k, ($) does not seem to be reducible to
a known function.

We turn now to the case that ,'n+y &—1. If I(u)
obeys Eq. (19) for these values of Y, it is called a
narrow line. We now have, for kpL»1,

n(2; $) B(l, 2) 1+n sin(2n1/)
n(1) A(2, 1) P 1 —n 2"w

sion of the function

2-1-a/2 +lo (1 ~2)a/2
k2($) = r, D, 0 "(u'-u(1) w' '/'du'

By substituting this expression into Eq. (21), the
final result for a narrow line becomes

n(2; $) B(l, 2) '" -(,), ,/2, 1+n
n(1) a(2, 1)

"
1 —n

sin( —2n1/) 2-1-a/2 (1 ~ 2)n/2

Hence, for ~a+» 1, the solution is indiscernible
from the solution for I(u) =I(u') 5(u -u'), w' =k(u')L/
2 cosg» 1. This is true for y = 1 in particular
[I(u) ()(: iI(u —u()), up arbitrary]. If we let 'Y - n) in
Eq. (22) and adapt D, such that I(u) Ip 6(u-—up) (see
Table I), then Eq. (16) for w'» 1 [i.e. , Eq. (18)] is
immediately recovered.

III. REEMITTED RADIATION

Once the density of excited atoms is obtained, it
is a relatively simple matter to calculate the re-
emitted radiation. This will be done in this section.
We shall confine ourselves to the two cases dealt
with in Secs. IIA and IIB. The reason for this
choice is that a very broad exciting line is of partic-
ular physical interest. The case of I(u) =I(u')
x 5(u —u') shows a few'interesting features of the
problem. Moreover, the general solution can be
immediately deduced from it, according to the
methods of Sec. IIC.

The intensity of the radiation emitted at x=+ —,I.
into an element of the solid angle dQ at the angle
3 with the normal on the right-hand plane of the slab
at the frequency )v is designated by I„(+-,'L, s)dv. lt
should be noted that, according to this definition,
for I,(+ —,'L, S) only 0~3& —2'1/, and for I„(-2'L, 3) only-
~m & 8 & m are allowed. A well-known expression
relating the emitted radiation to the relative density
n(2; $)/n(l) reads

' ., n(2;+t) „v 2 0 B(1 2) n(1)
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1.0

xicos8i E „(3la)
-0.5306 Iohv — [In(koL/2v'i icoss i] 'i .

-4,0 -30 -20 -8 0 +10 +20 +30 40

FIG. 6. Line shape of the radiation reemitted in for-
ward direction, i.e. , g2(zu) —S1(ce), m =k(u)L/2l' cose I as
a function of the dimensionless frequency u = 2(v vp)/Avg
for o. = 2 and a Lorentz profile; curve 1: rgb(0) = 50;
curve 2: mg(0) =250; curve 3: me(0) =500. See Eq. (24).

(28) can occur. It is convenient to compare for
koL» 1 the total backward and forward scattered
intensities in the direction 3 with the total absorbed
energy. The latter quantity denoted by E,b, is given
by" [w'= koL9. (u')/2 cosy]

Eu„= Io cosy -(1 —e ) dv'= Iob v cosy Sm(to') du'
0 0

k D- —Io&v cosy il S~(ce') dw" '.
2 cosT/

Hence, by partial integration,

E,-I b vI'(n) cos'q (k+D)' (29)

I„(--,'L, 8)dp- „, 2" 'I"(-,'+-,'a)

x I'(1 —,'n)
~

coss~ 'E,—„(30a)

cosy[in(kg/2w'
~

cosa
~

)]'

(Doppler) (30b)

For a simple Doppler profile it is shown in simi-
lar manner that

E~,- Iod v cosy [In(kg/v'~3 cosy)]'~~.

Equation (29) derived for a symmetric line is equal-

ly valid for lines with hfs and if divided by 2 for
asymmetric lines. For the choice of n in the latter
case, see Appendix A. For a Doppler profile with

hfs, see Ref. 20. The expressions for the total re-
emitted intensities in backward and forward direc-
tions contain integrals of the functions S,(»u) and

Sz(te). The asymptotic treatment of the integral of

Sa(ut) has been given above and the other expression
is dealt with analogously. The results, for koL» 1,
are

(Doppler) (31,b)

Equations (30a) and (31a) are also valid for asym-
metric line shapes (see Appendix A) and for lines
with hfs.

For a Doppler profile, the first asymptotic terms
in the integrals of S, and Sa in Eq. (31b) appear to
cancel. The next order gives Eq. (31b) in which the
numerical factor ' F'(1) —P (—,')/w'~ = 0. 5306 has
been inserted. For the method of calculation see
Ref. 20. It should be noted that, in contradistinction
to Eq. (31a), for a Doppler profile the forward
scattered intensity decreases as a function of koL
(though weakly). By multiplying Eqs. (30) and (31)
with cosy and integrating over a half-sphere, the
total reemitted intensities in backward and forward
directions, denoted by E, (+-,'L), are obtained. It
is easily verified that E, (+ —,'L)+E, (- —,'L)=E,»„
so that all absorbed radiation is indeed reemitted.
Furthermore, E, (- ~L) = R(o.') E,»„' R(n) = 2'
x I'(-,'+-,'n) I'(1 —2n)/v' R(n) i. s an increasing
function of n. Hence, the slab increasingly diffuse-
ly "reflects" the incident radiation. This is in ac-
cordance with the discussion at the end of Sec. IIA,
in which it was shown that the slab becomes less
transparent with increasing n In pa. rticular R(0)

Therefore, for n 0, equal amounts of energy
are reradiated in forward and backward directions:
E, (+-,'L) =E, ( ,'L) = —,'Eu„-. T—his result could also
have been inferred directly from Eq. (10) or Fig. 1
since n(2; $)/n(1) becomes constant as a function of
position for n-0. For a Doppler profile we have
R(l) =1. Hence, in first approximation for koL» 1,
the slab reemits in backward direction all the ab-
sorbed energy. No radiation leaves the volume
through the surface at x= —,'L as also shown by Eq.
(31b) for koL-~.

The reemission of radiation should be clearly
distinguished from what is known as specular re-
flection, which is caused by the change of the in-
dex of refraction at the glass- (or quartz-) vapor
interface. Diffuse scattering has been experimen-
tally observed. ' The experimental conditions de-
scribed in Ref. 23 seem not to allow of an easy
theoretical interpretation of the results. The author
is not aware of other similar experimental papers.

B. Very Narrow Exciting Line

Equation (16) is substituted into Eq. (23). The
integration is easily performed and we get, with
su'= k»L 8 (u')/2 cosy and tu = koLQ (u)/2 I cose I
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-(, 1+ n sin(-,'o.m)

—Q

10

x(kuLD)' 'cosy S,(w, w'),

S,(w, ag') = (ww')'/' '/' e " (32)

x ~ (+ ) (~+ 2+ 2+) m~1/2+a/2(w) m+1/2+a/2(w )'
m=O

5xIO

Q —2%t6
xM —,1+&;

QP+ gO

2- f.-at/2
ZO ZO

~(wy w ) 1/2 p(1 1~) (w+ wi)1+0/3

(33)

xexp q
~ p 1++y

in Eqs. (33), the symmetry in the variables w and
w' as present in Eq. (32) has been preserved.
Equations (33) comprise the special result w fixed,
w'- ~ [corresponding to the density of excited atoms
Eq. (18)]which can also directly be deduced from
Eq. (32). This is done by substituting for the mod-

It should be noted that S,(w, w') is symmetric in the
variables w and w': S,(w', w) =S,(w, w'). See Figs. 7
and 8 for a display of S,(w, w') for o. = 1 (Doppler
profile) .

It can be proved' that for w or w' (or both) large
S,(w, v/) is expressible in a confluent hypergeometric
function ' M(a, k; x):

2-J-e/2 tO R
S-(wl w ) 1/2 p(1 I

) ( t)&+0/32+2

-4 -3 -2 -1 0 +1 +2 +3 +4

FIG. 8. Line shape of the radiation reemitted in for-
ward direction, i.e. , S, (zo, sf'') as a function of the dimen-
sionless frequency I = 2(v —vo) (ln2)'/ /6v& for o. =1 and
a Doppler profile; curve 1: vr svi0) = m w'=50; curve

1/2'�(0) = 250 71k/2' = 50' curve 3. 7ti/2'�(0) 7li/2'
=250. See Eq. (32) and Table II.

ified Bessel functions the first term of their asymp-
totic expansion. The remaining series is identified
as the expansion of the confluent hypergeometric
function of argument 2w [i.e. , Eq. (33) for w

fixed, w'-~]. We discuss the line shape of the
emitted radiation, i. e. , the properties of S,(w, w')
in Eq. (32) for w' fixed and w variable. For w = koL
x P. (u)/2!cosh I

» 1 (i. e. , kcL/2 I cosh
~
» 1 and in the

center of the line), Eq. (33) is applicable. Three
regions of values of so' have to be distinguished,
namely, av'«go, zo'= ce and m'» go. It is readily de-
duced from the asymptotic properties ' of M(a, b; x)
whether self-reversal occurs or not. The results
are given in Table II.

However, it should be noted that the intensity for
frequencies v= vo of the backward reemitted radia-
tion I„(-—,'L, 8) is directly determined by the density
of excited atoms n(2; $)/n(l) for $= —1. As dis-
cussed in Sec. IIB, the description of n(2„&)/n(1)
is only approximate in a thin layer of the order of
a few optical depths ko' near f = —1. This is
brought about because the photons undergo an insuf-
ficient number of scatterings in this sheet, and,
therefore, the asymptotic solutions of the Biber-
mann-Holstein equation do not apply there. Hence,
the description of I„( ,'L, 8) for v= vz b-y Eq. (—32)is

-4 -3 -2 -1 0 +1 +2 +3 +4

TABLE II. Behavior of S~ (go, gv') in the line center,
gfI )) 1.

FIG. 7. Line shape of the radiation reemitted in back-
ward direction, i.e. , S (ge, gv') as a function of the dimen-
sionless frequency gf;=2(v —vo) (ln2) / /QvD for +=1 and
a Doppler profile; curve 1: 7t go(0) =z m =50; curve 2:
m'/ w(0) =250, 7('/ m'=50. The curve for 7t'/2'(0) =

z / zo' = 250 is indiscernable from curve 1. See discussion
in the text and Eq. (32) and Table II.

ao' «ce
S, (ur, zv')

self-reversal

self-reversal

self-reversal

s (w, w')

self-reversal

no self-reversal,
flat for & = 1

no self-reversal
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only approximate.
The behavior of I„(+2L, a) for frequencies in the

far wings, te«j. , is found by substituting the first
term of the power-sex'ies expansion of the pertinent
functions. It is found that the intensity decx eases
proportional to Q(u). We repeat the remark made
in Sec. III A that this behavior is due to the assgmP-
tt'on that the line shape of the excited atoms is 2(v)
(independent of the frequency of the absorbed pho-
ton).

Finally, %e mant to obtain the total emitted inten-
sity for the situation described by Eq. (32). It can
be found directly by using the symmetry of S,(N), N)').

We put f(u') = I() in Eq. (82) and integrate over all u'.
Cleax'ly %6 obta1Q the reemission due 'to exc1tation
by a very broad line. Comparison of Eqs. {82) and

(24) shows that (for k()f » 1) we must have, in the

case of S.(s), u/),
f' +«o koJD

S (m, cu')du'= . „2' S,(M)').
sin(2 cw 2 costi

Because S (a«, a)') is symmetric in the variables s)
and % %6 have+, 1 —c( k()I D

With the aid of the latter integral and Eq. (32) the

total reemitted enex'gy 1n tile dix'ect1on 3 18
(-,'v &a «v)

J, f„{-2L,a)dv=f{u') &v[(1+(r)/47(]

x cosy
i
cosa

i
'S,(s)'). (34)

In the same fashion, we have (0 «a & —,'v)

j"I„(+',I,, a)dv=&(u') -~«[{I+&)/4v]

&& cosy ~
cosa

~

'[S«(s)') —S&(to')] . (35)

By multiplying Eqs. (84) and (85) by cosa, integrat-
ing over a haU-sphere and adding the x'esults, the

totalreemittedenergyE, (-2L,)+E, (2I )isobtained:

E ( &f )+E (+ &L) y(+)) &~ cos~(I @-))ply((( )/coe )r))
(36)

This expxession equals the total absorbed ener-

gy.
' The reemitted radiation corresponding to the

situations treated in Sec. IIC can be deduced direct-
ly by integrating f(u') S,(tu, s)') [Eq. (32)] with res-
pect to u' (see Sec. IIC for details). In particular,
fo1 a narrow line %6 have

I„(+ ',I, a) = '3,-«, , (k()L,D) cosy1+o,'sin(-,'c.v) 2 ' "~'

2+8

1+QI (- 'r,-a)=P 2 1)

sin(-'nv) 2 ' "'2
(k«LD) cosy

x S (M gj gg gg M ~@~ /+ay —2',
(8Vb)

Equations (37a) and (37b) are indistinguishable
from the results for f(u) =I(u') 5(u -u') [Eq. (32)]
for s)'-~ [i.e. , Eq. (33) for s)s)'/(s)+u)')-w], in
accordance with the conclusions of Sec. IIC. It
should be noted that for I(u') arbitrary the total re-
emitted energy is equal to Eq. (36) integrated over
all u'. The resulting expression precisely equals
the one for the total absorbed energy, as it
should.
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APPENDIX A

In this appendix the method of solving the Biber-
man-Holstein integral equation 1s given. The xe-
sults are a generalization of the calculations of
Paper I. Detailed proofs are omitted„' they are
glveQ elsewhere.

For the solution of self-absorption problems in

general we need the eigenvalues A.&(2, 1) and eigen-
functions $,(r)=-n~(2; r)/n(I) of the Biberrnan-Hol-
stein integral equation'

In Secs. II and III the density of excited atoms and

reemitted radiation has been calculated for different
profiles of the incident radiation. It is not difficult
to extend the txeatment to the situation where colli-
sion processes are involved. Again, n(2)/n(I) can
be %ritten as a superposition of the eigenfunctions
of the Biberman-Holstein integral equation {see
Secs. 11 and Ill of Paper II). Expressions for the
reemitted radiation are readily obtained with the aid
of the results derived in Appendix B. An interesting
application of the theory is possibly the following:
In an experimental arrangement simulating a slab,

gas or vapor is introduced consisting of atoms cap-
able of deexciting the atoms n(2). Of course,
n{2; $)/n(I) changes compared to the situation in
which the gas or vapor is absent, in particular,
as a function of position. Consequently, the re-
emitted radiation changes also, 1n particular, 1ts
spectral line shape. The total cross section for
deexcitation or excitation transfer can therefox'e
be derived from an analysis of the changing spec-
tral line shape of the xeemitted radiation.

E u' e' ~adg' me 3 M -,'ot, 1+e; So,

(3Va)
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K(r) = i&(v) k(v) e ""&"/4&lr dv.
0

The densities in the state 2 and in the ground state
are denoted by n(2; r) and n(1) [n(1) independent of
position] .

A(2, 1) is the Einstein constant for spontaneous
emission 2-1. The integration is over the volume
V, which will be assumed to be a slab of thickness
L(- ,'L & x—&,'L and——~ & y, z &+~). '8 (v) is the line
shape of the emitted radiation and k(v) the absorp-
tion coefficient. The solutions of Eq. (Al) are
treated in the case that the symmetric line shape
8(v), properly normalized to unity, exhibits the
following behavior in the wings:

P (v) d v = e(u) du- D [u [

l/' "du,

luI 21(=-v v2) -I «»»,
k(p) -=k(u) = k, Q(u), k, = (2t/e'/mc)n(1) f/&v.

(A2)

D is a constant determined by the normalization;
&v is a characteristic breadth. 8(u) must be inte-
grable and therefore we have that 0& +& 1. An im-
portant case as the Doppler profile cannot be in-
cluded in the class of line shapes defined by Eq.
(A2) and has to be treated separately. However, it
will appear to exhibit many features of the limiting
case n -1 (n & 1). It should be noted that the behav-
ior in the wings (i. e. , D and n) [Eq. (A2)] is not af-
fected by possible hfs of the line. We shall need the
behavior of the Fourier transform of K(r) for small
values of o= 1o1. A formula for this asymptotic be-
havior has been derived in Paper I. It reads

fe"' K(r)dr-1 —(Cko/o)f~„& 2 (u)du, o/k2«1 .
(AS)

C is a constant (dependent on n) and &(o) & 0 is the
solution for o/k2«1 of the equation

6(&(o))= o/kt& .
For further details and for a physical interpreta-
tion, see Paper I. For the class of line shapes de-
fined by Eq. (A2) a simple calculation yields imme-
diately

~ ~

1 —a mD' o oe"' K(r)dr-1 — . , —,—«1.1+ n sin(2 n&&) k2
'

kt&

(A4)
It has been shown by Widom ' that the eigenvalues

and eigenfunctions of an integral equation of the type
of Eq. (Al) can be obtained from the Fourier trans-
form of the integral kernel. The result is an as-
ymptotic one. Applied to Eq. (A1) the theorem
shows that a relation exists between the eigenvalues
and the eigenfunctions of Eq. (A1) for k2L» 1 and
the Fourier transform of K(r) for o/kt& «1 [Eq.

(A4)]. More precisely, the eigenvalues A/(2, 1) of
Eq. (A1) are asymptotically

&/(2, 1) 1 —n v D'- 2».,'(n)
/1(2, 1) 1+n sin(2'nt&) (kt&L)

and the eigenfunctions &I&/($), $ =2x/L, —1 & $ & + 1,
are

= 0 ($) f"'(k),

The numbers &/(n) and the functions f/ &($) are
solutions of the following integral equation:

&!/(n)f/ ($) = f, K (&, &')f/ (&') d&' (A6)

XCl/2! tt/2(]) Cl/2+tt/2()t)

C„'/ '+2(() is a Gegenbauer polynomial. 2 The partic-
ular case n=1 of Eq. (A7) has been derived pre-
viously by Kac and Pollard. We mention in pass-
ing that though the expression for K"'($, $') looks
complicated, its Fourier transform is simpler:

1
et Qt+t't' & K(tt &(~ ~t ) d~ d~t

2w -.

(tft )-l/2-0!/2 Q (k
1 ln) ( I)&!.

0~ 0

X dtt+ l/ 2+a/2(f) &!+i/ 2+a/2(t )

Here J„„/2,„/2(t) is a Bessel function of order k+ 2

+ —,'&. Before proceeding to the method of solving
Eq. (A6) we pay attention to an extension of the re-
sults given above. For a simple Doppler profile it
can be shown from Eq. (AS) that Eqs. (A4)-(A7)
remain valid if (1+ n)/(1 —n) is replaced by 4
x [In(kt&L/2» '/

)]'/ and the limit n - I, n & 1 is taken.
For a Doppler profile with hfs, see Paper I. For
asymmetric line shapes it can be proved that the
parameters a and D are defined by the most slowly
decreasing wing and that the second term in Eqs.
(AS)-(A5) has to be divided by 2. No change oc-
curs in Eqs. (A6) and (A7), or in the results de-
rived from them. We try to solve Eq. (A6) numer-
ically by expanding the eigenfunctions f/ "(g) in the
Gegenbauer polynomials C'/ '+2($) with expansion
coefficients c/ (n) to be determined

An expression for K' &($, $') has been given by
Widom. For our purposes a different expression,
derived elsewhere, is more appropriate. It reads,
for 141, 1(' I

& 1, Hen & 0,

K(tt&(~ ~ t) (2tt/v) [F(l + l )]2 (1 ~2)s/2 (1 gt2)tt/2

xg (k+-,'+-', n)
1(k+1)"
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f 21/ 2+e/2

f/ ($) =&

io,

~ 2)n/2

, I'(m+ I+ &)

xc, (&) C„"'~'(&» l&l-1
(A8)

c& 2 of the odd ones are zero. By substituting Eq.
(A8) into Eq. (A6), performing the integration and
using the orthogonality relation of the Gegenbauer
polynomials, 2 Eq. (A6) is reduced to a matrix prob-
lem'

Note the singularity at $ = +1. The eigenfunctions
of Eq. (A6) are even (j= 0, 2, . . . ) or odd

(j=1, 3, . ..). Consequently, the expansion coeffi-
cients c/ 2 „(n) of the even eigenfunctions, and the

I

X(n) c(o.) = K(o.) c(n). (Ae)

The expansion coefficients have been put together
into the vector c(o.) =—[c2(n), c,(o.), . . .]. The matrix
K(c.) has the elements for m, n = 0, 1, . . . :

(i)"'"I'(1+ n) (m+ +2-,'-n) I'[2 (m+s+ 1)](- 1)
2 I'[1+2(n+m —n)] I'[1+2(u+n —m)] I'[ o+ (32+m+n)] '

2

, 0,

m+n= even

m+n = odd. (A10)

2
~ ( ) g c/ (n)c; . (c/).

1 j. k$ 9
m=0 m+2+ z+

another relation is

(A12)

—Q X,(c.) c, „(o.) c, „(n) = (I+ 2+ -,'c.) 5

(A13)
Finally, it should be noted that the Fourier trans-
form of f/ ($) is particularly simple

f e'~' f/ "($)d$ = 2 2 i" c/ (n)
m= 0

Equation (A10) appears to be very suitable for nu-

merical purposes.
For many applications the particular values of

&/(o') and the expansion coefficients are not needed,
but a few orthogonality relations only. First, it is
noticed that since K '($, $') is symmetric, the

f/ ($) constitute an orthogonal set. By normalizing
the f/ (f) to unity this set is made orthonormal:

f, f"'(f)f'"'($)d& =5; . (A11)

As a consequence of Eq. (All) the following orthog-
onality relation holds true for the expansion coeffi-
cients':

00 +1

n(2; ()= Z g/($) n(2; &') g/($') d$'.
j=o -1

(Bl)

According to the definition of A/(2, 1), an eigenfunc-
tion P/($) decays at a rate exp[-A/(2, 1)t]. Since a
photon has an average lifetime A '(2, 1), the photons
caused by an initial distribution n(2; $) ~ g/(g) expe-
rience a mean number of scatterings A(2, I)//

A/(2, 1). The mean number of scatterings for the
distribution Eq. (B1) normalized to one photon is
therefore

1 " A(2 1) +'

[ (2)] g (2 I) tt/(5)/fh

APPENDIX 8

This appendix is devoted to two special applica-
tions of the theory of Appendix A: (i) calculation of
the mean number of scatterings X a photon experi-
ences before leaving the slab [a distribution n(2; $)
being given at t=0], and (ii) the general form of the
line shape emitted by a slab.

Any distribution of excited atoms n(2; $) present
at t = 0 can be expanded in the eigenfunctions for
/22f » 1 of the Biberman-Holstein integral equation
as follows:

~m+1/ 2+n/2(t) '

The relation with previously derived results is the

following. The representation of the asymptotic
eigenfunctions of Eq. (A1) for a Doppler profile
(n = 1) derived in Paper I is the same as in Eq.
(A8) apart from a factor 2 [v(m+1)] '. The repre
sentation of the eigenfunctions for a I orentz or
Voigt profile (n= —,') used here is somewhat different
from the one derived in I but similar to the one in
Sec. IV of Payer II. The present approach makes
it possible to solve various problems generally, and

leads to analogous formulas for different cases and

to substantial simplifications.

+1

x n(2; (') g/($')d(', (B2)

[n(2)]„= n(2; $') d&'.
. -1

From the representation of the eigenfunctions [Eq.
(A8)] it follows that

+1 21/ 2- e/2

tf/($) d$ = „, c/ 2(c').
-1 I'g2+ 2o.'

By inserting into Eq. (B2) the expression for
A/(2, 1), Eq. (A5), and Eq. (B3) we obtain
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1+ n sin( —,'o.v) koL, 2'~ ~ "+
1 —o.' v D' 2 1'(—,'+ —,'o. )

&Z x&(n)c& 0(a) ~l
", ', g, (( )d$' .(84)

The representation of the eigenfunctions [Eq. (A8)]
is substituted into Eq. (84). The summation over
j is carried out by the orthogonality relation [Eq.
(A13)]. The summation over m [resulting from Eq.
(A8)] becomes then trivial and we have as the final
result for kol » 1

1+o. sin( —,'nv) 2

1 —o, mD' ' I"(1+o.)

n(2; g)
„(1)

= ~ g8 (&)

The expansion coefficients a, are characteristic for
the problem under investigation. Obviously, it is
sufficient to calculate for every eigenfunction p;($)
the corresponding radiation field. By substituting
the representation of the eigenfunctions [Eq. (AS)]
into Eq. (22) and by using Eq. (A14), we obtain the
radiation emitted in the direction 3 corresponding
to the eigenfunction n(2; $)/n(l) = g&($) for kol » 1:

I„(a 2I, 8) = 2sgn[(+ l)~] ' e gv'~2A. (2, 1)

1

(1 —$' ) d$'. (85)
[n(2) ],„

X Z c
g ~(Q ) Im+ g i 2+ e/g(K),

m=0

=kol 8(u)/2~cosa~, u= [2(v —v,)]/av .

(87)

In the same manner N is calculated for a Doppler
profile. It appears to be the special case n-1 of
Eq. (85) if (1+u)/(I —o.) is replaced by 4[in(kg/
2v'~ )]'~ . The special case of Eq. (85), n(2; $) in-
dependent of position, has been derived previously
by Ivanov. '

For the calculation of the radiation due to a cer-
tain density of excited atoms n(2; $), we start again
with the representation of n(2; $) as a sum of eigen-
functions of the Biberman-Holstein integral equation
for koL»1:

I „&2, ~2 is a modified Bessel function of order
m+ —,'+ —,'o.'. For a discussion of the factor sgn[(+ 1)~],
see Sec. IVB of Paper II.

The analysis of the spectral line shape described
by Eq. (87) proceeds along the lines explained al-
ready in Sec. III. It appears that for o. &0,
I„(+~1, 3) shows a dip in the center and, therefore,
self -reversal.

In the far wings co « I, I„(+2L, 8) decay—s propor-
tionally to 9(u) (see the remark about this latter
behavior made in Sec. III).
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