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mination of optical anisotropies. There is no doubt
that one or more effects, not related to the re-
orientation and redistribution phenomena, rise to
disparities in this case. New theoretical work on
the dc Kerr effect, such as that recently published

by Hellwarth, i is of great importance.
We wish to thank Professor P. Bothorel for

his help and advice, as well as Professor S. Kie-
lich, with whom we discussed some aspects of
the work.
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An approximate theory of the motion of a He3 atom in the vicinity of a superfluid He4 sur-
face is presented. The theory predicts a bound state of the He3 atom in the vicinity of the
surface, in accord with experimental results. The theoretical value for the energy of this
state (measured with respect to the He chemical potential) is within 35% of the experimentally
determined value.

I. INTRODUCTION

The existence of bound states of He atoms on free
superfluid He surfaces was first proposed by And-

reev in order to explain the observed drop in the
surface tension of dilute solutions of He in He at
low temperatures. Andreev did not, however, ex-
plain the existence of these surface states. Recent-
ly Lekner has derived, using the variational princi-
ple, a simple one-dimensional Schrodinger equation
governing the motion of a single He' atom near a
free He surface at zero temperature. Assuming a
plane surface in the x-y plane, he took a trial wave
function of the form g(r&, rz, . . . , rN) = [g(z))/n (zq)j
x(()0(rt lz ' ' r)()). Here r, is the coordinate
of the He' atom and rz, r3, . . . , rN are the coordi-
nates of N —1 He atoms. (()0(r„rz, . . . , r„) is the
ground-state wave function for N He atoms with a
surface in the x-y plane, and n(z) is the number
density associated with ())0. Application of the varia. —

tional principle give the equation

d')ll(z)

dz z + [)(. —U(z)]g(z) = 0

for (C)(z). The effective potential U(z) is given by

d2 i/2
))4)= (( — ' )(z)+n'i'(z) (2)

()f /2m4)t(z) is the kinetic energy per particle in pure
He, the bulk of the He atoms being located at z & 0.
823 and m4 are the masses of He' and He atoms, re-
spectively. The surface-energy levels e, = (a /2m, ))(.

are measured with respect to the chemical potential
in pure bulk He .

Equation (1) was not solved by Lekner, although
he did point out that U(z) can have an attractive re-
gion if t(z) and n(z) decrease monotonically as the
surface is approached from the bulk. In this paper
we show that the asymptotic values of U(z) far from
the surface can be determined exactly. Then we
construct a simple analytic form for U(z) by inter-
polating. between these values and solve numerically
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the resulting equation. The equation has a single
bound surface state with an eigenvalue about 35%
above the experimentally determined value. This
discrepancy is understandable if we note that the
bare He mass is used in the kinetic energy part of
Eq. (1). This must lead to an overestimate of the
kinetic energy contribution to E,.

where (5 /2m4)tp is the kinetic energy per particle
in bulk He . This approximate result was originally
derived by Baym for the energy &3p of a He atom
in superfluid He at T=0.

We can now construct a reasonable form for
U(z). Assuming a surface symmetric about z =0,
we write

II. DETERMINATION OF EFFECTIVE POTENTIAL n(z) =np/(I+e "). (12)

lim gp(r„. . . , r„)-e" 'g(r„. . . , r„),
gg» wag

where

o./2 = [(2m4& p/ff')]'i' .

(3)

(4)

E~ is the binding energy per atom for pure He .
This is just what we expect on intuitive grounds if
we think of each He atom as being bound in a well
of depth e~.

From (2) we may easily find the limit of U(z) as
z- —~. The density n(z) is defined by

n(z) = I fdr" '(p(r» rz, . . . , rz), (5)

L being the dimension of the system parallel to the
surface and dr ' being a compact notation for
d'rzd rp . .d r„. . Using (3) in (5), we obtain

n(z), „= L e"fdr 'g (rz, . .. , r„). (6)

The determination of U(z) proceeds from the fact,
proven in the Appendix, that the ground-state wave
function Pp(r„rz, . . . , r„) for N He atoms with a
surface (the bulk being located at z) 0) has the as-
ymptotic behavior —3 f(z)=-6 6m+KB/3

2m, m4 1+ae"
This agrees with the limits (9) and (11), using
mp = (4)m4. The coefficient a is determined by re-
quiring that far inside the liquid (z-+ ~), where
Vn(z) is small, we have

m1-~ Vt(z) = "vn(z)
2m 3 m4

The term d n' (z)/dz contributes no terms linear
in Vn(z) to this limit. Combining (12)-(14) gives

(14)

a =1+
'Pl B&3P

8

We use the experimental values e~ = 7. 15 K and

63Q 4. 36 K, expressing ener gie s in te mpera-
ture units. Further, since e3p is the zero-He-
concentration limit of the He chemical potential
p. 3 in He, we have

This agrees with (6) and with the bulk value np which
n(z) must take on as z- ~. It also makes precise
the definition of the surface. Further, we approxi-
mate t(z) by

It follows immediately that

,g,
( )

d'n'i'(z)
dz'

Q 2m 4
2 &a.

4 I
Since

n(z) t(z)=- L'f dr" 'gpv-', g„
we may use (3) to find

(8)

2
863P 8/3

( )
BP4

(1 )
m4s

Bg BQ BR
(16)

where s is the sound velocity in He and &=0.28 is
the fractional excess volume of He in superfluid
He at T=O. Using m4s = 27. 2 K, and putting all
of these results together, we find

a=0. 8S.
1 — tz = ——1

m

2m 4 mQ
( )

Combining (2), (7), and (9) gives

52
U(z) - + ez,

2m3
(lo)

as one might expect, especially if we note that in
this limit Lekner's trial wave function (see Sec. I)
g(r„.. . , r„) decouples, becoming proportional to
4(zg)g(rz, , rg)

The limit of (2) as z-+ ~ is, clearly,

III. NUMERICAL RESULTS AND COMMENTS

For numerical work, it is most convenient to cast
(1) in the dimensionless form

d'g(x)
dx

+ [~- U(x)]= O, (19)

Combining (2), (12), (13), and (17) we obtain

0 1 —2e 8mp 6p+ fp/3
4 (1+e"') 8' cF 1+0. 89e"

(18)
U(z) is plotted in Fig. 1 along with the wave function
of its single bound state.

with x-=as. Then we have

% = X/n' = 3e, /16& p,

Il2 m
U(z) = 1 — t p

=Epp, —
2m3 g»y o 2m3 m4
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FIG. 1. Potential (h /2m3) U(z)
in K (solid line) and the wave func-
tion for its bound state (dashed line)
in arbitrary units. The theoretical
(&,) and the experimental values
(&',"~) values of the Bee surface ener-
gy are indicated.

7

—4--

and, putting in numbers, d'tjt 2m,*
/ + z —,' ~,

D)
8 = 0, (25)

Equation (19) is .rather easily integrated numerical-
ly with the result that U has one bound state with
energy

~,=3.1 K.

The most recent experimental result is

&',"'= 2. 32 K.

(22)

(23)

Both values for the surface energy are indicated in
Fig. 1.

We conclude with some commentary on our theo-
ry. First, the fact that our value (22) for a, is only
about 35% above the experimental value probably
indicates that we have gotten the essential physics
right. The He atom is bound to the surface because
its excess kinetic energy relative to a He atom, the

term proportional to f(z) in (2), falls off near the
surface more rapidly than the effective single-par-
ticle potential n '/ (z)n1/z" (z) rises near the sur-
face. [Note that if m, =m4, (1) is solved by tjt(z)
= n'/z(z), just what we expect in this case for the
single-particle wave function. ] In other words, a
He atom finds it advantageous to sit on the surface
because it gains in reduction of kinetic energy rela-
tive to its large bulk value more than it loses in in-
creasing its energy due to its attraction to the He

bath. Nevertheless, our theory is still quite crude.
The assumption of a symmetric surface [see (12)]
is certainly open to question. In fact, if we replace
(12) by

where m3 = 2. 34m3 is the effective mass for He
ciuasiparticle motion in bulk He . Qualitatively,
then, in the region of the surface we should use a
mass varying between m, and ms. This would re-
duce E, further by lowering the kinetic energy of the

surface quasiparticle. It is not worthwhile, how-

ever, to attempt this in view of the approximations
already made. In point of fact it is not in principle
clear how to consistently include a position-depen-
dent effective mass.

Finally, it is perhaps surprising that the effective
potential (see Fig. 1) becomes negative near the
surface. One expects this potential to be greater
than the corresponding one for a He atom, which
must rise as g- —~ because of the surface energy.
However, there is nothing in principle preventing
such a He potential from dropping near the surface
before rising as g- —~. In fact, if one uses the
variational principle to derive the equation analo-
gous to (1) for the motion of a He atom, taking care
to symmetrize the trial wave function, "one finds

d'tj'(z) „1/z(,)
d'n" '(z)

~( )

dz'S(z, z') g(z'), (26)
~ 00

where the structure factor S(z, z') is defined by

4(z;) tj'(z/) z-
dV

[ (
)~

( )]1/4 )0(1 1 1 N)

n(z) =no//(1+ be") (24) dgfcfgp gf gf p gp ga 2V

and try to lower E, by varying b, we can reduce E,
by a maximum of 0. 3 K. ' This seems tobe about
the best which a simple theory using the bare He
mass can do. Physically, it is clear that (1) should
reduce, as g —+~, to

In the limit as z-~, Eq. (26) gives the well-known
Feynman' result for the excitation spectrum in
pure He, while for g - —~, it reduces to a free-
particle equation. The potential term n ' n

appears both in (1) and (26), and it is this term
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which causes the potential in Fig. 1 to be negative
near the surface.

h' d' f(z,)
2m4 dg,

The author takes pleasure in thanking Professor
David O. Edwards for suggesting this problem,
Professor Ewards and Professor Charles Ebner for
discussions, and Professor Ebner for considerable
aid with the numerical work involved here.

APPENDIX

Here we examine the asymptotic behavior of the
ground-state wave function ())o(r~, .. . , r„) for N He

atoms with a surface near z=O, the bulk located at
z & 0. ())o solves the Schrodinger equation

@2~ 2

)(Sr= (-Z ' + —5 (r(r; r, )) So=-SrSr (A))
28$4 2 fqkJ

For z, large and negative and all other z; »z„
must be of the form

4o(rg, , r~) =f(sg)g(ro, , rg) (A2)

Since (to may be chosen to be real and non-negative,
we may choose f and g real and non-negative. Isut-
ting (A2) in (Al) and noting that V(r, —r, ) falls off
rapidly when r, is far from r;, we obtain

" @2V '
A„f((=f -—E ~ r — 5 V(r, —r, )) S. {AS)

)~2 2Pl4 2

When —z, is sufficiently large (AS) can be solved
for all g, » s~ (i ss l) only if

r-E
' +- Z )'(ri-r, ))S(rr, "., r )

fe2 ™4

Combining (AS)-(A5) and noting that E„~-E„=es,
the binding energy per atom in He at T= 0, gives

if d'f(g, )+
2 g d o =esf(~s)(gs
2m4 dg&

(A6)

so that as zz —~ we have

to=sf(~))- &'""g(ro, . , rs),
with a -=2[2m,es/if']'f'.

= Eg(r„.. . , r))(), (A4)

where E is a constant. Since g is real and non-neg-
ative, it must then be the ground-state wave function
for N-j He atoms with a surface, and
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