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A second-quantized cell-model Hamiltonian is derived to provide a model for quantum crys-
tals and liquids. The boson crystal is treated in this article. The cells are divided into two
sublattices: (i) regular, which are usually occupied, and (ii) interstitial, which are usually
empty. The particle hard cores are simulated by assuming Fermi commutation relations for
operators referring to a single cell; this allows a discussion in terms of a spin-analog Hamil-
tonian which is diagonalized in the spin-wave approximation. Because the Hamiltonian in-
cludes a term which allows tunneling between regular and interstitial sites, the ground state
includes a description of zero-point motion and exchange via virtual intermediate interstitial
occupation. Excited states include nonlocalized vacancies, interstitials, and vacancy-intersti-
tial pairs. Phonon states are not included in this analysis. The model exhibits a phase trans-
ition to the Bose condensed state which is examined briefly.

I. INTRODUCTION

The names "quantum liquid" and "quantum crys-
tal" have been given to the condensed phases of
helium because they manifest such interesting
quantum phenomena. The zero-point energy is so
large that liquid He has a superfluid phase and
solid 3He exhibits nuclear exchange and antiferro-
magnetism' and such excitations as vacancy waves
and mass fluctuation waves. The methods which
will be described here have been used before (in
references quoted below) to treat these substances,
especially the superfluid phase. They will be ap-
plied to quantum solids in this article. The author
believes they can also be used in further studies of
the liquid state.

In recent years there have been several discus-
sions in the literature ' of a cell model of a Bose-
Einstein (BE) condensed quantum fluid. This mod-
el uses cell-creation and -destruction operators
which commute like ordinary Bose operators for
different sites but which anticommute when they
refer to the same site. This latter property en-
sures that no cell is doubly occupied and so simu-
lates the effect of a hard-core potential. The
mixed Bose and Fermi commutation relations are
those of Pauli matrices and allow the model to be
cast into a spin-analog form. The techniques of
analysis developed for spin systems such as molec-
ular field theory, spin-wave theory, etc., are then
easily adapted to this problem.

This cell model is characterized by a hopping or
tunneling term in the Hamiltonian which destroys
a particle on a site and creates one on a neighboring
site. This term is most directly responsible for
the important features, such as the BE condensa-
tion which occurs in the liquid phase of this model.
Such a term also occurs in the well-known Hubbard
Hamiltonian which has been used to describe vari-

ous electron effects in solids, such as the metal-
insulator transition. Recently, Hubbard-like Ham-
iltonians have been used ' ' to provide a model of
several phenomena in quantum systems (helium,
especially). The hopping term is quite evidently
appropriate for liquids since the atoms do a con-
siderable amount of roaming about. However, it
also proves useful in describing phenomena charac-
teristic of solid helium.

The work on the Hubbard Hamiltonian for quantum
systems has stimulated us to apply the spin analog
to the crystalline phase of quantum systems. Our
model of a crystal turns out to be analogous to an
anisotropic Heisenberg antiferromagnet. Since a
spin-up in the spin-analog system represents an
occupied cell and a spin-down an empty cell, our
model contains regular (or normally filled) sites
and interstitials. The interstitials give the par-
ticles a chance to move off their sites and allow
several interesting phenomena to be described by
the model. Among these are the excited states of
the system: Frenkel-like vacancy-interstitial pair
waves; the vacancy waves introduced by Hethering-
ton which are shown to be of the Schottky variety;
and interstitial waves. A vacancy is found to be
accompanied by a cloud of virtual interstitials.
Particle exchange takes place via vacancy-inter-
stitial pair intermediate states and is treated by
the spin-wave analysis to all orders in multipar-
ticle exchanges.

Recently Chester' has speculated that a quantum
crystal may be described by a wave function which
can exhibit a BE condensation. Strongly tied to
this possibility is the deduction that a quantum
crystal has a finite fraction of vacancies in the
ground state. A discussion of ground-state "defec-
tons" (vacancies, interstitials, and impurities) and
their BE condensation has also been given by
Andreev and I ifshitz. ' Since our model is an anti-
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ferromagnet analog which has a deviation from
perfect sublattice magnetization even in the ground
spate, we find vacancy-interstitial pairs in our crys-
tal ground state. However, these are not to be in-
terpreted as true vacancies in the ground state but
merely a cell-model manifestation of zero-point
motion. As a particle oscillates around its lattice
site it may move from its regular cell into a neigh-
boring interstitial cell, thus forming a short-lived
vacancy-interstitial pair, and then return to its
regular cell. The pair never becomes unbound and
me are not surprised that we find no BE condensa-
tion in our crystalline state. However, we find our
solid undergoes a phase transition to a state which
we believe has a BE condensation. Whether this
state (or states) corresponds to a liquid or to the
"superfluid solid" is discussed only briefly in Sec.
VII and will be the subject of future research.

In Sec. II we derive the model Hamiltonian and
it is diagonalized in Sec. III. The ground state of
the system is discussed in Sec. IV and the vacancy
wave excited states are treated in Sec. V. Some
numerical estimates are given in Sec. VI. In Sec.
VII we present some brief speculations concerning
the transition from the solid to a Bose condensed
phase and a discussion is contained in Sec. VIII.

II. MODEL HAMILTONIAN

To describe a Bose solid we begin with a second-
quantized Hamiltonian

H= f 4t(r) [- (h'/2m)V ]4(F)dr

+-,' f @'(r)@'(r') V(r -r') 4(r') 4(r) dr dr' .
(2. 1)

We expand~'0 the field operator Ct(r) in a set of
localized orthogonal states t; ~&' (e.g., Wannier
states):

0(0 =X

0 - regular sites
x - interstttiafs

FIG. 1. Schematic representation of the two sublattices;
the regular cells (e) which are occupied most of the time
and the interstitial cells (p) which are mostly empty. The
distance between a regular cell and an interstitial is a&,

and a2 is the distance between two regular cells.

nN = bg bg will have eigenvalues 0 or 1 as expected
for hard-core particles. The mixed commutation
relations are those obeyed by Pauli matrices.

One new feature we wish to introduce in our
treatment is the inclusion of interstitial lattice
sites. We divide the lattice into two interpenetrat-
ing sublattices n and P as illustrated in Fig. 1. It
is assumed that in a crystalline phase most par-
ticles will occupy the regular sites R and very
few will be found on the interstitial sites Rz. Each
regular site has, as its nearest neighbors, s~ in-
terstitial sites at distances a„and, as its second
neighbors, z& regular sites at distances a2.

Under these assumptions and upon substitution
of (l. 2), the kinetic energy becomes

KE=Q t((b-„ba-v Q b-„,- (bI (2. 4)

@t(~r) g b
( 8 )t

g
( II &

(~r)

R,n

(2. 2) with

f„-= (5'/2m) f g~~(r) V~ t'-„(r) dr, (2. 5)

~ba ba j=o ~ba ba j=O

~ba ba)=1 &ba ba)=0.
(2. 3)

These relations assure that the number operator

where bg"'t is an operator which creates a particle
in the nth excited state localized in the cell at R.
We truncate the complete set by considering only
one localized state in each cell. By making this
approximation we mill lose the phonon excitations
of our crystal'; however, the resulting Hamilto-
nian is still sufficiently complicated to be inter-
esting. The operators bN and bg. have Bose com-
mutation relations for R, R' not equal, but we
simulate the effect of the hard cores by assuming
anticommutation relations for R = R'. Thus we
have

(7I /2m) f g& . (r) V't-„(r)dr . (2. 6)

The first term in (2. 4) is a kinetic energy associ-
ated with the localization of particles on cells. We
will allow for the possibility that the value that this
energy of localization has for regular sites,

may differ from its value for interstitial sites,

=tg

The second term in Eq. (2. 4) allows a particle to
tunnel from a site at R to one at R+a&. We neglect
any tunnebng between sites separated by more than
the nearest-neighbor distance a&. It is this tunnel-
ing term mhich gives rise to the effects we consider
in this article.



If we insert our cell representation, Eq. (2.2),
into the potential energy, we find a variety of types
of terms, but we retain only the following intex ac-
tion terms:

& P(R —R')(&a&s)(&m &a) (2 7)
2 pl'

x t'g(r') gg(r) dr dr' . (2.8)

The terms involving R= R' do not appear because
of the commutation relations. Terms w'hich have
been dropped include the tunneling form containing
(bit ha) hfdf ba and the double-tunneling form con-
tai»ng b, 3 3 6@4. The first pe involves the
interaction of R particle with one which is tunneling
and should not px'oduce any physical effect signifi-
cantly different from those produced by the second
term in Eq. (2.4). Since we are not attempting a
first-principles derivRtion of the coefflcieQts of the
Hamiltonlan~ such Rs 7'q we cRQ coQsider Rll tun-
neling factors as lumped in 7'. Also since double
tunneling mill occur in second order in the v' term,
we neglect such a term in the PE. We also neglect
as small an additional exchange correction to
g(R —R'). Our philosophy in these simplifications
is that we are not striving for rigor but we mant to
arrive at a Hamiltonian repx'esenting the appropri-
ate physical effects of a quantum crystal. There
is an alternative derivation ' of our Hamiltonian
based on using nonoverlapping functions pl and in
replacing the V2 operator by a finite-differences
formula. In that derivation one finds t= R~e,/2ma,
and T = t/zg

Putting our results together we arrive at a model
Hamlltonian SimilRx' to thRt used previously by
other workers ' to describe crystalline Rnd liquid
phases, but now containing a regular-site-inter-
stitial-site structu. e::

attractive interaction —pz with a particle on the
nearest regular (second-neighbor) site. Also two
paxticles on two second-neighboring P sites are at-
tracted according to —p,.

The HamiltoniRn can be transformed into a very
fRmlliRr form by UsHlg the fRct that the commuta-
tion relations are those of Pauli matrices. Vfe can
make the identification

&a=m %=ok(+)

&a= bn bit= k(I+ ai't") . (2. 2)

~ (&a.. &It +&it.tk, &a )2 %, ag

+sA ~ a%+ay ok 8A ~ am+an ak
n, ~,

h =M(t+ peg Qg —pep $2) .
M is the number of n sites. (There are also M P
sites. ) The analog external magnetic fields are

8= --,(t+-,e, y~ --,z, y~),
j. j.

& = —a(t + s&~ 4i —a&a $3) ~

The particle number is, from Eq. (3.2),

In this spin-analog picture, an up-spin cox'responds
to RQ occupied site Rnd R dovFQ-spin to Rn unoccu-
pied one. The Hamiltonian becomes that of an Rn-
isotroyic Heisenberg antiferromagnet because of
the nearest-neighbor repulsion Rnd the second-
neighbor attraction on the regular-interstitial ar-
rangement of sites. There are also effective ex-
ternal magnetic fields in the spin analog. We find

(2. 9)

To diagonalize H using this spin analogy one ap-
plies the usual spin-vrave analysis. '5 We introduce
boson 8pin deviRtlon opex'Rtox'8 in x'eclpx'ocRl space~
e-„for deviations on the a lattice Rnd d„- for those
on the P lattice. These are defined by

a„"=(I/WM)Q;e "'" c-„,

By the choice of signs m Eq. (2. II) we indicate our
assumption that a particle on a regular (&)»te has
a repulsive interaction + p, with a p»ticl«»
neighboring interstitial (P) site, and that it has an

&$s) I+ g e-4&t-t')ag dt dPI- P fe e

a&Ze
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The usual situation is for an n site to be occupied
by a particle and a P site (interstitial) to be empty,
so ct creates a vacancy wave of vector k, and d ~

creates an interstitial wave. This is easily seen
by examination of the number operator in this rep-
resentation, which is

N = M —Q e"- cg+ Q d gt dg . (3 6)

Since /chic~ is the number of vacancies in the
system, it subtracts from the usual number of par-
ticles M; similarly, gd„-d„- is the number of in-
terstitial particles and adds to M.

If we introduce these boson operators in the usual
way we find the approximate Hamiltonian

H=&p —rgb yg(d& c~l+d„- c„-)

+ (W+ 2B)Q- c~l c-+ (W —2B')Qt dt dg, (3.9)

where

E= Ep+ Z, +g-(v- n-+ tu- e-)(e) (I)

where

E,=Z„-D([1-(~rf/D)']"'-1],

~,-"'= D [1 (~-y, /D)-'] '"+B+B',

&a&(' = D [1 —(T yi/D) )
' —B —B',

and n„- and m„- are non-negative integers.

IV. GROUND STATE

(s. 19)

(s. 20)

(3.21)

(3. 22)

The ground state is E= E0+E&. We have already
seen that E0 is the Hartree-like energy for M par-
ticles on M regular sites. The energy E& arises
from the tunneling part of II and corresponds to the
zero-point energy of vacancy-interstitial pairs.
Its nature is best understood if we assume, as is
valid in most of the crystalline phase (even for solid
helium), that 7'/D«1. Then, since

Ep M(t —pz——p gp),

W= 2(z~ P, + zp gp),

(3.10)

(3. 11)

2- y-=Mzq

we find the following expansion in 7/D:

(4.1)

y Q elp ag

ag

Equation (3.9) has a simple interpretation: Ep is
the Hartree-like energy that M particles have if
all are localized on regular sites. However, a
"spin deviation" on a regular site (i.e., a vacancy,
with (gc„-'c;)=1) costs an energy

(s. 12)

p„—= W+2B= —t+gpQp . (3.13)

One gains the kinetic energy t but must break z2
attractive bonds of strength gp in making the va-
cancy. Similarly, the energy to make an interstitial
is

(OIH& Ip) (p I H&10)
DE2= E ~

—
y

0 p
(4 3)

E,=--.'M~, ("/D)--'. ("/D') Z;~ + ~ ". (4 2)

The two terms shown in this series could be derived
by using perturbation theory up to fourth order in
the tunneling term with the rest of the Hamiltonian
as the unperturbed part [see Eq. (2. 9)]. The first
term is the energy associated with a particle mov-
ing from a regular site to an interstitial and back
again. To see this, look at the second-order per-
turbation formula (first order vanishes)

p, ,=—W —2B' = t'+ zi gi . (3. 14)
where

e-= u- c- —v- d-d~ = a| g ky + k k t k~p»=u- a- —v- e-

with

(3. 15)

The added energy is the interstitial cell kinetic en-
ergy t ' and the interstitial-regular-site potential
energy zg Qg.

We have not yet diagonalized H since we still have
the tunneling terms containing the factor y„-. To
complete the diagonalization we make the necessary
Bogoliubov transformation'

Hg= -w Z b- - b-„.1 „ R+~ R '
p~l

(4 4)

The ground state 10) has particles on all n sites
and all P sites are empty, so that the H, on the
right of ~E2 creates one vacancy and one intersti-
tial on a pair of neighboring o. and P sites. The
second H& returns the system to the ground state.
The energy denominator is

p
- Eg,

—pI+ p» —t ' + g( Q) —t+ gp Qp ——2D . (4. 6)

2 2—
ug v~ —~ ~

The Hamiltonian is diagonalized if

",=-: Gl -(~r;/D)'1 + 13,

~'„-= -' ([1—(~ ~;/D)']

where

D= W+B-B'= .'(t' t+z, y, +-~, y, )-.

The energy spectrum is

(s. 16)

(3. 17)

(3. 18)

Thus, we have

(-7 )
az, = — g —(-~)=-

2D
Mg(v

2D
(4. 6)

as in Eq. (4. 2). This motion of a particle into an

interstitial site and then back again to its regular
site is simply the cell-model representation of
zero-point motion. When tunneling is possible, the
state of the system with all particles on regular
sites is not the ground state. This effect also oc-
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Hartree Function

exchange is very similar to that proposed by Guyer
and Zane" (cf. their Fig. 9), in which particles
must move out of line to interstitial positions, be-
cause of their hard cores, in order to exchange
with one another. Higher-order terms in Eq. (4.2)
represent multiparticle exchange energies.

II Functions

FIG. 2. Comparison of the cell model with a Hartree
theory. The cell functions in this example are step func-
tions. The large cell function gives the probability of
finding a particle on a regular lattice, the small one gives
the probability of occupation of an interstitial. In a Har-
tree theory this probability is given by a single continuous
function as shown.

curs in the spin analog: The ground state of an
antiferromagnet does not have complete spin align-
ment on each of the two sublattices. The number
of these "ground-state vacancies" (or interstitials)
ls

V. EXCITED STATES

The frequencies ~&
' and ~-'~' in Eqs. (3. 21) and

(3.22) are the energies of the states of nonlocalized
vacancies and interstitials, respectively, with n„-

and m„- as their occupation numbers. We can ex-
pand these frequencies in powers of 7/D as done
for the ground state. We find

I

(6) 1 7
2 2

Q cosk ~ ag
~1

(g) 1 T 2 2

Q cosk a,
2 D +1

where energies p, ~ and p,l were defined in Eqs.
(3. 13) and (3. 14) as the Hartree-like energies nec-
essary to destroy a particle on a regular site and
to add a particle to an interstitial, respectively.
Including the tunneling effects by means of the
Bogoliubov transformation has spread these ener-
gies into bands.

In Fig. 4 we illustrate the qualitative form for
Note that for k small, cok-'

' —p, ~- k with a
positive effective mass given by

0 k 6D
Pl 1R *

&mQ1 Z1 &
(5.2)

=Mug 7' /4D for 7/D «I . (4. 7)

This result means that any particle spends N„/M
of its time in neighboring cells because of zero-
point motion, as it would in a non-cell-model de-
scription by a Hartree single-particle function
(see Fig. 2).

The second term in (4. 2) corresponds to the ex-
change of pairs of particles and can be derived in
fourth-order perturbation theory. Two particles
on regular n sites a distance a2 apart move into an
interstitial and then, instead of moving back into
their original sites, they move into each other' s
sites and so end up exchanged (see Fig. 3). The
factor g - r 4 is the number of sets of two regular
sites and two interstitials in the lattice such that
near-neighbor exchange can take place. One can
show that

Z r-„=M Z 5"„,", ;,;;„";,0 -—12M, (4 8)

where the last equality is exact if the e and P sub-
lattices are each face-centered cubic interpenetrat-
ing to form a simple cubic lattice. This model of

This positive effective mass is simply a result of
the symmetry of the wave function. The k= 0 one-
vacancy state is the completely symmetric state
for M —1 particles in M regular sites. Having no
nodes, it is the lowest energy state of all the sys-
tem. In this state the particles are able to spread

0- =X

=X

X=

FIG. 3. Two processes which illustrate the first
terms in the expansion of Eq. (4. 2): Process (a) repre-
sents zero-point motion, in which a particle moves from
a regular cell to an interstitial and back; process (b) rep-
resents exchange, in which two particles move off regu-
lar sites to interstitials and, instead of returning to their
original cells, exchange places.
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z', t'/2 0
J

stitials diminishes to zero. In this state a node
occurs on each interstitial site. One can also show

that an interstitial wave gives rise to a cloud of
virtual vacancies.

The use of the inverse relations of Eqs. (3.15)
in Eq. (3.8) gives

N=gn (bit by) =M+Qf m~-Qg nf . (5.4)

BZ BZ

If we wish to have as many particles N as regular
sites M then the last two terms of Eq. (5.4) must
cancel; i.e., there are as many interstitials as
vacancies. Applying this condition we get the ex-
citation energy of a Frenkel-pair wave separated
from the ground state by a gap

n'F +0 + t00 2D [I (zlzz/D) ]

FIG. 4. A qualitative illustration of the form of the

excitation frequency dz '. The largest value is pv and

the bandwidth is z&~7. /2D. BZ is the Brillouin zone bound-

ary.

= t ' —t+ zg Qg + za Qa —(zg r) /D for r « D,
(5. 5)

with the band of pair states of width

6 =(z, r)'/D. (5.8)

out most effectively and lower their kinetic energy.
The spectrum is not inverted (with a negative m*)
like a "hole" state, as in the case in the theory of
Guyer and Zane. '

One interesting feature of the vacancy-wave state
is the "cloud" of additional virtual interstitials as-
sociated with it. The total number of interstitials
in the vacancy-wave state ~ nf) is

Q (o.„'-~bt't, bTt, ~o.„'&=+ va, +-vl,
Q,g

(5. 3)

The first term is the average number of ground-
state interstitials as computed in Eq. (4. '7). The
second term gives the small number of additional
interstitials which occur because of the vacancy.
In order for a vacancy to leave its original site a
particle must move into that site by tunneling
through an interstitial position. Thus it is the
motion of the vacancy which gives rise to the extra
interstitial number v„; and we might call them
"dynamic" virtual interstitials. If we had a sta-
tionary vacancy we might expect to find a lattice
distortion, i.e., particles spending some time in

interstitials around the vacancy in order to lower
their energy. These might be called "static" vir-
tual interstitials. By studying vacancy-vacancy
correlation functions one can show that such a
static lattice distortion effect is not present in our
spin-wave approximate theory. A more accurate
analysis would include them by considering a va-
cancy-vacancy interaction. We will show later that
our numerical results for vacancy excitations dis-
agree with experiment because of this lack.

For k near the zone boundary the effective mass
becomes negative and the number of virtual inter-

—E (N, ) —E (N, g))

= t ——,
'

za Pa+ (1/M) g„-D([1—(r y-/D) ]' —I].

+ D [1 —(r y0/D) ] + B+B'+ Pv0 . (5 't)

The last term comes from expanding the energy
when evaluated at v = V/(N+ 1)= v0 —v0/N in powers
of v0/N The term. in (1/M) gf arises from the in-
creased density of k states if M-N+ l. If ~/D
«1, the gap becomes

8 T2 ~272
D 2 D

(5. 8)

with a bandwidth

5, =(, )'i». (5. 9)

It is also possible to have an interstitial wave.
We can find the gap for creation of one of these
by considering M = N —1 and m0= 1, m„-= 0 (kw 0),
and all n~= 0. At constant molar volume V, the
volume per particle is increased to V/(N —1).
Thus we have

To evaluate the gap for forming a Schottky-type
vacancy wave (i.e., with no real interstitial pres-
ent) we must use the fact that the quantities t,
and Q, are dependent on the volume per particle,
e = V/N. We form a. single Schottky vacancy wave

by requiring M=N+1 and any one of the n„-40 with
all m-= 0 in the energy [Eq. (3. 19)]. At constant
molar volume V the volume per particle goes from
v0= V/N to v= V(N+1) in making a vacancy, so the

gap forming a Schottky vacancy is

As = E0(N+1, v)+Es (N+1, v)+&co '
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Lz = —f + -,
'

z2 Pz —(I/M) Q - ([I —(v' ygD) ]' ~ —I)

+D[I-(~so/D)']'" - 2& Pv-,

gg 7 8]

(5. 10)

where the last approximation holds for 7'/D «1.
The bandwidth is also (z, i) /2D. Note that b, ~+ A~
= b~, as it should.

One can qualitatively understand the terms in
hz and hz, Eqs. (5. 8) and (5. 10), as follows: To
form a vacancy, remove a particle from a site in-
ternal to the crystal, which raises the energy zz Qz;
place the particle on the surface which lowers the
energy by —,

'
zz Pz and gives the crystal a volume vo

larger than the original V; finally, let the external
pressure do work Pvo to reduce the volume back
to V. Together with the small lowering of energy
due to the band structure we get a gap h~. A simi-
lar analysis can be given for h~.

VI. NUMERICAL EXAMPLE

The theory outlined above is based on expanding
the field operator in a set of localized functions
fn(r). We arrive at results dependent on the co-
efficients f, t ', ~, p» p2 which are expressed in
terms of the &g's. Since the (y's are unknown we
might determine the coefficients by comparison
with experiment. However, there are too many of
them to carry out this procedure. Fortunately,
it is possible to invent an ad hoc analysis which
relates the constants to one another and allows us
to get an order of magnitude idea of the size of
various effects. This analysis is not to be taken
too seriously and the coefficient values are subject
to change if they become susceptible to measure-
ment.

Although the theory has been carried out for bo-
sons, we would expect many similarities, in low
order in the tunneling term, if we were to treat
fermions. Many of the basic properties of vacan-
cy waves, zero-point motion, and the magnitude
of the exchange energy should be the same for
fermions and bosons. We find that, except for very
near to melting, low order in tunneling [i.e., (vz, /
D) «1] is adequate for treating crystalline heli-
um. Thus we apply the theory to solid 3He for
which there is detailed experimental information
on cohesive energies, exchange, and specific heat.

The ground-state energy is Eo+E, as given in
Eqs. (3. 10) and (3.20). If we neglect E, for the
moment, we can determine the kinetic energy and
therefore t by using the relation between it and the
zero-point energy expressed in terms of the Debye
temperature 8D. We have

where k~ is the Boltzmann constant. At an inter-
particle distance az= 3.V5 A (molar volume -24
cm ) in bcc He, ez& =15 K' and we find

11 K. (6. 2)

The cohesive energy' is Eo= -1 K, so that we
find

z, y, =24 K. (6.3)

~(&) e-&r I& (6 4)

where A is constant. This form is obviously sug-
gested by the successful use of a Gaussian by
Nosanow and co-workers.

The probability of finding a particle from a par-
ticular regular site on a given neighboring inter-
stitial site is

(6. 5)

where the left-hand side is from Eq. (4. 7) and the
right-hand side from the Hartree function of Eq.
(6.4).

The tunneling coefficient r is given by Eq. (2. 6)
in terms of the kinetic-energy overlap of the Wan-
nier functions of a regular site and an intersitial.
In terms of our Hartree function we might then as-
sume

2

(6.6)

where the latter factor is the value of the Hartree
function evaluated at the point where the two Wan-
nier functions would overlap, halfway between the
two sites.

The parameter T may be eliminated from Eqs.
(6. 5) and (6.6) to give a value for 2D:

2D g
A. ( j4

~

2
(6.7)

The value of A a& can be determined by using the
experimental value' of the exchange energy, which
at the density in question is - 10 3 K. From Eqs.
(4. 2), (4. 8), (6. 5), and (6. V) we have

E,~,„~g,/M —12(2D) (7/2D) = 12t e '& =10 ~ K .
(6. 8)

This gives

A ag =6.7 . (6. 8)

Putting this back in Eqs. (6. 6) and (6. V) we find

In Fig. 2 we related the relative occupancy of
regular and interstitial sites to a Hartree-type
single-particle function. Such a correspondence
allows us to get an idea of the values of the other
coefficients of the theory. A Hartree wave function

q( r —R), for single-particle motion about a lattice
site at R, has a behavior in the regular cell and in
the interstitial cells about R which we assume can
be written as a Gaussian

3t =4 k~OHD, (6. 1) ~=2 K, 2D=58 K. (6. 10)
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The consistency of this ad hoc technique can be
checked by calculating the average kinetic energy
per particle in the Gaussian state (6. 4). If we take
a, = a2/v 2 as an appropriate distance to an inter-
stitial, then A is determined and this kinetic en-
ergy turns out to be

3A'
KE= ——A =12 K,

4 m
(6. iS)

in remarkable agreement with our f value Eq. (6.2).
We also note that the value of v predicted by a pre-

. vious form of this theory '" based on approximating
the kinetic-energy operator by a finite difference
formula was t/z„which agrees well with Eq. (6.10)
if a&=6. The above procedures also give consistent
results for higher density. While the procedures
used in arriving at numerical values of the coeffi-
cients are questionable, we suspect that the values
themselves are reasonable and we will use them to
evaluate the remaining physical parameters of the
theory.

Since the parameters t ' and P, occur only in the
combination t'+ z, P, in the results of the theory
our values of t, zzPz, ~ and D are sufficient. We

find

(6. 19)

for the density we have been considering.
The smallest of the energy gaps is 4~ =17 K. We

assume then that the anomalous specific heat' and
the NMR results in bcc He are explained by as-
suming the formation of Schottky vacancy waves.
The value of 4~ is larger than the experimental
gap' ' of 6 K and the theoretical value of Hether-
ington of 9 K because our theory does not include
the effects of static lattice distortion as we dis-
cussed in Sec. V. The result that it is easier to
form a Schottky vacancy than a Frenkel pair in ~He

has been suggested previously by Hetherington and
is certainly in accord with our results. We see
also that a vacancy is easier to form than a simple
inter sitial.

VII. TRANSITION TO BOSE CONDENSED PHASE

The Hubbard Hamiltonian has been used to de-
scribe a metal-insulator transition. Gersch and
co-workers have used such a Hamiltonian to de-
scribe a helium solid-superfluid phase transition.
Our Hamiltonian also provides a phase transition.
To see this note from Eqs. (3.21) and (3.22) that if

ps = t'+ z~ Q~ = 2D+ t —z~ P~ = 45 K . (6. i2) (z, ~/D) = i, (V. 1)

With these values we find the following results.
(i) The lowering of the energy per particle due

to zero-point motion into the interstitial site [first
term in Eq. (4. 2)] is —z, v ~/2D = —0. 4 K.

(ii) The number of ground-state interstitials per
regular site or the probability of finding a particle
on an interstitial site [Eq. (4. 7)] is z& (v/2D) = 8
x10 ~.

(iii) The gap for forming a Frenkel vacancy-in-
terstitial pair wave [Eq. (5. 5)] is

~,=53 K,
with a bandwidth

6~=6 K.

(6. 13)

(6. 14)

&q=17 K,
with a bandwidth

68=3 K.

(6. 15)

(6. 16)

(v) The gap for forming an intersitial wave is

~, =36 K,
with a bandwidth

(6. 1V)

Os=3 K (6. 18)

(vi) A vacancy wave or an intersitial wave for k
near zero has a positive effective mass which, by
Eq. (5. 2), is

(iv) The gap for forming a Schottky vacancy wave

[Eq. (5. 8)] is

the frequencies co„-'
' and co„-'

' become imaginary for
k= 0. Thus the solid phase is surely not stable
beyond this point. As the pressure is lowered, &

changes relatively slowly, but D which depends on
f'+ z, Q„will decrease rapidly. As in helium we

get a solid-liquid phase transition by lowering the
pressure.

As the pressure is decreased it is likely that,
before the point characterized by Eq. (V. 1) is
reached, one or both of the gaps ~~ or ~& will van-
ish and the system will melt because it becomes
unstable to the formation of vacancies or intersti-
tials. Even before this happens it is possible that
the liquid state may become energetically favored
and melting will begin. If we had more detailed
information concerning the liquid phase of the model
we could specify the nature of the transition but
we leave precise discussion to future work.

There are some qualitative statements which can
be made, however. It has been shown [e.g., Eq.
(4. 2)] that the various powers of (~ z,/D) corre-
spond to various orders of exchange. Thus the
characterization (V. 1) indicates that melting oc-
curs because all orders of exchange begin to hap-
pen with nearly equal frequency. It is not surpris-
ing that such a situation would lead to a loss of
long-range crystalline order. The disappearance
of vacancy or intersitial gaps should bring on melt-
ing since all particles could then run freely through
the crystal.

In the spin analog the transition occurring when
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(V. 1) is satisfied is a spin-flop in which the mag-
netization changes from being exclusively in the
z direction to having a component M, in the x-y
plane. This x-y magnetization implies the system
has a Bose condensate because the order parame-
ter 3 is

where r = R. Clearly the antiferromagnetic state
we have been studying has no Bose condensate, but
we expect the transition to describe the solid-sup-
erfluid transition. At high temperatures the spin
analog will undergo another transition in which M,
goes to zero and the normal fluid becomes the
stable phase. This transition has been studied
previously. ~

Since the z magnetization is related to the density
by Eq. (3.2) we assume that a spin analog state
with a (cn '& that does not vary from cell to cell
is that of a liquid, since the density is uniform.
(The state described in this paper is crystalline
because (o a' '& does vary as one moves from regu-
lar site to intersitial. ) However, the spin analog
suggests the possibility of other Bose condensed
states. Suppose the coupling constants in the ef-
fective Hamiltonian (3. 3) were such that a helical
spin arrangement was possible. If the axis of the
helix were in the x direction there would be a non-
vanishing x magnetization and hence a Bose con-
densation. Furthermore, the z component of mag-
netization would be periodic and function of R along
the axis of the helix which implies a periodic den-
sity variation. Since long-range order in the den-
sity variation is characteristic of a crystal we
therefore would have a Bose condensed crystalline
phase. The characteristics of this Bose condensed
solid phase would seem quite different from those
suggested previously, "' which involve ground-
state vacancies or other defects. We do not know
whether this helical state can ever occur in a real
system or not, but it deserves further investiga-
tion.

VIII. DISCUSSION

We have presented a model which provides a
fairly complete qualitative description of a quantum
crystal. The coefficients occurring in the theory
are not determined by the theory and so it was
necessary to find them by a combined use of ex-
periment and an ad hoc theoretical procedure.
Nevertheless we believe the values so determined
to be fairly reasonable. Some interesting theo-
retical descriptions result. Zero-point motion and
exchange are described in terms of virtual vacan-
cy-interstitial pair formation in the ground state;
and the excited states are shown to consist of va-
cancy, interstitial, or vacancy-interstitial pair
wave states.

Presumably the vacancy waves account for the
high-temperature excess specific heat observed in
solid He. " Unless the interstitial wave gap ~, is
much lower than the estimate of Eq. (6. 16), we
suspect that it will be impossible to observe it,
especially since it is superimposed on the vacancy
contribution. An even stronger statement holds for
the pair wave state, of course. The vacancies
have a positive effective mass which gives them
a spectrum as shown in Fig. 4. The theory of
Guyer and Zane' yields a vacancy spectrum with
a negative effective mass at k= 0 (that of Fig. 4
flipped over). Perhaps it might be possible to dis-
tinguish experimentally between these two types of
spectra.

We feel that the work described in this article
provides techniques which may be useful in a good
deal of further work. The theory can be applied
to fermions '; phonons can be considered by in-
cluding excited Wannier states in each cell; and,
as we have already mentioned, further analysis of
the Bose condensed states of the present Ham-
iltonian may lead to other interesting results.
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We present a new, completely rigorous way of proving the relation between the second
virial coefficient and the S matrix. The method involves the use of the U2 „function intro-
duced by Lee and Yang and proceeds in the most straightforward manner. Although diffi-
culties are encountered for virial coefficients of higher order, there is hope that this type
of approach might shed some light on the question of the connection between the virial series
and the scattering matrix.

I. INTRODUCTION

It has been known for a long time that the second
virial coefficient is related in a simple manner to
the two-body S matrix (or, equivalently, to the scat-
tering amplitude).

The usual method proceeds through the study of
how the interaction affects the spectrum of the two-

body Hamiltonian. The system is placed in a hollow
hard-wall sphere of radius large compared to the
wavelength involved. By imposing the boundary
conditions on the asymptotic form of the wave func-
tion, one can relate the change in density of states
to the S matrix. Finally, the radius of the sphere
is made to go to infinity and, in the limit, one ob-
tains the result

dg Im g e4 t

We have taken units such that I = ~, 5= 1.
The symbols in (1) are defined as follows: b, (bz ')

is the second virial coefficient in the presence (ab-
sence) of interaction; P=1/KT, where K is Boltz-
mann's constant, X= (4wP)"; feo(8, Q) is the scat-

tering amplitude corresponding to incoming wave
vector; and k= (k, 9, C') and outgoing direction de-
fined by the polar angles (8, Q). (We leave it under-
stood that f depends also on the energy k . )

Another feature of the usual derivation is that the
potential is taken to be spherically symmetric and
essential use is made of separation of the angular
and radial coordinates. Goldberger' has produced
a proof of the connection between b2 —b2 ' and the S
matrix without using any particular symmetry of the
potential, but still making use of energy-shift argu-
ments.

The aim of our research is to reinvestigate and

perhaps clarify the relation between the virial co-
efficients and the S matrix. The virial coefficient
6, is perhaps best defined as the spacial integral,
in a 3(f —1)-dimensional space of the U, „function
of Lee and Yang. Using the theorem of Appendix

A, one can convert the spacial integral into the in-
tegral over a (3l-4)-dimensional surface that is then
let tend to infinity.

Qn the other hand the S matrix specifies the lead-
ing asymptotic behavior of the wave function along
any given ray. The nontrivial question then arises
whether the limit of the surface integral is complete-
ly determined by the S matrix only. We shall pro-
vide a positive answer for 52.


