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The Maier-Saupe model of the nematic phase with an orientational order parameter is ex-
tended to the smectic A phase by introducing a new order parameter, the amplitude of a den-
sity wave in the direction of the nematic preferred axis. Self-consistent equations for the
two order parameters are derived from an anisotropic model interaction and are solved nu-
merically. We calculate the order parameters, the entropy, and the specific heat as a func-
tion of temperature for several values of dimensionless interaction strength 0,' for the smec-
tic A phase. The transition temperatures plotted versus n provide a theoretical phase dia-
gram which resembles experimental plots of transition temperature versus alkyl chain
length for homologous series of compounds. The model qualitatively reproduces chemical
trends in transition entropies. Experiments are suggested to measure the order parameters
in the sm.ectic A phase.

I. INTRODUCTION

Maier and Saupe' have presented a molecular
theory of the nematic phase in which the alignment
of the molecules parallel to a preferred axis is de-
scribed by an orientational order parameter. In
this paper we extend the molecular model to the
smectic A phase' by introducing another order pa-
rameter, the amplitude of a density wave in the di-
rection of the preferred axis.

The textbook picture, ' due to Friedel, of the
three phases of matter which we wish to discuss is
shown in Fig. 1; the lines represent the long axis
of the molecules. (i) At high temperature one has
the isotropic liquid in which the positions of the
centers of mass are random and the long axes point
in random directions. The isotropic liquid is com-
pletely disordered, it is optically isotropic, and
its x-ray diffraction pattern contains no sharp rings.
(ii) At lower temperature some materials exhibit
a nematic phase in which the centers of mass are
still randomly placed but the long axes line up par-
allel to a preferred axis in space. The nematic

phase is optically uniaxial but its x-ray pattern con-
tains no sharp rings. The viscosity of this phase
is low and it flows like a liquid. (iii) At still lower
temperatures some materials exhibit the more high-
ly ordered smectic A phase in which the long axes
line up parallel to a preferred axis and the centers
of mass sit on planes perpendicular to the preferred
axis. The spacing between planes is approximately
a molecular length and the centers of mass are
presumed to move randomly in the planes. The
smectic A phase is optically uniaxial and its x-ray
pattern contains one sharp ring corresponding to

0
the interplanar spacing -20 A. The planes move
freely over one another and the viscosity is low in
the planar directions.

In these three phases the molecules are presumed
to rotate freely about the long axis and to have no
averaged dipole moment. There are occasionally
other smectic phases at lower temperature and of
course various crystalline phases.

As a concrete example consider the homologous
series 4-ethoxybenzal-4- amino-n- alkyl- n- methyl-
cinnamate with the structure

C2H50 CH=N CH = C—COO —C„H2„,(,

CH3
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FIG. 1. Textbook picture of the isotropic liquid, the
nematic, and the smectic A phases showing the orienta-
tional order in the nematic phase and planar structure
of the smectic A.

which has been studied by Arnold. Each member
of this series exhibits the smectic A, nematic, and
isotropic liquid phases in addition to the solid. The
transition temperatures are shown in Fig. 7. The
unsaturated central portion of this molecule is rigid
and coplanar and defines a long axis; the alkyl end-
chains are presumably flexible.

Maier and Saupe' introduced a molecular model
for the interactions between anisotropic molecules
and solved this model in the mean or self-consistent
field approximation. The intermolecular potential,
after averaging over the center-of-mass positions,

3 2 1is proportional to —(—,cos 8» —2), where 8,z is the
angle between the directions of the long axes of the
two molecules. The molecules prefer a parallel
orientation of the long axes to minimize this aniso-
tropic interaction. In the mean field approximation
one introduces an orientational order parameter q
= ( —,cos'8, —2), where 8, is the angle between the
long axis of one molecule and a preferred axis in
space. One then finds a self-consistent equation
for g as a function of temperature. This model
accounts qualitatively for a number of properties
of the nematic phase which were inexplicable on the
textbook picture; for example, the temperature
dependence of the anisotropic dielectric constant
and the dielectric relaxation.

In this paper we assume that the anisotropic inter-
action is short ranged and is proportional to

—exp [- (r„/xo) ](2 cos'8g2 —2) where x,z is the
distance between centers of mass and ro is roughly
a molecular length. With this potential and within
the mean field approximation we show that it is
energetically favorable for the oriented molecules
to form a density wave which we assume to lie in
the direction of the preferred axis. This density
wave is described by the order parameter
v = (cos(r. q)(—,cos 8 —2)), where q lies in the direc-
tion of the preferred axis and is equal in magnitude
to 2n divided by the interplanar distance. We find
coupled self-consistent equations for the two order
parameters 0' and g as a function of temperatures.
This model exhibits three phases: (i) the isotropic
liquid with o' =g = 0; (ii) the nematic phase with
o = 0, q &0; and (iii) the smectic A phase with o &0,

g 40. This model of the smectic A phase was also
proposed very recently by Kobayashi.

The purpose of the present paper is to present
the model and to calculate its properties. It turns
out that the model has one physical parameter &

which acts as a dimensionless interaction strength
for the smectic A phase. We will calculate the
transition temperatures as a function of n and pro-
duce a generalized phase diagram for the isotropic-
liquid- nematic- smectic-A system. We will also
calculate the order parameters, the entropy, and
the heat capacity as a function of temperature. We
will compare the calculated transition entropies
with experiment for several homologous series of
compounds.

II. THEORETICAL MODEL

In their work on the molecular model of the ne-
matic phase Maier and Saupe considered the disper-
sion forces between anisotropic molecules and de-
rived an anisotropic interaction between molecules
averaged over a random distribution of their cen-
ters of mass

3 2 1
V12 (Vo/N)(2 Cos 8gg —2),

where 6)» is the angle between the directions of the
long axis and N is the density of molecules. Within
the mean field approximation one assumes that each
molecule feels an average potential of the form

V, (cos8) = —V, (—,cos'8, ——,)rj,
where 0, is the angle between the long axis of the
molecule and the z axis (the preferred axis). The
molecular distribution function is then

f, (cos8) = exp[(Voq/k y)(—,
' cos'8 —2) ] .

Using this distribution function and the two-body in-
teraction (1) we recalculate the one-particle poten-
tial

Nl d'~~dg, V, z (cos8») f(cos 2)
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Vp(p cos Hy —p) ((p cos Hp p)) f
3 p 1 3 2 (4')

The one-particle potential is self-consistent if the
order parameter g satisfies

7 = ((» cos 8 —&))f .

This is the fundamental equation of the Maier-Saupe
theory of the nematic phase which can be solved to
find q versus temperature.

In order to extend the Maier-Saupe model to the
smectic A phase, we assume a simple form for the
anisotropic part of the interaction

V, (r, , cosH, )= —(V/Nr p' )e '"'Pi"P'

X (p COS 812 —2), (7)

where x» is the distance between centers of mass
and ro is of the order of the length of the rigid sec-
tion of the molecule.

Now suppose that the molecules are preferentially
oriented in the z direction and that their centers of
mass sit on planes parallel to the x-y plane and in-
tersecting the z-axis at 0, +d, +2d, etc. The one-
particle potential that a test molecule would feel is

V, (z, cosH) = —Vp7i [1+& cos(2P z/d)](& COSPH ——,'),

where x2 and 02 are the position and angular coor-
dinates of molecule z, and the thermodynamic aver-
age is defined by

(A (cosH) )z

f' d cosHA(cosH) exp [(Vpg/kT)( ,'c-os'8- 2) ]
0

f d cos8 exp[(Vp7l/kT)( ,' cos-'8 —2) ]

The position of lowest potential energy of the test
molecule is with the center of mass lying in one of
the planes and with its long axis in the z direction.
Because of its thermal motion the long axis of the
test molecule will rotate away from the z axis and
its center of mass will move out of the plane. It
will still be preferentially oriented in the z direc-
tion and it will prefer to sit near the planes; that is,
there will be a density wave in the z direction. The
supposition that the other molecules sit on the planes
is too simple and we must seek a self-consistent
solution with a density wave in the z direction. Mo-
tivated by the form of Eq. (8) we assume that the
self- consistent one-particle potential is

Vg(z, cosH) = —Vp [tJ + 0'& cos (2p'z/d)] (p cos 8 —2 )

(10)
where g and o are the order parameters. The one-
particle distribution function is then

f, (z, cosH) = exp[- V, (», cosH)/k T].

Using this distribution function and the two-body in-
teraction (7) we recalculate the one-body potential

Vg(z g, cosHg)

& f d'xpdQp V,p(r, », cosH, p)f(z p, COSHp)

f d xpdQp f(z p, COSH&)

3 2 1 3
Vp [ (»cos Hg 2) (2 cos Hp p)y

+ & cos(2&» A/d) (p cos Hg —p)

x (cos (2pz p/d) (—,
' cos'Hp - 2) )& ] . (12)

Self-consistency of (12) and (10) requires that

where

o, =-2e (ffrolg)

'g = ((p cos 8 —2))g 1

o = (cos (2pz/d) (-', cos28 —2) )z,

(13)

(14)

and we have neglected higher Fourier components
of the potential.

where the average of a function of z and cos8 is
defined by

exp/(Vp/k T) [g +o o. Cos(2pz/d)](-, 'cos 8 ——,')f
"p ~p ' f~dZ f' dcosH exp](Vp/kT) [ri+o&cos(2pz/d)]( —,'cos'8 ——,')]$ '

(15)

Equations (13) and (14) must be solved self-consis-
tently for the two order parameters p and o. The
order parameter q was introduced by Maier and

Saupe and describes the orientational order; the
order parameter 0 describes the amplitude of the
density wave. Equations (13) and (14) exhibit three
types of solutions: (i) q =o'=0, no order character-
istic of the isotropic liquid phase; (ii) & = 0, 7i 40,
orientational order only, the theory reduces to the
Maier-Saupe theory of the nematic phase; (iii) g a 0,
0 40, orientational and translational order charac-

teristic of the smectic A phase.
In order to determine which of the three phases

is stable at a given temperature we must calculate
the free energy of the system. The entropy of N
molecules in the one-particle potential (10) is easily
evaluated;

—TS=+NVp(q +no ) —NkTln(d fp dz f dcos8

x exp[(V, /k T)(q+ o'o cos(2mz/d)) (—,
' cospH —,') ]] .

(16)
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I'=U-TS . (1&)

Equations (13) and (14) for the order parameters
can be found simply by minimizing the free energy
with respect to the order parameters. Finally the
specific heat at constant volume is given by

C~=T
BS

(19)

These are the equations which we need to calculate
the physical properties of the model. In Sec. III
we will solve these equations and calculate the tran-
sition temperatures and the order parameters, the
entropy, and the specific heat as a function of tem-
perature. Two physical parameters enter the the-
ory: Vp and a. Vp determines the nematic- isotropic
transition temperature and fixes the temperature
scale of the model. In what follows we will work
with the reduced temperature f = T/T„, = T/0. 2202VO.
The one remaining par'ameter is n which is the
dimensionless interaction strength for the smectic
A. phase. According to the model anisotropic inter-
action which we have used, we have

2 &
-&n'rP/fJ) ~

which can vary between 0 and 2. The interplanar
distance is determined by the competition between
the anisotropic forces which produce the smectic
order and excluded volume effects. The smectic
condensation energy is greater for larger values
of &, that is, for larger d. However, if one tries
to make d greater than the molecular length / it is
necessary to pack the molecules in the plane too
closely together and this is energetically unfavor-
able. The most favorable situation is with d of
order / as observed experimentally. Then the pa-
rameter n increases with increasing chain length
of the alkyl tails. This is an important correlation
which will be discussed in Sec. IV. The physical
picture of the molecular interactions which leads
one to this correlation is that the anisotropic inter-
action is due to the interaction of the rigid central
section of the molecules and that the function of the
flexible tail is merely to take up space and permit
a larger interplanar spacing. The same function
could be performed by an organic solvent and, ac-
cording to this picture, one would expect n to in-
crease with solvent fraction. One can, of course,
choose not to believe this argument and regard the
relationship between a and chain length, which is
established in Sec. IV, as purely empirical.

We have assumed that the direction of the density
wave q lies in the direction of the nematic preferred
axis. Actually, with a separable model interaction

The internal energy is just the thermodynamic aver-
age of the two-particle interaction

U= —2%V—
O (g + no ),

and the free energy is

of the form of (I) it is equally favorable energetical-
ly for the density wave to lie in any direction. This
is a peculiarity of the model interaction and it is
clear when one considers excluded volume effects
that the density wave direction will coincide with
the nematic preferred axis.

III. NUMERICAL RESULTS

In this section we will solve the self-consistency
equations (13) and (14) and calculate the order pa-
rameters, the entropy, and the specific heat as a
function of temperature for several values of inter-
action strength a.

In order to solve (13) and (14) we must be able
to perform the integration over z and cos6). To do
this we first expand f (z, cos8) as a power series in
o", for each term in the power series the z integra-
tion is easy and we must evaluate integrals of the
form

(-,
' cos'S —-', )" sx — (-', cos'S ——,')) S case

0

numerically. We keep as many terms in the power
series (usually 10-20) as necessary to obtain the
desired accuracy. In order to solve the self-con-
sistency equations we choose a value for a/t. We
then choose a trial value of q/f and use Eq. (14) to
determine t. Equation (13)will not be satisfied and
we must

glott'

—(icos 8 —z) versus q/t to find the
value of q/t for which q = ( —,'cos'8 —2) . We now
have the values of the two order parameters g and
o' at one temperature and can calculate the free en-
ergy and entropy. This calculation is performed
as a function of temperature and we find C~ from
the entropy difference at two successive tempera-
tures. When the phase transition is first order one
must compare the free energies in the two phases
at the same temperature to establish which phase
is more stable.

The transition temperatures as a function of the
parameter e are shown in the "phase diagram" Fig.
2. For cy & 0. 98 the nematic-isotropic transition
is Ts, ——1 (in units of 0. 2202 VO) and the entropy
change at the transition is b, S»=0.429RO [Ro= 1. 986
cal/(degmole)=8. 31J/(degmole)]. These are just
the values given by the Maier-Saupe theory since
our theory reduces to the Maier-Saupe theory in
the nematic phase. The smectic-A-nematic transi-
tion temperature is an increasing function of n and
reaches T» at n = 0. 98. The smectic-A-nematic
phase transition is second order for o. & 0. 70 and is
first order for 0. 70«&0. 98. The entropy change
at the smectic-A-nematic transition increases
from 0 at n = 0. 70 to 1.18Rp at cy = 0. 98. For &

&0. 98 the smectic A phase melts directly into the
isotropic phase and the entropy change is greater
than 1.68Rp.

To illustrate the three types of behavior, we plot
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FIG. 2. Phase diagram for theoretical model param-
eter 0.. Transition entropies are also shown.

and meets the nematic-isotropic transition temper-
ature. For large chain lengths one has only the
smectic A and isotropic phases. The other types
of observed phase diagrams can be regarded as
portions of this diagram. There are, of course,
other smectic phases which we omit from this dis-
cussion. From the thermodynamic point of view,
the cholesteric phase is a slight modification of the
nematic phase. The terms in the free energy which
give rise to the cholesteric twist are very small
and are unimportant for the thermodynamics. Thus
we can compare the theoretical model with both
nematic and cholesteric materials.

Ne have argued that the parameter n should in-
crease with increasing chain length. Therefore the
theoretical phase diagram (Fig. 2) of transition
temperature versus + can be compared with the ex-
perimental phase diagram (Fig. 6). The similarity
is obvious. Note that the variation of the parameter
Vo which determines T» according to the Maier-
Saupe theory is outside the scope of the model and
we hold Vo fixed. According to the theoretical mod-
el the T» curve is very nearly a continuation of the
T» curve, whereas experimentally the Ts, curve
is a continuation of the T» curve. %e can claim,

the order parameters, the entropy, and the heat
capacity versus temperature for three values of z.
For a =0. 6 (Fig. 3) the smectic-A-nematic transi-
tion is second order (Ts„/T„, = 0. 805) and the smec-
tic A order parameter o falls continuously to 0. For
a =0. 85 (Fig. 4) the smectic-A-nematic transition
is first order (Ts„/T» =0. 940) and the smectic A

order parameter o drops discontinuously to 0. Note
that the smectic A. and nematic order parameters
are coupled together and the nematic order param-
eter q also drops discontinuously at T». For n
= l. 1 (Fig. 5) the smectic A phase melts directly
into the isotropic phase (T»/0. 2202 Vo = l. 038) and

both order parameters drop discontinuously to 0.
The transition temperatures and entropy changes
for several values of z are listed in Table I.

IV. COMPARISON VfITH EXPERIMENT

A. Phase Diagram

I.O

K
UJI-
UJ
X

~ .5K
fL
K
UJ
O
K
O

O
IL

IL
O

~ 2
UJ

0 ~ .6

—20

O

UJ

O
IO

UJ
IL

There have been extensive studies of the liquid-
crystal transition temperatures in homologous se-
ries of compounds as a function of the number of
carbon atoms in the alkyl endchains. According to
Gray the most common type of phase diagram that
one finds is sketched in Fig. 6. For short chain
lengths, one finds the sequence of phases: iso-
tropic- liquid-nematic- smectic A. with decreasing
temperature. With increasing chain length, the
smectic-A-nematic transition temperature rises

S

Cy

REDUCED TEMPERATURE

I.O

FIG. 3. Order parameters q and 0, entropy S, and

specific heat C„vs reduced temperature kT/0. 2202VO
for the theoretical model with n = 0. 6 showing the second-
order smectic-A-nematic transition and the first-order
nematic-isotropic-liquid transition.
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however, to have a qualitative explanation of the
experimental phase diagram.
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FIG. 4. Order parameters, entropy, and specific
heat vs reduced temperature for 0. = 0. 85 showing the
first-order smectic-A-nem atic transition.

B. Transition Entropies

One striking feature of the theoretical model is
that it predicts a second-order smectic-A-nematic
phase transition for TsN/TNz & 0. 87 and a first-order
transition with increasing transition entropy for
larger values of TsN/T» (see Fig. 2). In Figs. '7

and 8 we show experimental transition entropies for
two homologous series —one nematic' and one choles-
teric' material —exhibiting this trend of increasing
ES,N with increasing Ts„/TN, . We can get a param-
eter-free comparison of theory with experiment by
plotting &S» versus T»/T» as in Fig. 9. The
solid line is the theoretical curve and the circles
and triangles are the experimental entropy changes
from Figs. 7 and 8. While the experimental trends
are correctly predicted the experimental magnitudes
of the transition entropies are a factor of two to
three less than that theory predicts. There are
probably two reasons for this magnitude discrep-
ancy. The mean field approximation overestimates
transition entropies by lumping together pretransi-
tion, transition, and post-transition entropies.
Secondly, the first-order character of this transition
arises from the coupling of the density wave to the
orientational order. The theoretical model assumes
that only anisotropic forces contribute to the stabil-
ity of the smectic A phase and thus overestimates
this coupling and overestimates the first-order na-
ture of the transition. The second-order region of
the phase diagram has not been identified experi-

TABLE I. Reduced transition temperatures and tran-
sition entropies (in units of gp) as a function of model
Parameter G. For G &0. 098 TNz/0. 2202+'p = 1 a11d

Nz =0 429.

Tsz/0. 2202 P'p

bK

0
OKI- 2-
LLI

S

~1am,

I-o
LJj
X
VI

—20
O.
O
KI-
O
M

K
I-
LLIT

U

10 o
LJI
CL
Vl

I

I.O
I

.8 .9 0

REDUCED TEMPERATURE

FlG. 5. Order parameters, entropy, and specific
heat vs reduced temperature for e =1.1 showing the first-
order smectic-A —isotropic-liquid transition.

2. 0
1.5
1.2
1.1
1.05
1.0

0. 98
0. 95
0. 90
0. 85
0. 80
0. 75
0. 70
0. 65
0. 60
0. 55
0. 50

1.398
1.192
1.074
1.038
1.021
1.005

TsN/0. 2202 P'p

0. 998
0. 985
0. 964
0. 940
0. 916
0. 892
0. 866
0. 837
0. 805
0. 769
0. 728

2. 52
2. 35
2. 11
1.96
l. 86
1 ~ 72

~SN

1.224
1.066
0. 845
0. 633
0.431
0.216
0
0
0
0
0
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ALKYL CHAIN LENGTH

FIG. 6. Typical phase diagram for homologous series
of compounds showing transition temperatures vs length
of the alkyl endchains.

gion. The experimental specific heat, with the
background subtracted, is shown in Fig. 10 versus
reduced temperature T/Tc&. The entropy is ob
tained by integrating the specific heat curve. In
order to compare the model with experiment we
choose a = 0. 95 so that the ratio of transition tem-
peratures T,c/Tc, is equal to the experimental ra-
tio 0. 986. The theoretical specific heat and entropy
are plotted as solid lines in Fig. 10. The specific
heat and entropy in the smectic A phase are in rath-
er good agreement with the experiment. However,
the details of the transition region are not well de-
scribed by the theory. The theoretical specific heat
in the cholesteric phase is far too small and the
transition entropy at the smectic-A-cholesteric
transition is too large. The trans. ition entropies
and the entropy at T/T« = 0. 95 are compared in Ta;
ble II. One expects deviations of this sort when one
uses the mean field approximation. In the mean field
approximation, pretransition and post-transition
effects are not treated properly and these entropy
contributions are lumped into the transition entropy.

mentally but it would require very careful specific
heat measurements to do so. The model predicts
a constant transition entropy=0. 429Ro at the
nematic-isotropic-liquid transition, whereas ex-
perimentally this transition entropy is observed to
increase with increasing chain length from 0. 06RO
to 0. 35RO for the nematic material of Fig. V. The
smectic-A-isotropic transition entropy b, S» in-
creases from 1.68Bo Bt g =0. 98 to 2. 52RO at &=2
according to the model. In the homologous series
4-4 azoxy-di(n-alkyl-o. -methyl cinnamate) Arnold'
finds that 4S» increases from 1.0Ro-atn=4 to
3. ORO at n = 12. The first two members of this se-
ries n = 2, 3 exhibit a nematic phase so that ~ = 4
should correspond to z =1. The qualitative trend
and the order of magnitude of 4S&, are correctly
predicted.

120

BIO

'I 00L'
DI-
K
W
CL

90Z

z0
I-

'cf 80
I-

70
SMECTIC A

z
O
I-
CAz

— .6 R

C. Specific Heat

Transition entropies have been published for sev-
eral homologous series of compounds; however,
only in a few cases have the full specific heat curves
been published. Here we compare the calculated
specific heat with Arnold's data for cholesteryl
myristate. The specific heat changes due to the
phase transitions sit on top of a large background
specific heat due to the internal motion of the mole-
cules. We estimate this background by fitting the
specific heat in the isotropic liquid with a straight
line and extrapolating into the liquid crystal phases.
This procedure is probably safe in cholesteryl
myristate since the isotropic liquid specific heat is
observed to be linear over a large temperature re-

4 6 8

ALKYL CHAIN LENGTH

I 0
Ip

FIG. 7. Transition temperatures and transition en-
tropy of 4-ethoxybenzal-4- amino-I- alkyl-o. -methyl
cinnamate vs alkyl chain length from Ref. 8. Filled cir-
cles denote nematic-isotropic transition temperature;
squares denote smectic-A-nematic transition tempera-
ture; and open circles denote. smectic-A-nematic tran-
sition entropies. The lines are drawn as a guide to the
eye.
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FIG. 9. Smectic-A-nematic (or cholesteric) transition
entropy versus ratio of transition temperatures TsN/TNz.
Solid line is the theoretical curve taken from Fig. 2;
open circles are the experimental data from Fig. 8; and

open triangles are from Fig. 7.

50 I
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FIG. 8. Transition temperatures and transition en-
tropy of cholesteryl esters of saturated aliphatic acids
vs alkyl chain length from Ref. 10. Filled circles denote
the cholesteric-isotropic-liquid transition temperature;
squares denote the smectic-A-cholesteric transition
temperature; and open circles denote the smectic-A-
cholesteric transition entropies.

V. CONCLUSIONS

We have presented a simple molecular model with
anisotropic forces and shown that, within the mean
field approximation, the model exhibits three
phases: an isotropic liquid, a nematic, and smec-
tic A phase. The nematic phase is described by an
orientational order parameter q = (-,' cos e- z) and

in the smectic A phase one has in addition. a density-
wave order parameter o' = (cos(2' jd)(z cos 8- z)).
The self-consistency equations for these order pa-
rameters were set up and solved to find the tem-
perature dependence of the order parameters, the
entropy, and the specific heat. By plotting the tran-
sition temperatures versus the interaction strength
~ we found a phase diagram similar to that for a
homologous series of compounds. The trends and
order of magnitudes of transition entropies were
found to be correctly predicted by the model. The
experimental evidence that we have examined indi-
cates that the theoretical model is a satisfactory
qualitative model for the smectic A phase.

The assumed molecular order in the various

TABLE II. Transition entropies and entropy at
T/Tcz ——0. 95 for the theoretical model (n =0. 95) and for
cholesteryl myristate.

~cz
~st:
S, T/Tcz = 0. 95

Theory

0.43
1, 07

—2. 04

Experiment

0. 51
0. 61

—2. 4

phases is as follows (assuming rigid molecules):
(i) In the isotropic liciuid there is free rotation of
the long axis of the molecules, free rotation about
the long axis, and random motion of the centers of
mass in three dimensions. (ii) In the nematic phase
the long axes line up preferentially parallel to a
direction in space and there is free rotation about
the long axis, and random motion of the centers of
mass in three dimensions. (iii) In the smectic A
phase the long axes line up preferentially parallel
to a direction in space, there is free rotation about
the long axis, the centers of mass sit preferentially
near planes normal to the preferred axis with an
interplanar spacing of the order of the molecular
length (the one-dimensional density wave), and the
centers of mass move randomly in the planes. In
all these phases if the molecules are asymmetric
and have a dipole moment it is assumed that the
dipole moments are not aligned.

It is worthwhile to list some of the assumptions
and approximations which we have made. (i) We
began with a grossly oversimplified intermolecular
potential (7). The connection between this model
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FIG. 10. Comparison of theoretical specific heat and

entropy with experiment. Solid lines are from the theo-
retical model with 0.'=0. 95 and the dashed lines are from
Arnold's data on cholesteryl myristate (Ref. 8).

potential and the structure of the molecule has not
been elucidated although we have suggested that in-
creasing the endchain length does not affect the
model interaction but rather permits a larger in-
terplanar spacing and a larger value for the param-
eter n. (ii) We have worked within the mean field
approximation which neglects short- ranged order
and the effects of the fluctuations of the order pa-
rameters. (iii} We have assumed a model of rigid
molecules which means, in effect, that we have
assumed that the internal motions of the molecules
are not affected by the phase transitions.

A number of experiments are suggested by the

present work. One can measure the smectic A or-
der parameter 0 directly by measuring the inte-
grated intensity of the smectic x-ray ring versus
temperature. This intensity, which should be ap-
proximately proportional to o, can probably be
normalized to an equivalent ring in the powder pat-
tern for the solid. One could measure the nematic
order parameter p in the smectic A phase by any
of the methods used in the nematic phase, for ex-
ample, from the anisotropy of the index of refrac-
tion. The values for a. which we find by fitting the
transition temperature ratio are a decidedly non-
linear function of chain length, whereas one would
expect a linear variation. It would be interesting
to measure the interplanar spacing d for a homolo-
gous series for which thermodynamic data are avail-
able, since the model provides a direct relation-
ship between 0 and d. It would be most useful in
assessing the quantitative validity of the model to
have a broader comparison with accurate specific
heat data. It would be interesting to know whether
the smectic-A-nematic transition actually becomes
second-order for small Tz„/TNz. Smectic-nematic
transitions with small T8„/TN, . have been observed
by Arora et al. " and are good candidates for this
second- order transition.

Qn the theoretical side it should be possible to
extend the model to the more highly ordered smec-
tic phases. It would be interesting to study the ef-
fects of fluctuations of the smectic A order param-
eter on various properties of the nematic and choles-
teric phases. One expects these fluctuations to af-
fect the smectic-A-nematic transition temperature
and even the nematic-isotropic transition tempera-
ture near the triple point. The connection between
the model parameters and the molecular structure
deserves some attention.
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