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An electrostriction mechanism for laser-hearn self-focusing and track formation in trans-
parent optical glass is analyzed theoretically. Electrostrictive self-focusing occurs when a
laser pulse of sufficiently high power and rapid rise time passes through a transparent medi-
um. For a pulse duration of 50 nsec, trapping thresholds vary from 20 kW to 2 MW. During
self-focusing, the beam collapses toasmall radius. In solid dielectrics, self-focusing causes
permanent damage in the form of isolated regions of gross fracture, termed "damage stars"
and long straight tracks of very fine fractures. Typical tracks have a diameter of a few wave-
lengths of light and extend up to several centimeters. Self-focusing occurs because of an in-
teraction between light and sound. The laser beam electrostrictively excites an ultrasonic
cylindrical disturbance or sound wave. The sound wave initially increases the refractive in-
dex along the beam axis. This focuses the beam into a waveguide channel called a filament.
In the filament, the intensity is so high that many nonlinear mechanisms may occur, leading
to damage and track formation. This paper analyzes only the self-focusing mechanism, not
the various damage mechanisms. We assume the beam always remains Gaussian. The prop-
agation of the beam is described by the quasioptics beam-tracing equation, which includes the
effects of diffraction. The sound wave and beam-tracing equations are solved in several ap-
proximate models. A trapping threshold is derived for three pulse shapes, covering the
steady-state, transitional, and transient regimes of pulse duration and beam size. There is
a trapping-power coefficient K for each material, calculable from the density, speed of sound
for a compression wave or elastic moduli, and refractive index at the laser wavelength. A
formula for computing the power to achieve a given constant maximum intensity I as a func-
tion of beam size, and pulse duration, and trapping-power coefficient is derived. .Values of
this given constant intensity have been selected so the constant-intensity curve closely match-
es experimental track-formation thresholds for three optical glasses. The results are K
=221 kW and I=2.5 GW/cm for dense flint glass, K=937 kW and I=60 GW/cm for borosili-
cate crown glass, and X=1119kW and I= 180 GW/cm for fused silica, at a fixed pulse dura-
tion of 55 nsec and a laser wavelength of 694.3 nm. A computer movie of beam trapping
shows the collapse of the beam to a relatively constant small radius, which causes track for-
mation. It also shows the extremely rapid upstream motion of the focal points at speeds
greater than 100 times the speed of sound. The long period of time they dwell at the upstream
end of their motion explains the appearance of damage stars at the upstream ends of the
tracks,

I. INTRODUCTION A. Track Formation Requires Self-Focusing Explanation

Since 1964, a large number of papers have re-
ported laser damage to transparent solid dielec-
trics. ' ' In this paper, our attention is limited to
track formation, i. e. , the formation of a damage
feature collinear with the incident laser beam, many
times longer than its diameter. Papers describing
track formation explicitly have been classified sepa-
rately in Table III. ' The phenomenon is evidently
related to laser-beam trapping in liquids. A
number of authors have analyzed the conditions
under which a laser beam may focus itself into a
long thin filament and propagate without diffraction
spreading. ' In liquids, the Kerr effect is the
predominant self-focusing mechanism. In solids,
the relative roles played by the Kerr effect and
electrostriction have been the subject of much dis-
cussion ' ' '

Track formation in optical glass by a ruby-laser
beam was first reported by Hercher. Observation
of the phenomenon could hardly have been earlier,
because a Q-switched laser is required to produce
the effect. He described the damage as regions of
gross fracture separated by lines of small bubbles
collinear with the laser beam. At nearly the same
time, Steinberg produced long tracks in optical
quality borosilicate crown glass with a beam focused
by a 46-cm focal length lens. ' The tracks were up
to several centimeters in length and a few microm-
eters in diameter. Later in the same year,
tracks were formed in fused silica and dense flint
glass.

The straightness of the tracks and the length-to-
diameter ratio rule out any explanation involving
fractures or sparks propagating from a point. The
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small track radius requires both self-focusing and
filament formation. Without self-focusing the mini-
mum beam radius in Steinberg's initial experiment
is about 20 pm. This is too large a scale for the
observed track radius. Self-focusing must maintain
this radius over an appreciable length of the track.
Without such filament formation, a beam only & in
diameter would spread out at a diffraction angle of
about 60'. The track is explained as the residual
damage after the high power of the laser beam is
concentrated in such a small filament. As the fila-
ment leaves the exit face of the sample, it spreads
through a very large angle by diffraction.

B. Role of Sound in Track Formation Process

Steinberg also observed an ultrasonic pulse which
propagates transversely when the laser beam passes
through a solid dielectric. The pulse was observed
both above and below the threshold for damage.
The pulse intensity was about the same for both
ruby and sapphire samples, so absorption at the
laser wavelength had little effect in creating the
pulse. "

The fundamental wavelength of sound excited by
the electrostriction is about equal to the beam di-
ameter. For a 200 p.m radius beam the sound fre-
quency is about 10 MHz. Thus, the sound waves
produced by electrostriction may be observed with
an ultrasonic transducer.

Steinberg also observed a back-scattered pulse
of stimulated Brillouin scattered light during track
formation. The pulse had a shorter duration and

faster rise time than the 55-nsec input laser pulse.
The polarization was the same as the incident laser
beam. The frequency shift corresponds to scatter-
ing from a longitudinal hypersonic wave having the
same sound velocity as the transverse ultrasonic
wave. The energy in the back-scattered pulse was
quite low, indicating that the stimulated Brillouin
scattering does not play a significant role in track
formation.

C. History of Self-Focusing Theory

The first extended analyses of self-focusing also
appeared in 1964. Chiao et al. ' discuss steady-
state laser-beam trapping for both liquids and sol-
ids. The critical trapping power was shown to be
proportional to the optical wavelength squared,
making it impossible to observe electromagnetic
beam trapping except at optical wavelengths. In

their analysis, the refractive index for the medium
was expanded in terms of the electric field strength

n=no+ —,'n2(E )

in cgs units as later corrected. ' The coefficient
n2 was assumed to be due to either the Kerr effect
or electrostriction in liquids, and to electrostric-

tion alone in solids. The trapping criterion used
was derived from the critical angle for total inter-
nal reflection from a plane surface, and the diffrac-
tion angle for a beam passing through a uniformly
illuminated aperture.

The subject of laser-beam trapping rapidly at-
tracted the attention of many physicists. Kerr-ef-
fect self-focusing in liquids was soon well investi-
gated experimentally. ' Simultaneously, many
theoretical physicists began analyzing steady-state
beam trapping, using the above constitutive relation
or extensions of it. ' Several mechanisms for
rapidly producing intensity-dependent refractive
index changes were identified, including molecular
reorientation, ' microscopic clustering, molec-
ular libration, ' and electronic polarizability.
All of these mechanisms are dependent only upon

the local mean-squared electric field, and all are
rapid compared with nanosecond laser-pulse rise
times. Thus, they all scale the same way; all pro-
duce a threshold for self-trapping almost indepen-

dent of beam diameter. While most authors followed

Chiao et al. in acknowledging that the relaxation
times for electrostrictive trapping were comparable
to the pulse duration, no one seems to have at-
tempted an analysis covering the transition between

the transient and the steady-state regimes. Several
authors compared the relative importance of Kerr
effect and electrostriction for steady-state trapping
in liquids. ' ' ' The general conclusion was that
Kerr effect predominates electrostriction in the

steady state, and achieves even greater preponder-
ance in the transient regime.

In solids, molecular reorientation and libration
are frozen out. The magnitude of the molecular
clustering effect has not yet been calculated for
solids. The remaining Kerr effect due to electronic
polarizability is quite small. Electrostriction is
therefore the most likely mechanism for self-focus-
ing of nanosecond pulses. As we shall see, the fact
that the electrostriction relaxation time is compa-
rable with the pulse duration helps to explain the de-
pendence of the power threshold on laser-beam ra-
dius and pulse duration. The other local rapid ef-
fects cannot explain the large experimental varia-
tion of the threshold with beam radius because they

all give a nearly constant power threshold for any

radius initial beam.

D. Electrostrictive Self-Focusing Mechanism

A laser beam can propagate with a constant small
diameter if the refractive index along the beam axis
is greater than the refractive index of the surround-

ing medium. This is simply the principle of fiber
optics or a light pipe. The beam is maintained in

the filament by total internal reflection. Electro-
striction increases the refractive index along the

beam axis as follows. The electrostrictive force
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in a homogeneous medium is the force on the medi-
um which tends to draw the material into the region
of high electric field. The electric field induces
dipoles in the medium. A dipole aligned with a
field will experience a force in a homogeneous me-
dium proportional to the gradient of the square of
the electric field, i.e. , to the gradient of the inten-
sity. The greatest magnitude of the force is found
at about the half-width of the intensity distribution,
that is, at the "edge" of the beam. Now consider
differential elements of rdxd~ lying in a plane per-
pendicular to the beam axis. As the laser pulse
rises, the force is suddenly applied to the differen-
tial elements, which were formerly at rest. Hence,
for times short compared to the time required for
sound to cross the beam radius, the displacement
of the differential elements is inward and propor-
tional to the force. It is easy to see that the inner-
most differential element is compressed. The next
element is compressed on the right-hand side but
decompressed on the left-hand side, so the net
compression is less than the compression of the in-
nermost element. The outermost element is actual-
ly rarefied. Thus the compression reaches a maxi-
mum on the beam axis. The refractive index is
perturbed by an amount proportional to the com-
pression.

A laser pulse of threshold power can therefore
create its own waveguide and propagate without dif-
fraction spreading. Laser pulses of more than
threshold power will focus themselves to a smaller
radius. At the smaller radius the intensity and the
gradient both increase, so the electrostrictive force
increases. This in turn leads to greater compres-
sion and therefore stronger focusing. Thus the
laser beam will collapse to a very small diameter,
limited by other processes.

When the beam has collapsed to a radius of a few
wavelengths of light, the intensity is so high that
many nonlinear effect may occur. The glass may
be permanently damaged by such mechanisms as
stimulated Brillouin scattering, nonlinear absorp-
tion of radiation, two- or three-photon absorption,
electric breakdomn, or generation of acoustic pho-
nons. The threshold for track formation is not set
by the threshold for any of these nonlinear effects.
Rather, it is set by the threshold for self-focusing.

A more extensive qualitative explanation of the
mechanism, including diagrams, has been published
previously. ' '

E. Scope of Paper

An electrostrietive laser-beam self-focusing
mechanism is analyzed theoretically here as the
initiator of track formation in optical glass. This
paper is limited to further mathematical elucidation
of the self-focusing mechanism. No attempt mill be
made to determine what mechanism causes the per-

manent damage when self-focusing has made the in-
tensity sufficiently high. Various damage mecha-
nisms have been reviewed by Bliss.

F. Plan of Paper

We will first discuss the light-sound coupling con-
stant. Then we will derive the sound-wave equation
for acoustic disturbances driven by electrostriction,
and find a general solution and several specific so-
lutions to within suitable approximations. Next, we
will discuss propagation of a Gaussian beam as de-
scribed by the beam-tracing equation. ' The equa-
tion is solved for various cases of propagation
through a homogeneous medium, and a medium
mhere the refractive index has been disturbed by
electrostrictively driven acoustic waves.

The theory of Secs. II and III is then applied to
laser-beam self-focusing. A curve for the trapping
threshold is obtained analytically for an approximate
model. In the same model, the achieved intensity
for a given laser pulse is obtained. A computer
movie shows the development of the beam trajectory
with time. Features shown by the movie help to ex-
plain the location of damage "stars" on the tracks.
The results of the paper are compared with Stein-
berg's experimental data, and an attempt is made
to characterize a failure intensity for the glass.

Results are summarized in Sec. V. The Appendix
sets forth useful properties of Dawson's Integral.
Table III represents a methodical search of the pub-
lished literature describing laser-beam trapping ef-
fects for pulsed lasers in solids and liquids. Many
of the relevant theoretical papers are also included.

II. RADIAL COMPRESSION WAVES DRIVEN BY
LASER BEAM

Electrostrictive laser-beam trapping is caused
by an interaction between light and sound. The
strong electric field of the intense laser beam ex-
erts an electrostrictive force on the material medi-
um through which the beam passes. The force
drives the sound wave. As the sound wave develops
it alters the index of refraction of the medium.
This in turn changes the trajectory of the beam and
modifies the electrostrictive force.

In this section, we begin by deriving the light-
sound coupling constant po&n/Sp from the photoelas-
tic properties. We then derive equations for the
sound wave excited by a given laser-beam intensity
distribution. We assume that the sound-wave am-
plitude is so small that the classical small-signal
acoustic equations apply. Furthermore, we disre-
gard all anisotropy of the medium, whether intrin-
sic or induced. This amounts to treating amor-
phous glass as a fluid. We seek solutions only for
laser beams which are not too sharply focused, so
that axial gradients of intensity are much smaller
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than radial gradients. The laser beam will have a
circularly symmetrical intensity distribution, al-
though it may be either linearly or circularly polar-
ized. Under these conditions, we may divide the
beam axis into thin differential sections dg, and

treat the sound wave as completely radial in each
section.

The general solution we obtain is applicable in

any given timestep, small compared with the time
required for significant alteration of the beam tra-
jectory. We use Hankel transforms to find the ra-
dial dependence of the sound wave as it propagates
in the infinite medium. The time dependence of the
solution for an arbitrary pulse shape is found using
Green's functions. The on-axis sound-wave ampli-
tude and its second radial derivative are calculated
explicitly.

A. Value of Light-Sound Coupling Constant

Liquids. The value of the light-sound coupling
constant poen/Sp may be found by several methods.
For liquids, it is only necessary to differentiate the
Clausius-Mosotti relation

n/3e om= (n' - I)/(n' 2+)p,

where the polarizability n per unit molecular weight
m is assumed to be constant for small density
changes. The formula is

po&n (no + 2)(no —1)
p 6no

This is called the Lorentz-Lorenz relation.
Experimental values for solids Ritland . has

checked the validity of the Lorentz-Lorenz relation
for samples of borosilicate crown glass whose den-
sity varied as a function of thermal history. ' His
experimental values differed from the Lorentz-
Lorenz relation by 36%. However, the changes in

density may have been accompanied by considerable
local reordering, which would not occur under
acoustic compression.

It is also possible to use values of po&n/&p mea-
sured under high hydrostatic pressure. These val-
ues usually differ considerably from those found by
the Lorentz-Lorenz relation, because the molecular
polarizability is not constant under high hydrostatic
pressure. Furthermore, the condition of hydro-
static stress does not match the condition of elec-
trostrictive stress caused by a gently focused laser
beam, as we shall show.

Computed valves for solids Under e. lectrostric-
tive stress, we can show that the stress is two-di-
mentional for a circularly polarized laser beam. In

this case, me may compute the light-sound coupling
constant from the tmo photoelastie constants for an
isotropic medium. First, we define the strain,
permittivity, and relative impermittivity tensors in
the standard way:

1 8u
'fj

Xg X)

where (u, , uo, u, ) is the displacement

BD; Eo &oBEg

8EJ ' e;, 8D;

The index ellipsoid is defined as

x;x, (e o/~ )„=1.
It has the following property. Pass a plane through
the origin of the ellipsoid, perpendicular to the
propagation direction of the light beam. The inter-
section of the plane with the ellipsoid will be an el-
lipse. The two wavefronts which may be propagated
through the medium in the given propagation direc-
tion will have refractive indices equal to the major
and minor semiaxes of the ellipse. The displace-
ment vector D corresponding to the higher refrac-
tive index vibrates along the major semiaxis.

For an undisturbed isotropic medium the index
ellipsoid is spherical with a radius of no. The
change in impermittivity with strain is given by the
fourth-rank tensor P&», . Nye' has shown that for
small strains the impermittivity tensor takes the
form

2
0/ )ti ''/ 0 + (p1111 p1122) fj+p1122ukk

for an isotropic medium. The two independent pho-
toelastic constants are often abbreviated P» and P».

For a two-dimensional radial compression we
have dp/p= -u», and u»=uoo= ——,

'
dp/p, while u33

and the off-axis components of the strain tensor are
zero. This makes the impermittivity tensor diago-
nal. The intersection of the plane perpendicular to
the z axis with the index ellipsoid is a circle. The
refractive index along the x and y axes may be cal-
culated as shown:

I/uo (peal +plo) dp/p

= I/(no+ dn) = I/no 2dn/no .

Comparison shows that the desired light-sound cou-
pling constant is

pod /dp 0 (p11+p12)'

For three-dimensional stress (hydrostatic stress),
the formula would be

podn/dp= o Bo (pyy+2pyo),

Radial compression from circularly polarized
beam. We mill nom shorn that the eleetrostrictive
compression is radial when the laser beam is cir-
cularly polarized and gently focused. Further, we
mill show that the strain induced by a plane-polar-
ized gently focused laser beam cannot be described
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as a compression.
We first obtain the permittivity tensor by taking

the reciprocal of the relative impermittivity tensor.
This is

1J 130 ~Qb11 +130 ~0[(p12 p11) +11 p1 2a22b11] '2 4

It is possible to derive the electric stress tensor
from this expression, starting with a consideration
of the free energy of a dielectric. A derivation is
given in Landau and Lifshitz. The electric stress
tensor is

S1y= 2(130 +'+0 P11 110 P12)&QEP1
2 4 4

—2(130 —&0 P12)&OE &11 .

While this formula was derived for the case of a
static electric field, we may use it for the high-fre-
quency light-wave electric field, provided we aver-
age the square of the field and use the refractive in-
dex nQ instead of 2/&0, as above. The forces be-
come the appropriate gradients of the average stress
tensor:

f; = s(s „)/sx, .
First consider the case of a circularly polarized

beam, in which the electric field components are

22( 2
E1 Ep cos+p E2= Ep sin(a)t E3 = 0 Ep

and the scale of variation of a with respect to z is
large compared with a. In this case the beam is
gently focused so all gradients of the electric stress
tensor with respect to z may be neglected compared
with gradients with respect to x or y. This means
there will be no need to compute such components
as s», s», and s». For this case the average val-
ues of the first two diagonal components of the elec-
tric stress tensor are

11) ( 22) 4 0 (P11+P12) 0 0

while the average value of the only off-diagonal
component of interest s» is zero. We may write
these results in terms of the light intensity, using
the average value of the electric field energy:

I=(Wz) 2/n c= 0ncz(oE 0) ~

In this case,

I= ceonQEo .
Because the average values of s» and s22 are equal,
the force is isotropic. The only significant gradi-
ents of the light intensity are radial, so we obtain
the isotropic radial force

f„=c (4 nQ ) (p„+p,2)
—=c p ——.

with (l) shows we obtained the correct value of the
light-sound coupling constant earlier.

Anisotropic forces from plane polarized beam
For the case of a plane polarized beam

E
y

—Ep COSCOt E2 —E3 0,

the average electric stress tensor is also diagonal,
with the elements

(211)= 4 (130 + 130 P11)&QEQ y

2 4 2

22) ( 33) 4( 0 0P12) 0 0'
There will be no force in the z direction because the
gradient of s» is negligible. Because the first two
stress tensor components are different, the forces
in the x and y directions are unequal, so the elec-
trostrictive force due to a plane-polarized beam is
anisotropic. Both compressive and shear waves are
generated, but the shear waves do not contribute to
the self-focusing process. A self-focusing analysis
for a plane-polarized beam would have to solve a
vector sound-wave equation for the displacement.
While the case is of considerable interest, it will
not be pursued here. Experiments have shown self-
focusing occurs with either linear or circular polar-
ization. Furthermore, Steinberg showed that the
exit beam is somewhat depolarized. Strong depolar-
ization of the exit beam for filaments trapped in liq-
uids was also observed by Close et al. '

B. Laser-Beam Intensity Distribution

The intensity distribution of a circularly symmet-
rical laser beam of the lowest-order transverse
mode is

-1 -2 -r2/gI(r, z, t) = W11 'a e " ~' q(t),

where a=a(z, t)=beam trajectory, W=pulse energy,
q(t) =pulse shape, normalized so

f"dt f"de f,"rdr I=W.

Jn the absence of self-focusing, a(z, t) becomes a(z)
only, and follows a hyperbolic path, as will be
shown in Sec. IIIA. We assume in all cases that

ea—«],
signifying symbolically that axial gradients of inten-
sity are much less than radial gradients.

C. Sound-Wave Equation

The small-signal classical acoustic wave equation
for a fluid, relating the displacement u to the force
density f, is

An isotropic radial force of this distribution pro-
duces a two-dimensional compression. Comparison

Q2
MV u+(A+M) V(V u) —

pQ 2
= —f' et'
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where A and M are the Lame elastic constants.
Defining the compression o= —V u, taking the di-
vergence of the above equation, and inserting the
electrostrictive force given above, we obtain the
compression sound-wave equation

B~o 1 Bn
Vr I K 3 ~

—VrI.
v Bt cv Bp

Because the beam is not sharply focused, the only
significant term of the Laplacian is the radial term

2V= +xBr BX

Here the speed of a compression wave is

The compression is just the fractional local in-
crease in density, so it is proportional to the local
increase in refractive index

Bnn=n +p —0.Q 0Bp

We may therefore immediately write a refractive-
index wave equation

1 B n pp Bn
Vn ——

2 2= g
—VrI.

v Bt cv Bp

D. Hankel Transformation of Radial Dependence

Define the Hankel transform as

F(R)= f rdr f(r) Jp(rR),

and its inverse as

+e'R'N= — p, —~ R'e ' " t' q(t).Bt~ 2mcpo Bp )i

E. Piecewise-Linear Green's-Function Solution
for Time Dependence

The refractive-index wave equation has now been
reduced to a second-order ordinary differential
equation. One important complication remains.
The driving function is coupled to the time depen-
dence of the beam tracing equation, through the
beam trajectory a. The latter equation is non-
linear. To proceed, we may use a step-by-step
solution. Choose a timestep 4t short compared
with the time required for significant changes in the
beam trajectory. Let there be n, time intervals and

n, +1 instants t~, chosen so tQ=O is the starting in-
stant of the pulse and t„, is the ending instant. Also
divide the axis into differential cross sections or
slices 4z, short compared with the distance re-
quired for significant changes in the beam radius.
Let there be n, slices, delimited by n, +1 planes,
z&, chosen so that so= 0 is the entrance plane, and

z„ is the exit plane. We may then allow the beam
radius to be constant, a= a» for the jth slice of the
beam and the kth interval.

First let us obtain the Green's-function solutions

d'f
dtz+&p f= &(t —t )

Multiply by e'"' and integrate from t= — to t=+~
to obtain

F (~) = e'"'/(~p'- (u').

The inverse Fourier transform

f(r) = J RdRF(R) Jp(Rr)

Integration by parts twice, using the Bessel function
recursion relations, will show that

r dr +r —J (rR) = —R F(R).f sf gsf p

B&2 B& O

0

The Gaussian is transformed as

f, r dr e " t' Jp(rR) = (—,
' a ) e ' " t 4 .

Define the Hankel transform of the refractive index
change as

N(R, z, t) = J rdr [n(r, e, t) -np] Jp(rR).

The refractive-index wave equation may now be
transformed to

may be evaluated by the theory of residues using
contours which enclose the poles of the kernel for
t —t'& 0. The result is

f(t) = sin[up(t t )]/(dp for t —t'& 0~

~0 for t —t'& 0.

Any arbitrary driving function may be considered
to be a continuum of 6 functions. Because of the
linearity of the wave equation, the response may
therefore be obtained by integrating the 6-function
response for each element of the driving function.
Thus, if the driving function were Q(t), the re-
sponse would be

f(t) = vp' f dt'Q(t') sin[&up(t —t')].

For driving pulse shapes Q(t) which have a definite



FI LAMEN TARY TRAC KS FORME 0 IN. . . II. . . 1201

starting point t= t„we may reduce the range of in-
tegration, provided that we include the "position"
and "velocity" attained by the end of the previous
timestep. The solution becomes

obtained from the inverse Haeckel transform as fol-
lows:

n»(r, z, t) =no+ fo RdRN»(R, z, t) Jo(Rr)

f(t) =(uo '
5,

' dt'Q(t') sin[a)o(t —t')j

+ f(t,) cos[&oo(t —t«)l+f (t«) ~o 'sin[|do(t t«)] ~

The piecewise solution of the transformed refrac-
tive-index wave equation may now be written down

by substitution. It is

2mcp, ]& Bp) v

&& dt'q(t') sin[vR(t —t ')]

+ N& «,(R, z, t, ) cos[vR(t —t„)]

On the beam axis, where y= 0, the Bessel function
Jo(0) = 1. Also, the second radial derivative may
be evaluated by differentiating the Bessel function
under the integral sign, assuming the usual physical
conditions of interchangeability of differentiation
and integration and using the recursion relations for
derivatives of Bessel functions. Thus,

B'J Ry =-'[8 (Rr) —J (Rr)]RBy'

Jo(0) = 0, J'o(0) = l.
The resulting distributions are

n»(0, z, t) = no+ f R dR N)«(R, z, t),

SN~, «,(R, z, t«) sin[vR(t —t„)]
Bt vR

B2
+ oo

R dRN (R z t).
By 2 fk

&0

A similar formula for the time derivative may be
obtained by differentiation with respect to t.

Once the integral has been evaluated for some
suitable driving pulse shape Q(t), formulas suitable
for machine computations can be obtained. An in-
tegration over R from 0 to must be performed to
invert the Hankel transform. We may divide the
range into subranges &R delimited by points Ro= 0,
R, = ~, through R„=n&~R for some suitable up-
per limit. Two arrays of size n&&n, must be re-
served in memory to hold the positions N& k, and
the velocities SN& «, /st. Initially the arrays are
cleared to zeros, signifying that the medium is at
rest before the start of the pulse. The positions and
velocities are then revised at each timestep accord-
ing to the above formula and its time derivative.
The inverse Hankel transform is computed, and the
resulting altered refractive-index distribution is
used to compute the new beam trajectory. The
computation has been carried out for some cases
of interest, which will be described later.

Another approach is to proceed analytically a
little farther and to invert the Hankel transform.
This task is not as hopeless as it first appears, be-
cause of an important circumstance. As we will
show in Sec. III B, to compute the trapping thresh-
old the refractive-index distribution need only be
found along the beam axis. Similarly, to solve the
equation of motion of the beam trajectory we need
only the second radial derivative of the refractive-
index distribution along the beam axis. The choice
of the beam axis as the line for computation reduces
the integrals to easily evaluated forms. To see
this, note that the refractive-index distribution is

We will presently show that these distributions have
become Fourier sine transforms.

It is possible to reexpress the Hankel transform
of the refractive-index solution in terms of a sum
of the piecewise solutions. Use of this form will
facilitate inverse Hankel transformation. Let us
prove by induction that the following form is cor-
rect:

2vrepov Bp & o

'&+i
dt'q(t') sin[vR(t„. , —t ')j.

tg

First of all, noting that

1 0g, -f

indicating that the medium is at rest, we find the
expression is correct for k= 0. Next, assume the
formula is correct for k —1. The time derivative
of the formula is easily found by differentiating with
respect to t«. Substituting this form in (3), and us-
ing the trigonometric formula

sin(n+ p) = sino. cosp+ coso.'sinp,

one can easily show that the formula is correct for
k. Therefore it is correct for all non-negative k.
The on-axis refractive-index distribution and its
second radial derivative may now be obtained by
Fourier transformation, interchanging the order
of integration on t ' and R. The result is
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8' ( 8n 2

Jk( q t k+1)= 0 ~pQ-
27l'cp0v ( 8p

xz f dt q(t')'( t)

a0

-a R 4dR e '1& " ~ sin[vR(tk„—t')].

D(x)=e" f,"e' d&.

Refer to the Appendix for properties of this func-
tion and computer programs to evaluate it. The
resulting formulas are now

~n
Jk( t Zt tkql) SQ p0

pcp0v 8p

A similar result holds for S 13»(0, z, t)/90', except
that the second derivative is replaced by one-half
the fourth derivative in the above expression. The
integral may be converted to a finite range by writ-
ing the sine as the imaginary part of an exponential
to i times the same argument, completing the
square in the expotential and shifting the variable.
This makes the integral equal

(2/a„) D [(vt...—vt')/a1, ].
We have used Dawson's integral

tion

Ã1(R z t) p
W -agp R~/4

2' ppV 8p

&& q(t„) [1—cos(vRt —vRt„)]

(q(t„,) —q(t )] sin(vRt —vRt ))

+ Ng k 1(R, z, tk) cos(vRt —vRtk)

BN&,k, (R, z, t„) sin(vRt —vRt, )
8t VR

The formula for the time derivative may be found

by diff erentiation.
& function. The response to a single impulse or

& function t)(t) occuring at t= 0 will be

8'R 8 -a 2&2g 4
N&0(R, z, t)= pQ

— e '»" ~ sinvRt.
2' p0v 8p

Parabolic Pulse. I et the driving pulse shape be
the single parabolic pulse

(3/2p)(t/p t'/2p'), o—- t - 2p

q(t) =

0 otherwise

tl-3
) d t (t. t)Dtt k+1

$~0 Qyg
t~

&'n1k(0, z, t„,) & Sn '
27Tcp0v 8p

t g~) tl
a 3 dtt (tl)g)t tlt k+1 (5)

A+0 g] a&&

This is the piecewise-linear Green's-function so-
lution of the radial sound-wave equation. It re-
quires knowledge of the beam trajectory at all the
preceding time instants t&. Further analytical pro-
gress can be made only by selecting the driving
pulse shape.

F. Solution of Transformed Wave Equation for
-: Various Pulse Shapes

Step plus Qamp d0'iv-ing fu-nction During a. ny
timestep, we may approximate the pulse shape q(t)
by the step-plus-ramp driving function

0 (t)=q(t )+[q(t. ) —q(t )](t—t )/«.
This gives a continuous approximation to the driving
pulse, with a step-function derivative. Substitution
and evaluation of the time integral yields the solu-

The full width at half-maximum of this pulse is
2' P. The solution becomes

1Q( t t ) 4 z PQ
P7l'CP0v P j

(t t [1—cosvRt] sinvRt

~(p 2p' + v'R'p' vRp

G. Solutions of On-Axis Refractive Index
for Specific Driving Pulse Shapes

For simple driving pulse shapes with a finite
number of nonvanishing derivatives, it is convenient
to integrate the refractive-index formula by parts.
This procedure- may even eliminate the necessity
for evaluating integrals. The on-axis refractive-
index formula becomes

8n' '
n, k(0, z, t„„)=nQ+ PQ ~ 3'll'cp0v 8p ] 0 Qgg

t'
(tt) ~ k+1

v a&,

0
g' t -2t„,-t q t
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t &+1"(t')dt'

aug

using D'(5) =1 —ÃD($). The form given may be re-
duced for computation, or solved explicitly for cer-
tain pulse shapes.

Step plus-ram-p driving function. For general
computation me may approximate the pulse shape
as in (6). The refractive-index distribution be-
comes

W(pose/Bp)3 ~ g~,
spy(0, z, t~„)=No+ mcpov, .0 V

+D
~

(qi.i -q~) 3 —2(t~i- «.~)q~. i~

5tI +g
—5t]~j) ag ]

3et„„-pt, & aug
I

(sw —~i) —
a

—2(4. —~d~i)

Here q, =q(t, ). All integration and differentiation is
eliminated, making this formula very suitable for
machine computation.

Rectangular Pulse. For the single rectangular
pulse

q t)= 1/P for 0& t&P
0 otherwise

angular pulse will excite the ramp response of a
linear system. Let the pulse shape be

t/p for 0& t& p

q(t)= 2/p-t/p' for p& t&2p.
0 otherwise.

s
II

(10)

The full width at balf-maximum is p, just as in the
case of the rectangular pulse, so the power P is
W/p. The response during the first half of the
pulse will be

s, (O, z, t)=&, + ';—, — -D —-t . (9)P(poen/s p) t vt ~a

mc ppv a& P a& vP

Consider the limiting behavior at the yeak of the
pulse, when t= p. The transient and steady-state
cases are the same as before, except N~ = -'„

while N, =1.
Pw'aholic Pulse. The parabolic pulse is very

close to the Gaussian in shape, and has two con-
tinuous derivatives throughout its duration. Let
the pulse be

a simple result may be obtained. Let the timestep
4t run from 0 to t, so only a single pulse is treated.
The second subscripts on n and a may be dropped,
and the sum covers only the zeroth term. Let
W/P =P, the pulse power. First and second deriva-
tives are zero, t, =t, to=0, and q, =q0=1/p. The
result is

2P(p, sn/sp)'t
n Oz t=m+

vcp,va,' a,

Consider the solution at the end of the pulse, when
t=P. The limiting behavior may be obtained from
series expansion of Dawson's integral, and by the
asymptotic expansion, as given in the Appendix.
For short pulses or large beams we have the trans-
ient case:

during the intexval 0 & t & 2p, and let the pulse be
zero otherwise. The full width at half-maximum
is 2 ~2 p, so the power P= W/2 ~ap. The refractive
index for a single parabolic pulse will be

»(p, »/s p)'
Pl/(Oy zy t) so+ 2/1 2 2frcpo8 ay

et /a ~

p 2p 'gp ag 5 P

At the midpoint of the yulse we have t =p. The
same transient response is obtained as for the
rectangular and triangular yulses, except that
fir = N, = 3/2 i = 1.061.

P(po»/&p)'p'
11m~~ ——11m n) = No+Kg
p~p g gCPpay

where the factor N&= 2.
For long yulses or small beams we obtain the

steady-state case:

P(p, »/sp)'
Bm g~ = lim n~ = go +a, 3 y

P a 0 peppy) ag

with the factor N, = 1.
Txiangulm'Pulse. The leading edge of a tri-

H. Solution of Second Radial Derivative of On-Axis
Refractive Index

Step -plus-ramp drive. We will show in Sec.
III that the most important ease for a con puter
model of beam trapping is the second radial de-
rivative of the on-axis refractive index for a
step plU8-lamp dr1V1ng function. Using 1ntegra-
tion by parts we may reduce (5) and (6) to

&%„(o,z, t,.) W(p, »»p)' g
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vty 1
—vtg pgg vt~l vtg gQ)D —

Q]~g D
a&& ay]

v ~t

vt„- vt& + vt, q
—vt„

ay] aj&

The derivative relations and the program for
D(x) in the Appendix may now be used for compu-
tations. Only half as much storage is required as
for the computation of the transformed wave equa-
tion.

Parabolic pulse. For a single parbolic pulse the
second radial derivative of on-axis refractive in-
dex becomes

~'n, (0, z, f) u'(p, sn/sp)'

x —-~+ ' 2 — + ——1 D

This result is useful in certain approximate cal-
culations. The quantity in braces may be ex-
panded in a McLaurin series to obtain

( "j=gv't'/spa, '.
Thus the response is initially proportional to the
inverse sixth power of the beam radius. This
proportionality dependence holds for any driving
pulse shape except a 5 function.

Rectangular pulse. The response to a single
rectangular pulse is

&n, (0, z, t) P(p lln/lip) 2vt ~(vt)3 42' pov a& a~ a~

As t- ~, the quantity in square brackets approaches
1. Thus the steady-state response is proportional
to the inverse fourth power of the beam radius.

III. BEAM-TRACING EQUATION

The propagation, focusing, and deflection of a
beam of Gaussian field distribution has been
studied extensively. Normally such a beam spreads
by diffraction, although the diffraction spreading
is smaller than the spreading for any other field
distribution. The spreading may be defeated by
placing lenses periodically along the path of the
beam, or by allowing the beam to propagate in a
continuous inhomogeneous focusing medium. The
trapping criterion gives the amount of focusing re-
quired to maintain the beam at approximately
constant diameter. There is also a stability con-
dition. If the beam is periodically refocused by

da A,

dz' (2',)'a'

This is the beam-tracing equation for a homogeneous
medium.

The propagation of a Gaussian beam in in-
homogeneous media has also been studied, sub-
ject to the paraxial-ray-tracing approximations of
geometric optics. The derivation started with
the geometric optics ray-tracing equation and
added Pierce's Gaussian beam expanding term,
the right-hand side above. The new beam-
tracing equation has a second term which charac-
terizes the radial inhomogeneity:

dz' (2vno)'a' n() sr' (12)

In the form shown here, we assume the inhomo-
geneity is azimuthally symmetric and collinear with
the propagation axis. The collinearity assumption
is certainly valid when the inhomogeneity is created
by passage of the beam through a homogeneous
medium. This equation may be used for the study
of "large-scale" beam trapping, i.e. , focusing of
beams to diameters of many wavelengths. Essen-
tially the same equation has been applied to the
study of Kerr-effect trapping. '

The beam-tracing equation is analogous to the
equation for the radial motion of a particle in a
central field of force, " letting a-x, z- t,
koano~- n)~/l~, and all terms except the first -f(x)/m
(choose I =1). This analogy only holds, of course,
if the second radial derivative of index is only a
function of a, and not a function explicitly of z.
A variety of solutions for different types of gravita-
tional potentials may be transcribed as beam-
tracing solutions. Homogeneous index corresponds
to the force-free particle. Transient electro-
strictive trapping in a section where the index
change is uniform in z corresponds to a linear
force.

means of thin lenses, the lens spacing divided by
the focal length must be less than 4 for stable
propagation.

Pierce analyzed the propagation of a Gaussian
beam in a homogeneous medium, starting with
Maxwell's equations. He showed that the beam
retains its Gaussian intensity profile, and only the
beam radius varies. Let the perpendicular dis-
tance from the propagation axis z to the point where
the intensity drops to 1/e of the peak on-axis in-
tensity be a, the beam radius. Then the beam
trajectory will be the function a(z). In a homo-
geneous medium, Pierce showed that
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A. Solution for Homogeneous Index

Hyperbolic traj ectories. Let a ' = da/ds. Then
the beam-tracing equation becomes a differential
equation in a alone:

1 d(a'), da' da 1 1 d(a )
2 da da dz kp np a 2kpno da

=~[(at)'+(kono) '(a, '-a ')]'/',
where the lower sign applies to a converging beam,
and the upper to a diverging beam. Multiply
through by 2a and rewrite as

a'onoda
2(a2/a 2 I)1/2

+da
2[(a/)2ao ~a2/k 2 2a 2 1]1/2

Integration of the first form gives the ray path in
coordinates centered at the beam waist where
z = z . The formula may be written in the standard
form for a hyperbola:

a' (z-e )'
a &ono a2 2 2 4 = ~

The second form can be integrated to give the
beam profile as a function of entrance conditions
and g:

a(e) = [(ao+at s)'+ z'/ko'no'ao']'/' . (13)

The slope at any point may now be given with no

ambiguous sign. It is

da / / Z—= a (z) (ao+aoe)ao+
dz kpWp ap

The distance to the beam waist for given entrance
conditions may be found by setting the slope above
equal to zero. This gives

—aoao
(ao)'+1/ko no'ao'

The distance is positive for an initially converging
beam.

This is easily integrated to give

(a ) + (konoa) = C& .
The constant may be evaluated at the beam waist
where a=a and a'=0, or at the entrance plane
z = 0, where a = ap and a = ap,/ /

(a')'+ (k, n, a) = (konoa„) = (ao) + (konoao)

To obtain the z dependence, take the square root
after transposing terms:

da/de=a'=a(kono) '(a„-a )
/

Beam radius Produced by Lens. For a beam of
small half-angular divergence 8 and radius ap in-
cident on a thin lens of focal length f, the slope
after passage through the lens is

ao= —ao/f+ 8 .

If the beam is collimated (8= 0), the distance to
the beam waist is not f but

1+(f/kon, a,')'

The beam radius at the beam waist becomes

f/konoao
[1+(f/konoao')']"'

In the above three formulas n, may be taken as 1
for air.

Invariance of a„. In computing the beam waist
radius in a glass sample of length L centered
around the focus of an external lens, a correction
may be made for the jump in refractive index
when the beam is normally incident on the entrance
face. Snell's law may be used to transform the
ray slope at entrance. The steps are as follows:

(i) Compute e„as above, with no = 1;
(ii) Compute a(e„—,'I ), with—no=1;
(iii) The angle of incidence 8; is

.f -(e„-—.'L)[i+(f/k, a, ')']
f'a(s --,'L)/ao'

(iv) The angle of refraction is

8„=(sin 8,)/no,.

(v) The entrance slope in the glass is

a'(s„—oL) = —tan8„;

(vi) and the beam radius in the glass is

a(z ——,'L)'" ]1+[k,n, a(s„--.'L) a'(e„-!L)]'P" '

The correction will be very small unless 8, is so
large that sine, is not approximately tan8, . Other-
wise, the reduction in slope is compensated by a
reduction of the wavelength in the medium, and a
remains unchanged.

Confocal Parameter. The semiazis bo of the
hyperbolic path equals konpa . The intensity drops
to one-half the waist intensity at this distance bp

along the axis on either side of the beam waist.
The length bo is termed the confocal parameter. "'
It is not invariant with change in index.

B. Solution for Kerr-Effect and Steady-State
Electrostrictive Trapping

Geometric limit. A great deal of experimental
and theoretical work has been done on Kerr-effect
trapping. The properties of a medium whose re-
fractive index may be characterized by n = no+ &n2
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2a 1 —T
2

Q
2 2 3

o no a
(18)

The form of the equation is exactly the same
as that for the homogeneous index case, provided
we modify the wavenumber ko. Introduce a
pseudowavenumber and a pseudowavelength such
that

1/k O' = K '/4v'= (1 —2')/ko'.

Then as T approaches 1, the pseudowavelength
approaches zero and the pseudowavenumber ap-
proaches infinity. In (16) and (17), as ko approaches
infinity, the distance to the beam waist increases
until it reaches the focal length of the external
lens, while the beam-waist radius shrinks to zero.
The beam envelope approaches a completely coni-
cal shape. This is exactly the geometric optics
behavior expected if the wavelength of light were
zero.

Above threshold the beam-tracing equation has
no valid solutions. This may be seen from (13).
A negative, zero, or complex value for a2would
be nonphysical. In Eq. (13), am is equal to a
quadratic expression in z. For physical solutions,
the quadratic expression must have no real roots,
where a would be zero. It will have no real roots
as long as the discriminant —4/ko no is negative.
The discriminant is negative as long as T is less
than 1. Thus, T = 1 is the trapping threshold. The
trapping power is P = c/4ko n2, which is a factor of
v/5. 763= 0. 545 less than that obtained by Garmire,
Chiao, and Townes for a beam having a uniform
intensity distribution. 7

erst integral and boundary conditions. The first
integral is easily obtained, as before. For con-
venience let us first scale the radial and axial co-

x(Ea} (in cgs units) have been studied extensively
and reviewed. '~ When we apply this refractive-
index distribution to the large -scale beam-tracing
equation we find a solution with an interesting
geometric optics interpretation. The solution pre-
dicts the downstream motion of the focus during
the rise of the pulse to the trapping threshold, but
it does not give the correct value for the minimum
beam-waist radius obtained above the trapping
threshold.

The Kerr-effect constant n2 is usually given in
the cgs units cm scca/g; to convert to MKSA units,
multiply by 10. The formula now becomes

n = no+ 2wna &p(E ) = no+ (2vna/cno) I,
where I may be the Gaussian intensity distribution
of (2). For convenience, we introduce the trapping
parameter

T=4Wq(t)n2ko /c .
The beam-tracing equation then becomes

ordinates by measuring in units of X/2vno. Then

A= konoa, Z= konoz, A'= &a/&z .
Use the chain rule for derivatives to obtain

= (k,n, )
, dA.

'
q d a

dg

The beam-tracing equation may be integrated at
once to give

(A')'+ (1 —r)A-'= C, .
In the usual experimental arrangement, an external
lens focuses a nearly collimated laser beam into
a sample of the medium centerd around the focus.
"Focus" here means the low-power focus, before
the beam power is so large that trapping effects
occur. At low power the beam propagates as in a
homogeneous medium. The waist radius a (or A )
is the low-power minimum of the trajectory, and
it occurs at z„(or Z ). The entrance conditions
of the beam are fixed, whether the power is high
or low, since the beam- diameter at the external
lens and at the entrance face of the sample is usu-
ally so large that the intensity threshold for non-
linear effects is not achieved, even at high power.
Then the entrance constant C, may be simply re-
lated to the low-power beam waist radius, as
before:

~i= (Ao')'+Ao'=A

The second form is particularly convenient, as it
permits choosing coordinates centered at Z, and
leaves open the choice of sample length for the
second integral.

Filament radius. The high-power minimum
beam radius A„may now be found by setting (A')
to zero (assuming A„«Ao}:

(2o)

As we noted before, there are no valid solutions
for T~1.

General traPPing criterion. The fractional in-
crease in index on-axis is

&n n(„~ —n, 2Wq(f)n2
no no cno a2 2

in this case. The trapping condition T=1, is seen
to be equivalent to

&n 1

no 2ko no a

the general trapping criterion for Gaussian beams.
The same result is obtained when the radial re-
fractive-index inhomogeneity is uniform, as we

will show later.
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C. Solution for Inhomogeneous Index Caused by
Electrostriction

Solving the beam-tracing equation for an inhomo-
geneous index distribution caused by el.ectrostric-
tion or thermal effects is much more difficult than
solving the same equation for Kerr-effect trapping.
In Kerr-effect trapping, the response of the medium
to the electric field is virtually instantaneous, that
is, very rapid compared to the rate of change of
intensity in a nanosecond laser pulse. This makes
it possible to relate the index inhomogeneity to the
instantaneous local beam radius. Therefore we

may separate the axial dependence z from the beam
radius dependence a in the differential equation,
and reduce the problem to quadratures. On the
other hand, for effects such as electrostriction or
thermal focusing and defocusing, the time lag for
development of the effect leads to a dependence on
the history of the beam radius. The leading edge
of the laser pulse travels as a low-power beam
would, along a hyperbolic path. This makes the
initial beam radius distribution a, hyperbolic function
of z. As we showed at the end of Sec. II, the elec-
trostriction effect leads to a refractive-index in-
homogeneity which is initially proportional to the
inverse sixth power of the beam radius. Therefore
the effect is strongly localized initially around the

low power focus. Because of this dependence, the
order of terms in the beam-tracing equation is in-
verse third power and inverse fifth power. As the
beam radius is always greater than a wavelength
until a track is formed, we see that the inverse
fifth power term is unimportant except for small
radii.

If the pulse rises slowly enough and the pulse is
long enough, a steady state is achieved. The elec-
trostrictive effect goes as the inverse fourth power
of the beam radius. It is therefore just like Kerr-
effect trapping, and all the previous analysis ap-
plies to it. The steady-state condition might be
achieved with long Q-switched laser pulses and

sharply focused beams.
First integxa/. Measure distances in terms of

X/2vno as in (18). A and Z are the scaled beam
radius and axial coordinate. I.et

1 n
a 3 a

kp np 4' „p

Even though E is a function of Z, when we replace
d A/dZ~ with A'dA '/dA, we reduce F to the status
of a parameter in the large-scale beam-tracing
equation. The first integral, with the constant
evaluated from the entrance conditions, is

(A }s+A '+EA = C -=(A ) +A 2+E A s

Second integral fox axially uniform inhomogeneity.

The second integral cannot be performed in general
when E is an arbitrary function of Z. In this case,
the differential equation may not be cast into a.

variables separable form, and no integrating factors
are known. However, in any short section of the
beam path, we may consider E to be constant.
(If the section is taken as the entire sample length,
the meaning of the phrase "gently focused" becomes
very stringent. } However, for such an axially uni-
form inhomogeneity, the equation may be solved.

Transpose, extract the square root, collect
terms in A and Z, write dA as dA~/2A, and obtain

+ dZ = -'dA (-EA + C A. —1) "
where the upper and lower signs correspond to an
initially diverging or converging beam, respective-
ly. For a real result, the integration range must
be in the positive. range of the radical. The. two
roots of the radical are

c, -(c,'- 4E)'", c,+ (c,'- 4E)'"
N 2E

The integral may now be written

A2 dA~
0) 2 [ F(A2' A 2)(A2 A 2)]1/2

o~

Focusing nzedium. For the case of a focusing
medium, F is positive. Stable propagation requires
that E be no more than —,

'
C3 . Given this condition,

both roots are positive. The integration range and
conditions may be summarized by

A„'&A' &A„'& 0 for —,
'

C,'& E&p.

Substitute

As= Cs/2E+ sin 8(css-4E)" /2E

integrate, and solve to obtain

c, (c,'-4E)'"
2E 2E

x sin[2F '1~(Z —Zo)+ sin 'g], (21)

where

Q = (2FAO —C~)(cs —4F) 'i .

As the range of the sine function is between —1 and
+ 1, the maximum beam radius is A„, and the min-
imum is A„. The width of the minimum is much
less than the width of the maximum, because A is
the square root of the above expression. This be-
havior reflects the physical condition that the beam
travels more slowly when it is concentrated in the
high-index region nea.r the axis, than it does when
it is spread out.

Defocusing medium When a po. werful cw laser
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2

PC EAR)( E)-llo]A o

The explicit solution for A is

Ao= C, /2E+ —,'[(1 —Coo/4F)/$+ 5](-E) '~

where

$ = [(-FAo + CoAo —1} ~ + (Co/2 —FAoo) (-F) ~io]

xexp[2 (-E}'"(Z —Z,)].
Basically, the beam diverges exponentially with
distance, perhaps after a short section of initial
convergence as may be caused by the entrance con-
ditions. If there is a section of initial convergence,
the minimum beam radius is A„.

Trapping criterion. In a focusing medium, con-
stant radius propagation can be achieved if the
entrance slope is zero and if C3 =4F, so the co-
efficient of the sine term in (21) is zero. This
also makes A~ = AN. The condition on the radial
inhomogeneity becomes E= Ao or

&o ~~ r o
2 (27(no)'a'

which just cancels the Gaussian beam diverging
term in the large-scale beam-tracing equation.

We may relate this result to the previous trap-
ping criterion. Since we have only the second
radial derivative of the inhomogeneity evaluated
on axis, we may choose the best-fitting parabolic
inhomogeneity:

r en
n(r}=ng (1~

2no

beam passes through a liquid or gaseous weakly
absorbing medium, thermal defocusing or blooming
occurs. The same phenomenon can occur in a
short section of a solid medium during transient
electrostrictive focusing as follows. Let the lead-
ing edge of the laser pulse rise rapidly. The
sudden onset of electrostrictive pressure drives
the transient sound wave. Depending on the pulse
shape and the dynamics of self-focusing farther
upstream in the medium, as the sound wave prop-
agates cylindrically away from the beam axis, it
may leave a trailing wake with positive curvature
of compression on axis. Therefore, for complete-
ness, it is necessary to consider defocusing, where
F &0, even in the electrostrictive case.

For a defocusing medium there is no stability
condition. The roots of the radical and the proper
range of integration now obey the inequalities

A &A~ & 0 &A~ for F & 0.
The integral is

+ (Z —Z,) = —,'(-E)-'" ln [(-EA'+ C,A'-1)'"

r'X'
—no 1 —

22 ~4

Now let &n be n(0) —n(a). Then

1
'"o 2 (2((noa)

exactly the trapping criterion derived before.

IU. MODEL SOLUTIONS FOR ELECTROSTRICTIVE
LASER-BEAM TRAPPING

In this section we will use the previous results
to discuss certain features of the trapping phenom-
enon. We will discuss the power threshold for
trapping in both the transient and steady-state
regimes of pulse duration versus beam size, for
a simplified model. In the same model, we will
calculate the maximum achieved intensity along
the beam axis. A computer movie will show the
development of the beam trajectory with time for
a laser pulse at or near the threshold for trapping.
We will discuss the variation of the self-focusing
length with time, which produces upstream and
downstream motion of the starting point of a track.

A. Transient and Steady-State Trapping Threshold

We have defined the self-trapping threshold as
the amount of self-focusing required just to offset
the tendency of a Gaussian laser beam to diverge.
Further self-focusing leads to convergence and
filament formation. During filament formation,
the light-wave electric field increases dramatically.
Within the filament, several nonlinear effects may
occur. However, at the self-trapping threshold,
the electric field intensity is not much greater
than the intensity in the absence of self-focusing.
This justifies our use of the small-signal acoustic
wave equations in deriving the self-focusing thresh-
old. The trajectory of a gently focused beam is
substantially unaltered by self-focusing, up to the
self-trapping threshold. On the other hand, once
the self-trapping threshold is passed, the beam
intensity increases rapidly in the propagation di-
rection. Thus, downstream from the point where
the self-trapping threshold has been reached, the
trapping threshold is greatly exceeded. This
process leads rapidly to filament formation. We

may therefore calculate the self-trapping threshold
by ignoring all changes of the trajectory until the
sound wave is strong enough to cause self-focusing.
The validity of this approximation depends on the
strong nonlinearity of the beam propagation e(lua-
tion. Experimental justification for this approxi-
mation is found in the precipitous nature of self-
focusing, as shown by the sudden change in exit
beam divergence angle.
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QX ppv
2 2

8 7@ip (po en / ep)
(23)

Under the above assumptions, the threshold may
be calculated algebraically, using the specific
result previously derived for the weak beam case.
The general trapping criterion (22) gives the in-
crease of refractive index on the beam axis re-
quired for trapping. Equation (8) gives the increase
in refractive index 4n = n& —np for a rectangular
pulse of power P. Solving for the pulse power
gives the trapping threshold power

4X ppv

16 ma(po &n/& p)2 (vt/ao) D(vt/ao)

Let us choose the pulse duration as the time t= p
when the sound waves have developed sufficiently
to reach the trapping threshold. Any portion of the
laser pulse occurring after this time will be trapped.
%e may collect most of the constant factors above
in a single coefficient

IOO
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This constant has the dimensions of power and is
termed the trapping-power coefficient. The re-
maing factors in the power-threshold formula

P„=K/2(vP/ao) D(vP/ao)

are of the order of unity when P —a /v0. For short
pulses or large beams we have the transient case

Z ao'
1~m Ptr= lim Ptr 2 2 p

p
' „' N vP

where the factor N~= 2. Thus the transient case
corresponds to an intensity threshold for fixed
pulse duration. For long pulses or small beams
we obtain the steady-state case

lim P,„=lim P„= K/N,
+p" Q

where the factor N, =1.
Thus the steady-state case corresponds to a

power threshold, and E is the steady-state trapping
power.

Similar results may be derived for a triangular
pulse or a parabolic pulse. From (9) we obtain
the power-trapping-threshold formula for trapping
at the peak of a triangular pulse,

P„=K/[1 —(a()/vP) D (vP/ao)].

The transient and steady-state cases are the same
as before except that N~ = 3, while N~= 1. For the
parabolic pulse, the power threshold from (10) is

P„=2'~ K/3[-,' —(a,/vP) D(vp/a, )

+ (ao'/v'p') f """D(()d&] .

Again the same transient response is obtained, ex-

FIG. 1. Trapping threshold for three pulse shapes.

cept that Nr =N~=3/2' ~2=1.061.
The ratio of the time required for sound to cross

the beam radius, a /v0, to the pulse duration P de-
termines whether the trapping threshold is a power
threshold or an intensity threshold. The power-
threshold case is the steady-state case, when the
ratio drops to values below unity, for either small
beams or long pulses. The intensity-threshold case
is the transient case, where values of the ratio are
larger than unity, for large beams or short pulses.
The trapping threshold for the three pulse shapes is
plotted as a function of the ratio in Fig. 1.

8. Evidence for Breakdown-Intensity Threshold

During track formation, a white flash of non-
polarized light, similar in appearance to an air
spark, is observed from the side of the sample. The
white light comes from the entire length of the
track.

The above fact suggests that electric field break-
down or multiphoton ionization causes the permanent
damage in the track. If so, for a given pulse dura-
tion there should be a certain maximum light inten-
sity the medium can withstand without damage. The
relevant intensity, of course, is the maximum in-
tensity achieved by the beam during the course of
self-focusing. This intensity is not directly mea-
surable. It must be calculated from the experi-
mental pulse energy and pulse duration, and the the-
ory of self-focusing.

C. Self-Focusing to Fixed Achieved Intensity

In the absence of self-focusing, the peak beam
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intensity is achieved at the peak of the laser pulse
and at the location of the beam focus. The intensity
is calculated from the measured pulse energy, pulse
duration, laser-beam angular divergence, and the
focal length of the external lens, using (13)-(15).
In a graph of the logarithm of pulse power versus
the logarithm of beam size, the constant intensity
lines are straight with a slope of 2.

When the beam power is large, self-focusing
alters this picture significantly. As the beam fo-
cuses itself, the achieved intensity increases rapid-
ly. The lines of constant intensity sag downward
into curves. At very high intensities, the curves
follow the trapping-threshold curve.

Constant achieved intensity curves for electro-
strictive self-focusing may be calculated in the
steady-state regime of long pulse duration and small
beam radius. We have derived an expression for
the beam radius achieved by a given amount of self-
focusing. Also, we calculated the self-focusing
coefficient for electrostrictive trapping, given a
fixed beam radius and pulse shape. These results
may be used in an approximate calculation. We will
use the precipitous approximation of the previous
model, in which we assume that the beam trajectory
remains relatively undisturbed until self -focusing
suddenly occurs. We also assume that in the region
of the beam focus, the beam radius may be consid-
ered constant. We will use the steady-state results
and extend them for some small distance into the
transient regime. Finally, we will assume the peak
achieved intensity occurs at the peak of the laser
pulse. In spite of the many approximations involved,
a useful result may be obtained.

The intensity is given by (2). Let us use the par-
abolic pulse (V) for the pulse shape q(t) The.
achieved intensity on the beam axis at the peak of
the parabolic pulse will be

I= 3 W/2mPa~ .
Defining the power as the pulse energy divided by
the pulse full width at half-maximum gives

P= W/2'i P

We may scale the high-power minimum beam radius
a„by the wavelength according to (19). Thus, the
beam radius required to achieve a given intensity
for a given beam power is

the pulse, on a length of the axis for which the beam
radius does not differ greatly from a . We may
insert this in (12). After simplifying the expres-
sions using the scaling relations (19) and the trap-
ping-power coefficient (23) we obtain the steady-
state beam-tracing equation

The term in square brackets approaches unity in the
steady state. It thus becomes independent of the
beam radius a . The above equation is now of the
same form as (18), where the term in braces is
equal to T. The relation between the high-power
beam radius achieved by self-focusing and the low-
power beam radius is given in (20). Equating this
result with (24) gives the desired relation between
the pulse power P and the low-power beam size.
Solving, we have

& 21/2
3

1/vIa~~+ (vp/a~)D(vp/a~)/K

This equation has been plotted in Fig. 2 for sev-
eral constant intensities. The achieved intensity
may be compared with an electrostrictive trapping
intensity given by

IO

O. I

a' = 3 u 'n ' / '"~I . (24)

The second radial derivative of the on-axis re-
fractive index at the peak of a parabolic pulse is

8'n(0, z, P) 2' 3P(PO&n/SP)' vP D vP
8x mcpov a2 2 4 a a

O.OI
O. l IO

from (11). This assumes the refractive-index dis-
tribution was established by the leading portion of

FIG. 2. Constant intensity curves for electrostrictive
laser-beam trapping. Broken lines give power required
to achieve the given intensity without trapping.
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Property
Fused Borosilicate
silicaa crownb

Dense
flint'

Refractive index n
at 694. 3nm

Density p(kg/m3)

Young's modulus Y
(GN/m2)

Modulus of rigidity M
(GN/m2)

Calculated Lamd elastic
constant A(GN/m )

Calculated compression
wave speed v(m/s)

Measured po bg/~
Trapping-power coefficient

K using above (kW)

Calculated p08n/&p
(Claus ius-Mosotti)

Trapping-power coeffic ient
K using above (kW)

1.455 48

2200

73.08

31.16

16.44

5980

0.29"

3697

0.527

1119

1.513 24

2510

81.49

33.73

24. 02

6037

0 27e

4768

0.609

937

1.750 31

4720

55.80

22. 36

21.96

3759

0.995

221

aEngelhart Suprasil I.
Schott BK-7.
Schott SF-55.

~R. M. Waxier et aE. , J. Res. Natl. Bur. Std.
(U. S.) 69A, 325 {1965).

R. M. Waxier (private communication).

TABLE I. Physical properties of three optical glasses. experimental track formation thresholds.
Table I lists the known physical properties of the

three optical glasses tested by Steinberg. As we
noted earlier, the value of the trapping-power coef-
ficient varies widely depending on the value of the
light-sound coupling constant used. For consisten-
cy, we have used the values obtained by the Clausi-
us-Mosotti relation. These values produce the best
agreement of the theory with experiment.

The trapping threshold and a curve of constant
intensity are plotted for each of the three test glass-
es in Figs. 3-5. In each figure, the broken-line
curve is the trapping threshold for a parabolic
pulse, using the value of K indicated. The change
in slope of the curve occurs approximately at the
low-intensity beam radius equal to sP. In the ex-
periments, the pulse full width at half-maximum
was 55 nsec, soP =39 nsec. The solid curve gives
the power required to achieve the indicated fixed
intensity with the aid of self-focusing. The value of
the intensity was chosen to give a good fit to the ex-
perimental data points. Each circle on the figures
represents a single experiment in which a laser
pulse passed through the glass sample. If no track
was produced, the circle is open; otherwise, it is

IET =&/v(vP)', 5000 I I I I I I I I I
I I I I l I I

the intensity (without self-focusing) of a beam having
the trapping-power coefficient as its power and a
pulse duration equal to the time required for sound
to cross the beam radius. For I~IET, self-focusing
is weak. The achieved intensity is equal to the in-
tensity calculated without self -focusing. When
I»I~T, self-focusing greatly reduces the power re-
quired to achieve a given intensity. In the limit of
higher and higher achieved intensities, in the tran-
sient regime, it appears that the power required is
set by the threshold for trapping rather than by the
desired intensity. We must not try to extend this
result too far into the transient regime, as it de-
pends on a steady-state trapping formula. We may
expect the true achieved intensity curve to rise more
rapidly in the right-hand side of Fig. 2 than our ap-
proximate solution indicates.

lf (vP/a„)D(vP/a ) is replaced in the above equa-
tion by its steady-state value of 2, we obtain an
equation similar in form to one derived by Zverev. ~
He attributes the self-focusing to a combination of
thermal trapping and electrostriction. In the case
where the absorption coefficient of the medium is
very small, electrostriction is dominant over ther-
mal trapping.

IOOO

500—

CL
Lij
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IOO-
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M

50-

10—

5
lopm IOOpm

LOW INTENSITY BEAM RADIUS o~
Imm

D. Numerical Comparison with Experimental Track
Formation Thresholds

The theory may be compared with Steinberg's

FIG. 3. Track-formation thresholds in dense flint glass.
The threshold lies between the solid and open circles,
which represent track formation and no damage, respec-
tively.
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FIG. 4. Track-formation thresholds in borosilicate crown
glass.

jectory was not significantly altered during the first
portion of the laser pulse. We also considered only
a slice of the beam so short that the beam radius
was approximately constant in it. Under these as-
sumptions, the driving term of the sound-wave equa-
tion had a constant dimensional scale, the beam
radius. After the sound-wave amplitude had in-
creased sufficiently, we computed its effect on the
beam radius, using the beam-tracing equation for
an axially uniform medium. Considering the beam
radius to be constant in space and time until it
changes suddenly may seem to be a drastic approxi-
mation, but fortunately it produces good results.
The accuracy of the results has been checked by
computation.

Method of Computation. First, we replace the
precipitous self-focusing approximation and the ap-
proximation of beam radius constancy in the focus
region by the stepwise interaction and axial slice
approximation. The beam axis was divided by 101
transverse planes into 100 slices each 0.125 cm
thick. The pulse duration was also divided at 101
time instants into 100 time intervals. The computa-
tion proceeded in steps as follows:

(i) The initial time instant was to= 0.
(ii) The beam radius was computed at each trans-

verse plane along the axis. In this computation, the
beam-tracing equation was solved by a standard

5000 I I I I I I III
filled. Thus, the experimental threshold lies be-
tween the lowest filled circle and the highest open
circle at each beam radius. The beam radii were
calculated from the lens focal length, the known di-
vergence of the laser beam, and the beam radius at
the external lens according to the analysis presented
earlier.

A summary of the thresholds of self-focusing pa-
rameters for the three glasses is given in Table II.

The worst disagreement between theory and ex-
periment is about a factor of 2 for dense flint glass
at 200 p,m beam radius. At all other points, this
agreement is much closer. We note that in the
transient regime, to the right of the figures, the
constant intensity curve should probably rise more
sharply to give better agreement with experiment.
This may be due to our extension of the steady-
state beam-tracing solution into the transient re-
gime. In view of the many approximations required
to obtain a theoretical model, the agreement is
satisfactory.

E. Computer Movie of Beam Trapping

FUSED SIL ICA

I = I80.GW/cm~
K = III9 kw

IOOO ~——

~ 5oo

K
ILI

C)
IOO-

LLI
M

5o-

lo—
vp = 255/m

Beam trapping is caused by the interaction of
light and sound waves. In Secs. IV A and IV C, ~e
have obtained results analytically only by ignoring
most of the interaction. We assumed the beam tra-

5
loym

» i I

loopm
LOW INTENSITY BEAM RADIUS gm

I I I I t

Imm

FIG. 5. Track-formation thresholds in fused silica.
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creasing strength and decreasing focal length. By
the fifth frame the focusing strength of the sound
waves near the initial focus has increased enough
to bring the beam to a second focus farther down-
stream. By the sixth frame this second focus has
also moved rapidly upstream. The whole beam
reaches a relatively constant small radius for a
considerable distance along the axis, just as the
laser pulse is at the peak. We note that the onset
of trapping was quite sudden, between the fourth
and fifth frames.

As the laser pulse dies away in the seventh
through eleventh frames, the focal points continue
to move upstream. Eventually, at the end of the
pulse, the third focal point begins to move down-
stream again. Of particular interest is the long
period of time the focal points dwell at the upstream
ends of their range of motion. The first focal point
stays in almost the same position for the last third
of the pulse. At the very end of the pulse, the re-
gions which earlier formed the strongest acoustic
lenses have already relaxed and become diverging
lenses, while the regions between them are ap-
proaching their maximum focusing power. The net
result is several regions of sharp focus separated
by regions of large beam radius.

Between the fifth and tenth frames the first focus
moves upstream a distance of about 350 a in a time
1.0P =0. 7 a„/v. Thus the speed is about 500 times
the speed of sound. Probably the speed would be
slower for a more sharply focused beam. The
speed and upstream propagation have been con-
firmed by two experiments. '5

F. Dynamic Explanation for Location of Damage Stars

Steinberg investigated several dynamic aspects
of the track forma. tion phenomenon. Near the
threshold power, the starting point of the track was
found near the focal point of the external lens. As
the power level was raised above threshold, the
track starting point was found farther and farther
upstream, but always a centimeter or so down-
stream from the entrance face of the sample. This
same result was reported by Zverev. A particular
feature of the damage noted by Hercher and Stein-
berg was the appearance of gross regions of frac-
ture, called damage stars, usually at the upstream
ends of the tracks. Using filters, Steinberg showed
that laser light is side-scattered during track for-
mation, but only from the points where the damage
stars are found. This indicates that the fracturing
of the damage stars occurs before the end of the
laser pulse.

The track cannot start at the entrance face of the
sample, because some initial length of the sample
must serve as the region in which self-focusing
occurs. Clearly, track formation must occur before
the damage stars are developed. Otherwise, the

damage stars would scatter the laser beam at wide
angles, and cast a shadow over the region of the
track. As the computer movie shows, the beam
first becomes self-focused into a filament. Sharp
foci, moving rapidly upstream, appear later. These
foci dwell for a relatively long time at the upstream
ends of their motion. The high electric fields at
the foci cause the most extensive destruction there.

G. Depolarization of Light in Filament

The transmitted light is depolarized as a function
of a.zimuth during trapping of a linearly polarized
beam (Paper I, Fig. 12). The effect is apparently
explained by a third term which appears in the vec-
tor light-wave equation when refractive-index in-
homogeneities exist in the medium. Under these
conditions, the vector light-wave equation is

22- 2 2~E
V E-nc 2

= —V(E ~ Vlnn) .9t

The term on the right-hand side is significant only
when the scale of variation of the refractive index
is comparable to a wavelength of light. This condi-
tion occurs during track formation in glass, as the
beam diameter also approaches a wavelength of
light. The term provides coupling between the Car-
tesian components of the electric field. Thus it
tends to depolarize a linearly polarized beam.

Let the incident laser beam be linearly polarized
along the x direction, so

E„=Eocoset, E,=E,=O .
Let a polarizer be placed at the exit face of the
sample, with its axis in the y direction. During
track formation, the intensity in the center of the
filament is high, and the polarizer leaks enough
light to expose the central region of the photograph.
An interesting effect occurs at the edges of the
beam, where the intensity is weaker. On either
side of the beam, along the x axis, the gradient of
refractive index has only an x component. The dot
product of this with E„is therefore nonzero, but
the gradient of this dot product again only has an x
component. The right-hand side of the above equa-
tion therefore does not couple energy into E„so
there is no depolarization and no light is transmitted
through the polarizer.

Now consider the regions above and below the
filament, on the y axis. Here the refractive-index
gradient only has a y component, so the dot product
with E, is zero. Again there is no depolarization
of the light-wave field.

Finally, consider the areas on the beam perimeter
which do not lie close to either the x or y axis. In
these areas the refractive-index gradient does have
an x component, so the dot product with E„is non-
zero. Also, the gradient of the dot product has ay
component. Therefore, in these regions there is
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coupling into the E, component. The resulting de-
polarized light is transmitted by the polarizer. This
explains the peculiar cross-shaped pattern of light
photographed by Steinberg.

V. CONCLUSIONS

An electrostrictive mechanism has been shown to
be a cause of track formation by Q-switched lasers
in optical glass. The mechanism involves an ultra-
sonic radially propagating sound wave excited
through electrostriction, and beam focusing by the
sound-wave compression.

Electrostriction can produce an acoustic lens to
self-focus the laser beam, even in times short
compared with the relaxation time. The self-focus-
ing causes the laser beam to collapse to a small
radius and to achieve high intensities. At the high
intensities, the thresholds for many nonlinear ef-
fects may be exceeded. Thus, the actual cause of
damage associated with track formation is not iden-
tified, but the track formation threshold depends
on the self-focusing or trapping threshold rather
than on the intensity threshold for any given non-
linear phenomenon.

We obtained the electrostrictive trapping thresh-
old power as a function of beam radius and pulse
duration for three pulse shapes. Given the wave-
length, beam radius, pulse duration, and pulse
shape, the trapping threshold may be computed for
any isotropic material for which the density, speed
of compressional sound waves or elastic moduli,
and refractive index at the laser wavelength are
known.

We also gave a formula for the power required
to achieve a given maximum intensity, as a func-
tion of beam radius and pulse duration. The family
of curves for different intensities may be classi-
fied in two groups. If the desired constant intensity
is small compared with the electrostrictive trapping
intensity defined in (25), no self-focusing effects
occur, and the power required may be computed
from the given intensity and the beam radius. If
the desired intensity is large compared with the
electrostrictive trapping intensity, self-focusing
greatly reduces the power required to achieve the
given intensity.

A comparison of the trapping threshold and a
fitted value of the intensity threshold with experi-
mental track-formation thresholds for each
of three glasses showed substantial agreement.

A computer movie of beam trapping was pre-
sented. The computation fully included the interac-
tion effects between light and sound. The movie
showed the self-focusing of the beam to a relatively
constant small radius throughout its length. It al-
so showed the upstream motion of the focal points
during the trailing part of the pulse, with a speed
greatly exceeding the speed of sound. The focal

points dwell for a considerable length of time at the
upstream end of their range of motion, and may
then recede downstream.
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APPENDIX: DAWSON'S INTEGRAL

Definition.

D(x) = e * f e' d5 .
0

Fourier transform representation.

/4D(x)= f, —,'e ' t'sin5xd$ .

Relation to error function.
~ z 1/2 -xaD(x)= (i2m't )e" erfix

Derivatives.

D' = 1 —2xD,
D" = -2x+(4e- 2)D,

D"'=4x —4+ (12x—8x )D,
D""= 20x - 8x + (12 —48x + 16x )D .

McLaurin series exPansion.

D x- x+ x—2

Asymptotic expansion.

lim D= —i&m' e "

Limiting behavior.

lim 2xD=1 .
pa 00

Daseson's aPProximation.

2m' ae" =1+22 e" 4coshnx,
n=l

relative error & 2&&10="
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ComPuting method.

D(x) = (1/2m'~')

x(xe +5~ exp[- (x- —,'n) ]/n —exp[- (x+-,'n) ]/n).

For negative x, use D(- x) = D(x). To prevent un-
derflow, do not compute the first term if x & 6.
Compute the first term of the sum from 1 through
the greatest integer & 8 —2x, and not at all if
8 —2x& 1. Compute the second term of the sum from
the maximum of 1 and the greatest integer & 2x —8,
through the greatest integer & 2x+8.

A FoRTRAN subroutine based on this method gave
the same result + 0.00002 as Abramowitz and
Stegun. "3

Integral, . An approximate formula for the inte-
gral of Dawson's integral may be obtained by the
above formula and term-by-term integration:

J D(()d( = [1 —exp(- x ) ]/4p'~

+Z [erf(x- —,'n) —erf(x+ &n)+2erf(-,'n)]/4n .
n=1

The upper limit of the sum may be 50 with entirely
adequate precision. The error function may be
computed using

erf- x= erfl xl

and

1
erfx=- 1 ——

8(1+x(aq + x(aq+ x(aq+ x(a4+ xa, )))))

for x&0, where

a~ =0. 1411282, a~ =0.088 6403, a3=0. 027433 5,

a4 = —0.000 394 5, a& = 0.003 289 8.
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