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The equations describing the transfer of intensity from a pump beam simultaneously
to forward and backward stimulated scattered beams in an infinite medium are shown
to lead to pulsations similar to relaxation oscillations in the scattered intensities. The
period of the pulsations is simply re1ated to the gain length for the forward-scattered
beam, and may be much longer than the ordinary transient time (related to the damping
of material excitations) usually associated with stimulated scattering. Similar oscilla-
tions occur for backward scattering alone (stimulated Brillouin scattering) if the scatter-
ing medium is finite. In this case the period equals the photon round-trip time in the
medium if the latter exceeds the backward gain length. Both phenomena should be ob-
servab1e in scattering from gases such as N2 and H~ at high pressure, and may a1so
play a role in determining the temporal structure of 1ight scattered from the region of
a self-focus in liquids.

I. INTRODUCTION

The transient growth of light scattered inelasti-
cally from thermalor quantum fluctuations in a me-
dium has been examined theoretically by previous
authors in a variety of special cases. A typical
analysis begins with the set of coupled equations
describing the motion of a limited number of modes
of the optical radiation field and of the medium.
These are then simplified using various plausible
assumptions about the mechanisms responsible for
the particular phenomenon under investigation.
Thus Kroll' has analyzed the growth of stimulated
Brillouin scattering in the low conversion regime
where linearized equations are valid. Similar stud-
ies of stimulated Raman, thermal, and Rayleigh
wing scattering have appeared more recently. ~

Tang' has extended the Brillouin scattering analysis
to the nonlinear high conversion regime. Recently
Maier, Kaiser, and Giordmaine have investigated
transient solutions of nonlinear equations describing
the interaction of backward-Raman-scattered light
with the driving beam. In this paper we report the
results of a similar theoretical study in which it
was found that the backward-scattered beam experi-
ences transient behavior resembling relaxation os-
cillations, the duration of which may vastly exceed
the transient periods studied in the linear regime.

This behavior has nothing to do with self-focusing,
but occurs under very general conditions.

There are two related kinds of "relaxation" os-
cillations in stimulated scattering situations involv-
ing backward-scattered waves. Both are most con-
veniently observed in the time dependence of the
backscattered intensity at the entrance to the scat-
tering medium.

The simplest case is the finite cell oscilla-tion
which can occur whenever a forward-traveling pump
beam drives a stimulated scattered beam in the
backward direction in a finite medium. The period
is proportional to the sample length L, and there-
fore no oscillations of this type are observed if the
sample length is infinite.

In contrast, three-suave oscillations may be ob-
served even in a medium of infinite length, but
stimulated scattering must occur in the forward
as well as in the backward direction. These are
similar to the finite-cell oscillations in that the de-
pletion of the incident pump beam intensity by the
forward wave effectively truncates the region in
which the backward wave experiences gain. Thus
the period is proportional to the distance L& over
which the forward wave travels before growing to
an appreciable fraction of the pump intensity. (We
are assuming for simplicity that the pump intensity
remains constant at the cell entrance, after the
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beam is switched on abruptly. ) In either case the
oscillations may occur for many cycles before the
intensities relax to a steady state.

In Sec. II we discuss the equations from which
this behavior is inferred, and how they are related
to realistic experimental cases. Section III con-
tains a detailed account of the properties of the so-
lutions of these equations, and Sec. IV a numerical
example for hydrogen and nitrogen gas.

II. APPROXIMATE EQUATIONS DESCRIBING
STIMULATED SCATTERING

We restrict ourselves from the beginning to the
one-dimensional geometry in which light may travel
either forward (+z direction) or backward. Fur-
thermore, we examine only a single mode of the
scattered light at each of the widely spaced frequen-
cies of interest, or at most a group of modes of
the same polarization whose frequencies lie in nar-
row intervals about a given value. We also ignore
the effects of optical dispersion, an omission that
will be corrected in future publications dealing with
more specific experiments.

Our hypothetical system consists of a medium
occupying the "cell" 0&z &L and a monochromatic
"pump" beam initially of intensity Io traveling in
the +z direction which first enters the medium at
t = 0. Subsequently one observes forward- and back-
ward-traveling waves at new frequencies, the most
intense of which are usually Raman and Brillouin
Stokes waves. These waves arise from inelastic
stimulated scattering processes during which vibra-
tional excitations are created within the medium.
The corresponding scattering rates are vanishingly
small just after the pump beam strikes the medium,
but increase to their full values within a certain
transient period. During this period, the vibrations
of the medium from which the scattering takes place
have not yet been driven to their steady-state values
in the presence of the pump beam (which is usually
not significantly depleted during this short time).

In this paper we shall be interested in time-de-
pendent phenomena of much longer duration than
this transient time. We therefore assume that the
material oscillations reach their steady states in-
stantly. In this case it is well known that one may
"adiabatically eliminate" the equations for the ma-
terial displacements and work only with equations
describing the amplitudes of the interacting modes
of the radiation field. There are several ways of
deriving the final equations: Tang has done it for
Brillouin scattering3 and Maier et al. for Raman
scattering. The result, when both are considered
simultaneously, is

BI 1 BI—+ ——= —gI (F+ B + 2a) g I (B'+ a ), (1)—
Bz v Bt

BF 1 BF—+ ——= gI(F+a),Bz v Bt (2)

BB 1 BB
gI(—B+a),Bz v Bt

BB' EBB'
= -g 'I (B + a ) .

Bz v Bt (4)

Here I, F, B, and B' are the intensities of the
pump, forward Raman, backward Raman, and back-
ward Brillouin beams, respectively; u =c/n is the
velocity of light in the medium, assumed the same
for all the waves; g and a are the spatial gain coef-
ficient and "noise" intensity for the Raman process;
and g' and a' are the corresponding quantities for
Brillouin scattering. The noise terms may be re-
moved from the equations by the change of variable
F—=F+a, etc. Expressions for g and g' are given
by Hagenlocker et al. [Eqs. (7) and (5) of Ref. 5]
in a convenient form.

lf g and g are equal, Eqs. (1)-(4) can be reduced
to three equations in I, F, and B+B which have
the same form as the equations describing Raman
scattering alone. But even if g and g are unequal,
three equations may suffice to give an adequate de-
scription of the dynamics of the system. To see
this, the reader may integrate (3) and (4) along the
common characteristic x = —,

' (vt+z) from a point yo
at which B=B =0. One finds

B'/a = (B/a)' t'. (5)

BF—=gI (F+a),Bx (7)

= g'I(B +a ),
83)

where x = ~ (z +vt), y = ~ (vt —z), and the primed
quantities refer to the backward wave with the
larger gain.

If the backward scattering is overwhelmingly
larger than the forward, g' »g, the situation may
be represented adequately by the system

gI(B +a ), -r r

Bx (9)

=g'I(B'+a') .
Bg

(1O)

All three systems (1)-(4), (6)-(8), and (9) and (10)
display relaxation oscillations if the scattering is

Thus, if a and a are comparable, andg &g, B
may be ignored in the stimulated scattering regime
B»a. More generally, of two modes sharing the
same characteristic, that with the larger gain will
dominate. For this reason, most of our analysis
deals with the solutions of the three-wave system

gI(F+a) —g I—(B +a ),
BI l
Bx
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driven by a pump pulse longer than the period of
the oscillation, and if the medium is long enough.
Only finite-cell oscillations occur for the system
(9), (10).

III. PROPERTIES OF RELAXATION OSCILLATIONS

A. Finite-Cell Oscillations

I,O

0.5-
r /a

I

A
I

B'(z, t)+a' =a'D ' (Ip+a') 8(vt —z)
~here

(12)

D =Ip+a —I—pe (1 exp [—,'g'(Ip+a )(v—t—z)])
(12'I

The pump pulse at z = 0 is I(0, t) =Ip 8(t), where
8(t) =1 for t &0 and zero otherwise. Evaluating B'
at z = 0, we find the monotonically increasing func-
tion

a'(Ip+ a'
I

a' +Ip exp[ —pg' (Ip+ a')v t ]

which tends asymptotically to B'(0, ~) =Ip.
The corresponding solutions for a finite cell may

also be obtained analytically, but with much greater
effort. Clearly the solution (14) must be correct
for t 2I /v, the earliest time at which information
about the termination of the medium can reach z = 0.
During the next intervals 2nL/v &t & 2(n+ 1)L/v,
n = 1, 2, 3, ~ ~ ~, the solution has a form depending
upon n which becomes more complicated as n in-

liO
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FIG. 1. Two-wave finite-cell oscillations in back-
ward stimulated Brillouin scattering for various cell
lengths. Ordinate shows intensity &' at cell entrance in
units of incident pump intensity Ip ——10 a'. Time is mea-
sured along abscissa in units I ~/v. Steady-state values
of &' are indicated at the right edge. Incident pump in-
tensity at cell entrance is constant for positive times,
zero otherwise.

lt is best to begin with the simplest system (9),
(10) in which the backward wave B' is initially zero
within the cell 0 &z & I.. Solutions are most easily
obtained when I is infinite. Using the technique
described by Maier et al. , one finds the solutions

I(z, t)=D 'e "'
x (Ip exp[- pg'(Ip+a')(vt- z)]+a') 8(vt —z) (11)

and

0.0 2 3 4 '5 6 7 8 9 10
CELL LENGTH

FIG. 2. Steady-state values of the backward-scattered
intensity for stimulated Brillouin (A) and Raman (B) scat-
tering from finite cells, measured at the cell entrance.
Abscissa is cell length in units 1.&. Ordinate as in Fig.
1. The curves are relatively insensitive to the value of
Ip/a, which is indicated for the largest and smallest val-
ues investigated.

creases. The solution and its derivation for n &1

are given in the Appendix. Figure 1 shows B'(0, t)
for a variety of cell lengths. In each case the os-
cillations have period 2L/v and tend toward the
steady-state value indicated. This steady-state
value can be obtained from Eqs. (9) and (10) by
seeking time-independent solutions I(z) and B'(z)
satisfying I(0) =Ip and B'(L)= 0. The result for
0&z& I is

[B'(0)+a'][I B'(0)—a']-
Ipexp[Ip- B'(0) a']g'z——B'(0)—a'

(15)

where B'(0), evaluated from this expression, is
plotted in Fig. 2. In this figure the cell length is
measured in units L, —= (1/g'Ip) ln(Ip/a'). The curves
B'(0) vs I *=L/L, for d—ifferent values of Ip/a are
all nearly alike, suggesting that B'(0) is to a good
approximation a function of L* alone. The signifi-
cance of I ~ is that for a cell of this length the back-
ward intensity at z =0 is &Io after one round-trip
time. For aninfinite cell, B (0) =B (0, ~) =Ipfrom(14).

An intuitive understanding of the oscillations may
be obtained by examining Figs. 3 and 4. Figure 3
shows a coarse "movie" of B'(z, t) and I(z, t) for an
infinite medium. Notice that the forward-traveling
laser pulse near the leading edge has length, by

(11)

Lp= (2/g'Ip)»(fp/a') (Ip a) (16)

A portion of the backward-traveling signal which
begins at the forward pulse front grows nearly ex-
ponentially throughout I ~, during which it is ex-
posed to nearly the full incident intensity Io. After
passing through this region it has grown to some-
what less than a'exp(pg IpLp) During the re.main-
der of its journey back to z=0, it sees a heavily
depleted pump beam and therefore grows corre-
spondingly more slowly. The z dependence is ac-
tually hyperbolic in this region rather than expo-
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I„B'

t =2L /v

where

I &-ett.'(IP+ a)+ p

This solution is correct for a cell of any length, for
z &L N. otice that E increases to —,Io in the length

L~
P

t = 5Lb/v L f —(1/gIO) ln (Io/a ) for Io/a» 1 (21)

t= 9L /v
b

t = II Lb/v

4 6
DISTANCE

W/

8 IO

FIG. 3. "Movie" of the pump (—) and backward
stimulated Brillouin Stokes intensity (x—-x). Distance
is measured in units &~. The pulse length && is given
initially by Eq. (16), but decreases eventually to zero
as it propagates. Incident pump pulse is as in Fig. 1.
I, =].0"a'.

nential, as can be seen by expanding (12) for large
t and small z, assuming Io/a' » 1.

Turning now to Fig. 4, which shows the finite-
cell case, one finds that after t =L/v, the maxi-
mum length of undepleted pump seen by a portion
of the backward signal diminishes from J ~ to zero.
Consequently a backward-traveling noise signal
cannot grow to a value in this region great enough
to become appreciably augmented in the subsequent
low-gain region. The result is a dramatic reduction
of B'(0, t) after t = 2L/v. When the backward in-
tensity has decreased to a small value, which it
does quite rapidly when Ip»a', the incident pump
beam can pass well beyond the input face before be-
coming depleted again. This resembles the initial
state of affairs, and the process repeats periodi-
cally with decreasing modulation depth until the
steady state is achieved.

It is perhaps worth mentioning that similar os-
cillations do not occur with only a forward-travel-
ing scattered wave. In this case the equations
analogous to (9) and (10) are

yB'

t=2L /v
b

5L /v
b

The existence of unusual time dependence in a
backward stimulated wave was first established by
Maier, Kaiser, and Giordmaine in connection with
self-focusing. They used solutions of Eqs. (9) and
(10) to analyze their results, but chose different
boundary conditions. In particular, they assumed
that the backward Stokes signal is initiated at z =I
by an external mechanism (self-focusing), where-
upon it passes through a long region of undepleted
pump beam from which it can extract energy. Con-
sequently it is possible for the backward intensity
to exceed Ip. In contrast, we allow the backward
signal to begin growing as soon as the pump beam
enters the medium at z =0. In the absence of any
additional enhancement of B' or I through focusing
or self-focusing, this prevents the generation of
sharp backward pulses of intensity greater than Ip
such as those studied by Maier et al.

Finally, we should point out that the entire anal-
ysis above (for the backward-wave problem) may
be applied to the dispersive case in which the scat-
tered wave propagates with velocity v'. One need
only replace x by $ = (v't+z)v/(v'+v) and y by
rt =(z —vt)v'/(v'+v). The equations in x and y retain
their form, the only change in the problem being
that the forward and backward characteristics are
no longer perpendicular.

B. Three-Wave Oscillations

If forward as mell as backward stimulated scat-

aI gI(E+a), —
ex

F
=gI(E+ a)

(17)

(18)

t= 9L /v
b

Choosing the same boundary conditions as before,
we find

t= IIL /

I(z, t) = Io 6 ' (Io+a) e ~'~0 ' "8 (v t - z )

E(z, t)+a =a & (ID+a)

(19)

(2o)

0 2
Dl STANCE

FIG. 4. Same as Fig. 3, but for a cell length of 5L&.
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t= L, /v

t = 2Lf/v
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FIG. 5. Same as Fig. 3, but for stimulated E~dman

scattering. The forward and backward gains are equal
in the case shown. ,

tering occurs, we may still have oscillations of
period 2I /v, but superimposed on these will be
oseillations caused by the effective truncation of
the medium by pump depletion to the forward-scat-
tered waves. Unfortunately even for the simplest
three-wave case represented by Egs. (6)-(8) we
have been unable to find analytic solutions except
for the steady-state intensities. Nevertheless, the
important features of the oscillations ean be obtained
by analogy with the two-wave finite-cell case.
Finer details were obtained by numerical solution
of the full set of equations.

We expect the backward-traveling signal to have
little effect on the pump intensity just behind its
forward-traveling leading edge. But the forward-
scattered intensity I' is maximum at this point at
any instant and depletes the pump appreciably after
traveling to about z =I.&, Eq. (21). We therefore
expect the backward intensity 8' to behave as if the
medium were only of length I =I&, that is, B'(0, f)
should exhibit oscillations of period - 2I &/v. This
is fully verified by numerical solutions of Eqs.
(6)-(8), some of which are plotted in Figs. 5 and 6.
The anticipated dependence of the period on g, Io,
and a have all been verified quite accurately using
the numerical solutions.

Figures 5 and 6, and the explanation me have
given, are for a very long cell. If the cell length
is less then 1.&, the forward beam cannot appre-
ciably deplete the pump, and no pronounced three-
mave oscillations mill occur. If the cell is very
long, oseillations occur as long as the forward gain
is not greater than the backward gain: g &g. If
g&g', then the pump will be spent before the back-
mald wave can grow slgnlflcantly. %hen g&g, the

I.O I

lo/a= IO

0.5-

o,o 2 TIME
IO

FIG. 6. Three-wave oscillations in backward stimu-
lated Raman scattering for various ratios of the incident
pump intensity to the noise level. Backward and for-
ward gains are equal. Time is measured in units I~jv.

maxima in B'(0, t) have width roughly &t = 2(I t,
—I )/

e for the two-wave finite-cell case of Sec. IIIA. In
that ease the period and pulsation length are fixed
by the cell length, but here the effective cell length
for the backward wave increases as, on consecutive
oscillations, the pump fails to recover completely
to its previous value, thus decreasing the net for-
ward gain. All these assertions, mhich are based
upon our experience with the two-wave case, are
verifi. ed by the numerical solutions.

Oscillations do not occur for very small incident
intensities because the gromth and decay processes
are not sufficiently abrupt. %e found numerically
that Io must exceed a by somewhat less than 10 be-
fore well-defined oseillations appear.

Several numerical solutions mere obtained for a,

pulsed incident beam whose time profile is Gaus-
sian. As long as the pulse length exceeded the ex-
pected period at the peak intensity and the pulse
peak was sufficiently strong (z104a), the solutions
showed oscillatory behavior. An exhaustive study
of the influence of pulse shape on this structure has
not yet been undertaken.

The time required for these oscillations to die is
difficult to estimate. The accuracy of our numeri-
cal solutions cannot be trusted after very long
times, and we ean only report the following results:
(a) The oscillations persist longest for g=g'; (b)
for Io= 10'6a, g = 5g the intensities at the first and
second minima in B'(0, t) were 0. 15IO and 0. 55IO,

respectively; and (c) for g=g', I0=104a, 16 maxi-
ma mere observed in our longest computer run.
The modulation depth was about 25% and the oscil-
lations, centered on the steady-state value B(0,~)
= —,Io, were nearly sinusoidal, showing no signs of
decaying at this point.

The ultimate steady-state intensities may be ob-
tained easily only for special values of the forward-
to-backward-gain ratio g/g . However, certain
relations among the steady-state values can be ob-
tained in the general ease. The reader may easily
verify that the functions
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are integrals of the system (6)-(8) if the time de-
pendence is removed. Thus, in the steady state,

I(I.) = I, —B'(0) —Z(L) (24)

and

&(L)= stB'(o)/ 'f'"' . (26)

For equal gains these imply B (0}& ,'Io, th—e equality
holding for infinite cell length. The precise value
of B (0) must be obtained from a transcendental
equation depending upon g/g . For g=g, a= a,
the dependence of B'(0) on I. and Io/// is shown in

Fig. 2. Here the cell length is measured in units
L/ and the behavior of B' vs L/L/ is similar for a
large range of incident intensities, as in the finite-
cell case discussed in Sec. IIIA. When L = ~, the
pump beam is always depleted at infinity, and the
steady values of B and F may be found by solving
(24) and (26) simultaneously, setting I(~) = 0.

C. Influence of Additional Scattering Channels

When more than one forward and one backward
stimulated scattering channel is available, we still
expect to observe oscillations in the intensities of
the scattered waves. In an infinite medium, the
period is expected to be about 2L//v, where L& is
the forward gain length (21) for the forward-scat-
tering process with largest gain. With the addition
of more scattering channels, the actual forward gain
length in regions of relatively undepleted pump in-
tensity will increase somewhat because of increased
pump depletion. Figure 7 shows a typical numerical
solution of Eqs. (1)-(4) which exhibits the expected
oscillation. Also shown is the corresponding three-
wave solution, which agrees well with the four-wave
case as anticipated in Sec. II.

As before, we may obtain integrals of the system
(1)-(4) for the steady-state behavior. The three
"easy" integrals are

focusing effects. Thus, for a clear verification of
the features we have described above, it seems
desirable to investigate the time dependence of
stimulated scattering in gases using unfocused pump
beams. Such scattering has been observed, and
with a suitable choice of gas and pressure, one
can cause either stimulated Raman or stimulated
Brillouin scattering to dominate. '

A complicating feature in gases is the possibility
of rather long vibrational lifetimes, which could
lead to an interference of the transient effects as-
sociated with beam depletion with the ordinary
transient behavior associated with finite phonon
lifetimes. We have not yet completed investiga-
tion of this interference, but we should like to call
attention to the fact that all previous studies of
transient stimulated Raman scattering have omitted
the effect of competition between forward- and
backward-scattered waves. 6 In the high-beam de-
pletion case, which we have studied here, this
competition arises because both waves extract en-
ergy from the same pump beam. In the ordinary
transient case, the pump beam is usually almost
undepleted, but the forward- and backward-wave
equations are still coupled through the equation of
motion of the vibrational coordinate. Nevertl:e-
less, as in the case of three-wave relaxation oscil-
lations described above, one does not expect a
strong effect from the backward wave until the
pump pulse length exceeds a certain characteristic
gain length corresponding to L~ defined in (16).

Hagenlocker, Minck, and Rado' observed stimu-
lated Brillouin scattering in N~ gas at 300 'K and
pressures up to about 10' atm. At a pressure of
about 100 atm they inferred a gain coefficient g'

0,5-

I+F-B—B',
(B}1/E/(Bt )1 /g

(FB)I /r

(26)

(27)

(28)
o,o 2 4 6 8

TIME
IO 14

The fourth integral requires solution of an ordinary
differential equation which the reader may easily
derive. When I = ~, the condition I(~)= 0 may be
used together with (26)-(28) and I(0) = Io to find

E( ), B(0), and B (0).

IV. STIMULATED SCATTERING IN GASES

While it is possible that transient pulsations of
the type considered here may occur in stimulated
scattering from liquids or solids, the analysis for
these media is usually obscured by focusing or self-

FIG. 7. Four-wave oscillations occurring when stim-
ulated Raman and Brillouin scattering take place simul-
taneously. The Brillouin gain coefficient is twice that
for the Raman process, and therefore the Brillouin-'
scattered intensity, which is shown here, far exceeds
the Raman intensity. The backward intensity for the
three-wave oscillation with backward-to-forward-gain
ratio 2 follows a curve indistinguishable from that shown.
Units are as in Fig. 6. Brillouin and Raman noise levels
were assumed equal, but the curve is not very sensitive
to deviations from this condition. The small-scale struc-
ture apparent near the maxima was probably introduced
by our numeric al-computation scheme.



RELAXATION OSCILLATIONS IN STIMULATED 1181

of roughly 5 x 10 'o cm/w. Their data-reduction
technique included transient effects, in what seems
to be a reasonable way, for a pulse duration of 2
x 10 ~ sec. This rather short interaction time was
chosen to account for "an erratic spiking behavior"
observed in the laser output. The origin of such
spiking is now well understood and can be avoided
by appropriate laser cavity design. ' Thus pulses
of a few times 10~ sec duration can be obtained,
and for these the effective Brillouin gain coefficient
can exceed 10 ' cm/W for the case under consider-
ation. Assuming a mean pulse power of about 30
MW in a cylindrical beam about 2 mm in diameter,
and a noise intensity of about 10 ' W cm sec, we
find a critical length L~ =7 cm. To see finite-cell
oscillations, the cell length must exceed I.~ but
still be much less than the incident pulse length,
which is here greater than 3 m. Because the phe-
nomenon is intensity dependent, one should exam-
ine only a portion of the scattered beam profile
for oscillations.

The same authors, ' and many others, ' have also
observed stimulated vibrational Raman scattering
in Hz gas under similar conditions. Here the gain
does not appear to exceed about 10 o cm/W, and
I.~ approaches 1 m for the laser parameters cited
above. For observation of the three-wave oscilla-
tions one should use a cell as long as possible to
avoid interference from the finite-cell effect. We
are indebted to Professor Kaiser for the informa-
tion that Maier has observed oscillations in the
stimulated Raman scattering from H& gas which
may have their origin in the mechanism described
here. Whether the very complicated time depen-
dence of the scattered light observed simultaneously
with self-focusing in liquids can also be traced to
this mechanism is an open question.
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APPENDIX: ANALYTICAL SOLUTIONS OF EQS.

(9) AND (10)FORL& ~

Elementary manipulation of Eqs. (9) and (10) s«-
fjces to show that

8
gr(x) —=—[ ln B(x,y)]+ gB(x, y)

is independent of y. This equation is easily inte-
grated for 1/B, the result being convenently ex-
pressed in terms of

II(y) = 1/ B(xp y) xp = const

f(x) ~g J "dx' exp j"'dx"gr(x") .
With these definitions, we have

B(x, y) =f (x)/g [f(x)+h(y)], (Al)

dh"(x)/dx= —gI [f"(x)+ A"(x)], v=0, 1, 2, . . .
(A3)

df (x)/dx= ga[f (x)+ a ],
df" (x)/dx= ga[f"(x) + h' '(x- L)],

(A4)

v=1, 2, . . . .

These equations may be solved iteratively. To
proceed, it is convenient to define the variable
u„=—(x- vL)g (Io+ a) for x in region v. Then (AS)
and (A4) can be integrated to give

@"(u„) = e'"" [&" '(L ')+ & f " du'f "(u')e '" ],

v=1, 2, ~ . .

f"(u„)=e'" [f''(L')+e J "du'h" '(u')e" ],
0

v=ly 2~. . .

ho(uo) = a '(1+ 5e'"o —Geo"o),

f (uo) = —a '(- e'"o),

where e = a/(I, +a), &=—~ —1-= —I,(I,+a), and
L = Lg(Io+ a). The—reader can verify by induction
that f" and h" may be written in the form

f"(u) = —a '+ Q u (M", '"
eÃ,"+e"), u=u„

h'(u)=a + + u (M ~+eIV ~e "),
@=0

where the M's and N's satisfy

+= +v

I(x, y) = ~(y—)/g [f(x)+~(y)], (A2)

where a prime means differentiation with respect
to the argument. The functions f and h satisfy
equations which can be derived from (Al) and (A2)
using the boundary conditions on B and I to be dis-
cussed below. Initial conditions for f and h, choos-
ing x, =0, are clearly h(0) =1/a and f(0) =0.

We seek solutions for which B=0 on the cell exit
face at a=L, or B(x,x L)=a.-When x& I. the
forward pulse front, which enters the medium at
t= 0, has not yet reached the exit face. In this re-
gion we require that 8 vanish on the pulse front,
or B(x, 0) = a for x& L. We refer to the region
0~ x~ L as region 0, and vL~ x~ (v+ l)L,
v=1, 2, ~ ~, as region v. Functions whose domains
are restricted to region v will bear a Greek super-
script: h", f" For .simplicity we assume the
simple step input pulse I(y, y) =IpH(y). Then for
x&0, using (Al) and (A2), we find
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v-1
Mo"= a +f" (L )+ e g N„" p! N~ = 5N" i/p, .1~ p~v.

M~=@M„"[/p, , 1 —p. —v

N„"= —e Q N~" A. !/!L!, 0 —p,
—v —1

We apologize for the opacity of this form. Never-
theless, it does allow more rapid calculation of nu-
merical results than direct computer solution of
the original set of equations. The final formulas
for I and B may be written

M."=~ + (-l)" 'M,"~'/u', o-u-~
f"(x, y) =f, 8 (y)[f'(y)+ I"(y)]/[f"(&}+I"(y)],

No= —a '+ h" '(L ) —!!+ (- l)~ M~ p. t,
p &0 &"(~,y) = ~[h" '(~) —@"(y)ll[f"(~)+h"(y)] .
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The permanent damage in optical glass investigated here is characterized by filamentary
tracks of fine fractures. These tracks are a few micrometers in diameter, straight to within
0.7 pm, up to 9 cm long, and collinear with the incident laser beam. There may also be dam-
age stars (regions of fracture gross compared with the track diameter). These damage stars
are usually near the upstream ends of the tracks. Track formation is characterized by a flash
of side-scattered white light from the track, laser light side-scattered from the dam"ge stars,
a marked increase in the exit divergence angle of the laser beam, and a weak back-scattered
pulse of laser light. The back-scattered pulse preserves the polarization of the incident beam,
is of shorter duration than the incident laser pulse, and has a frequency shift corresponding to
Brillouin scattering from a free compressional sound wave in the glass. Track formation is
accompanied by a detectable cylindrical sound wave. The track formation threshold is repeat-
able at different locations in the glass sample. Both the power threshold and the energy-den-
sity threshold are rapidly varying functions of the incident beam radius at focus. The thresh-
old power is as low as 10 kW for a ruby-laser beam sharply focused in dense flint glass, and
more than 2 MW for an unfocused beam in fused silica.

INTRODUCTION

The type of filamentary track formation in glass
we investigated was first reported by Hercher. '
The experiments we performed established the
threshold dependence on beam size for three types

of optical quality nonabsorbing glass. We found
the threshold was repeatable in different glass
samples of the same type, given the same incident
beam conditions. We also investigated the char-
acteristics of the many emissions accompanying
track formation, and attempted to account for all


