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Expressions for the l =0 forward scattering amplitudes for He -He4 and He4-He4 quasiparti-
cle pairs in dilute solutions of He in liquid He3 are derived in terms of thermodynamic quan-
tities. A Fermi-liquid theory of the solutions is developed, and various thermodynamic quan-
tities are derived. The theory agrees well with the available experimental data.

I. INTRODUCTION

The physics of dilute solutions of He4 in liquid
He' has been a subject of some interest both experi-
mentally' and theoretically ' during the past ten
years or so. However, there has been little de-
tailed theoretical work done in this area. The prin-
ciple reason for this is clear: No experimental data
have been available in the temperature region
amenable to quantitative theoretical treatment. The
He concentration x4 is so low here (in the single-
phase region) that the properties of the solutions
are determined almost completely by the excitations
intrinsic to the He'. Nevertheless, looking toward
future improvement of experimental technique, and
in view of the fact that our investigations shed some
light both on the basic nature of the phase-separation

transition and on the interactions between He'-He
and He -He quasiparticle pairs, we present our
results.

Section II is devoted to a discussion of the inter-
actions between He -He and He -He quasiparticle
pairs. The l = 0 spherically symmetric parts of the
forward scattering amplitudes for these pairs are
derived by phenomenological arguments (a more
rigorous derivation using Green's-function tech-
niques will be published elsehwere). In particular,
we find that the l =0 forward-scattering amplitude
for a He'-He quasiparticle pair is given by

a", = (i + o.)/v (0),
where v(0) is the density of states at the Fermi sur-
face in pure He' and n is the fractional excess
volume occupied by a He' atom in liquid He . Using
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cles are sound waves (spin modes are ruled out
since the He has zero spin). The contribution
'ao' to a", due to collective modes must then be of
the form

FIG. 1. Diagrams contributing to the forward scat-
tering amplitude ao . The external propagators are in-
cluded for clarity.

the experimental result' a= —0.32 this becomes

a", = 0. 68/v(0),

a result which should be compared with the analo-
gous quantities for parallel and antiparallel scat-
tering in pure He,

ao' = 2. 9/v(0), ao' = —1.1/v(0) .
Equation (2) thus gives us the important result

that the temperature range over which a quasipar-
ticle description is valid for the He atoms may be
expected to be the same as that for He quasipar-
ticles (i.e. , T —«01 K).

Another result found in Sec. II is that

'ao = V3 ygV4 pglimlim g33(k, ur),
R~O td~o

(6)

(6)

using a thermodynamic identity in the last step.
Similarly, V3 pQ measures the change in the He'
quasiparticle energy &3& due to a long-wavelength
disturbance in n3..

V3 yb=
8~m

+3 n "-0 P=P

in which V3 pb and V4 pQ are renormalized quasipar-
ticle-phonon interaction vertices and y33(k, &o) is
the density-density correlation function (the phonon
propagator) in pure He . V4,„just measures the
change in He chemical potential p. 4 due to a long-
wavelength disturbance in the He' density nq. Hence
we have

44 8W4
(4)

As mentioned in the Introduction, the derivations
presented here will be phenomenological ones. One
of us (W. F. S. ) has derived the same results using
a Green's-function formalism in a paper which will
be published elsewhere.

Let us consider the general diagrammatic struc-
ture of the He -He scattering amplitude. The dia-
grams contributing to the forward scattering ampli-
tude (see Fig. 1) may be derived into two classes:
diagrams contributing to collective -mode exchange,
and all other diagrams. The only l = 0 modes in He
which can be exchanged by He' and He quasiparti-

in which p, 4 and p. 3 are, respectively, the He and
He chemical potentials, and n4 is the He number
density. This equation is of the same form as that
for He'-He quasiparticle scattering in dilute solu-
tions of He in superfluid He .' a,'is evaluated
using an assumption concerning the nature of the
phase-separation transition as x4, T-0; the result
is ao = 0, from which it follows that at small x4 and
T, the transition is closely related to that of a free
Bose gas.

In Sec. III we develop a Fermi-liquid theory for
the excitations and derive formulas for various ther-
modynamic quantities, including the specific heat.
A comparison with the available experimental data is
made, and suggestions for future experimental work
are given in Sec. IV.

II. QUASIPARTICLE SCATTERING AMPLITUDES

V, ,„=F',/v(0) . (6)

Since'

limlimx~, (k, &u) =- v(0) &n3

If, 0 td 0 1+Fo ep3 ~ o

we obtain

'a,"= —(1+n)FO/v(0) . (10)

The remaining term "'ao' is just the response of the
energy of a He' atom when a He atom is added,
keeping the collective-mode coordinate n3 constant:

...34

= (1+o)(1+F0)/v(0) . (11)

Adding the results (10) and (11), we obtain (1)

ao'= (1+a)/v(0) .

We note in passing that (1) is easily shown to be
equivalent to

34 3P8&
0

n4 v3 &=Pz, n4=O

The quasiparticle momentum p is set equal to the
Fermi momentum pv after the derivative is taken
since one must exclude effects of a purely statisti-
cal nature. The derivative in (7) may be expressed
in terms of the l =0 symmetric Fermi-liquid param-
eter Fo in pure He . %e have, then,
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It is interesting to note at this point that ao' and

ap [see Eq. (3)], given by

+0

&o , +o
1+8() 1+E'

(i2)

nc 44 W4

n3 n3( n4 0

Adding (13) and (14) and doing some simple variable
transformations yields

This result is of the same form as that used in the
effective potential of Bardeen, Baym, and Pines.
However, it is important to note that (15) includes
exchange, so that if one were to construct an effec-
tive potential for He -He' scattering here, then its
zero-momentum transfer limit mould be

may be derived in the same fashion if one takes care
to include paramagnon exchange.

The l =0 forward scattering amplitude ao of two
He quasiparticles (in the limit of very small quasi-
particle momenta) is easily derived along the same
lines. The phonon exchange pa, rt is

2
c 44 2 8&4 n3a, = V 4» lim lim X33(k, (p) =-

lf «0 C(j «0 ~n3 n =0 P3 n =04 4

(13)
and the part due to other processes is

there would exist a dilute solution of superfluid He'

in liquid He3. Such a solution has never been ob-
served. Finally, we ca11 attention to the calculation
of Cohen and van Leeuwen' on a dilute-gas model of
He -He4 solutions which verifies our assumption in
a special case.

Proceeding on the assumption that the end point
of the phase-separation curve is indeed a consolute
point, and noting again that (Bp,4/Bn4) p r is equal to
(8 p, 4/Bn4), r in the limit as x4- 0, we immediately
see from (15) that

44 0Qo

III. FERMI-LIQUID THEORY

We commence the development of a Fermi-liquid
theory for the mixtures in question by expanding the

energy to second order in deviations of the quasi-
particle distribution functions n» and n4~ from their
values at T=O and x4=0:

33E —Ep=Z 43()5npp+Z &4p5n4() + p~f» &npp6n3p
PP'

34 44+2f» Bn336n4&k+3K f» Bn4&5n4& + ~ ~ ~; (18)
PP' PP'

here Eo is the ground-state energy of pure He'.
This theory is, of course, valid only in the one-
phase region. Our object now is to evaluate the
terms on the right-hand side of (18) in terms of T,
n4, and 6n3=n3-n3, n3 being the particle number
density in the ground state of pure He'. We use the
spectrum

@4' = 44p+l) /2m 4,2

Vi, (k=0)= —
( ~) (16)

where &40 is the zero-temperature zero-concentra-
tion limit of p. 4, and m4 is an effective mass. Then,
denoting by cs(n4, T) the energy per particle of a
free Bose gas, we have

With the aid of a very plausible assumption con-
cerning the nature of the phase-separation curve,
one may evaluate ao . The assumption is that the
endpoint of the phase-separation line (at x4= 0,
T=0) is a consolute point [in the sense that
(Bp4/Bn4)p= 0 there] To. understand the import of
this assumption, let us examine the possible alter-
natives: (i) The end point is neither a A, point, nor
a consolute point. In this case there is a metastable
region at T = 0 and x44 0 in which we have a non-
superfluid gas of Bose quasiparticles. Also, in
this region (8 p, 4/Bn4) p, r p which for small x4 is
equal to (8 p4/Bn4)„, r p, must be greater than

zero. ' From this it follows that the effective po-
tential [see Eq. (16)] is repulsive. Existing theory
indicates ' that a dilute Bose gas with repulsive
interactions should be superfluid at 7 = 0. Hence,
we reject alternative (i). (ii) The end point is a
A. point and not a consolute point. In this case there
would be some region for small x4 and T where

~f» Bnpp6n4p = f, n45n3,34 34

PP'

1 Eo
3Zf » Gnp()6nppk = 2,0)(5n3)

PP'

(22)

where f 3 is the l = 0 part of f~p. in the limit of
small He momentum p'. The sum g& ep5n3& must

be carefully evaluated, taking into account both the

effect due to nonzero T and that due to the fact that

addition of He4's changes the equilibrium He den-

Zp ~4()f)n4() n4[~4p + ~B(n4 &)] (20)

For low temperatures (hence, small He momenta)

we take the l = 0 part of fpp. equal to a constant in-
dependent of T. Then we have

44 44 23~f».5n4pBn4p = 3f p n4 .
PP'

'5n3p wil 1 be nonzero only very near the Fermi sur-
face. Hence we find
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sity. The latter effect is

(Z, ep5n„)"' = i4,P5n, +[2v(0)]-'(5n,)', (24)

p 804
p 4= &o4(np)+ n4+ p, a(n4, T),

8@4 P3
(34)

the second term accounting for the change in the
Fermi momentum Pz. The former effect is the
usual' change in 6g» due to an increase in T, eval-
uated at the new density n3=n3+On3'.

(Zp &))5np4)'" =—', vS(0) I K).p„(KsT)

where (L4a(n4, T) is the chemical potential of a free
Bose gas composed of particles of mass m*, and
characterized by number density n4. Note that p, 3

changes from its value at x4=0, T= 0 only by the
usual temperature factor, corrected to the new He
number density. Using (15) and (17), (34) reduces
to

Thus, we find

=—(O)(K 1')' 1 ~ 5n,) .

(25)

p, 4= 4:p4(np) +)(4a(n4 T) ~

Since we have

Pg3 9E~ 2 Pg3

9 3

(35)

(38)

Z 4:p6no4, = P, ,6n, +
2 (5np) +

8 v(0)p 1
2v 0 E(I. (33) becomes

n(K T)' 1+ 5n,).1 &v(0)

v 0 enp
(28) i4, = p, ,o(no4) —— ap [1+1.9(1+44)x4] . (37)

6g

Collecting our results, we have

E Ep —4 46np + [4o4+ ea(n4, T)]n, +f p 5n,n4
p 34

5n, = —(1+ &)n4 .
In addition, we have

n, &v(0) 1 n, em f
v(0) &n, 3 mp~ &n,

(29)

(30)

and"

+
(

)(1+So)(5np) + 'fo n4

+ —', n'(K, 1')'n(8)(1+
8 5n, ). (25)

From (27) we may calculate various thermody-
namic quantities of interest. The specific heat is
given by (we use the classical limit ea = —,'KaT here;
the validity of this use is shown below)

C =-,'nK + K T 1+ 5n. ). (28)
v(0)v' o»v(0)

v0 &n,

Since the He' is added at constant pressure (which
is equivalent to constant He chemical potential for
small x4), we have

The result (35) is important since it states that,
to order n4, there are no corrections to the free-
Bose-gas result for p, 4. In addition, (35) is consis-
tent with the assumption of Sec. II that the end point
of the phase-separation curve at x4 -—0, T = 0 is a
consolute point. This follows from the fact that the
A. line determined by pa(n4, T) ends at n4=0, T=0,
and that on this line (spa/&n4)r =0. '4 However,
since this A, line is actually inside the phase-transi-
tion curve (it in some sense "bounds" the metastable
region), our argument is not a rigorous one.

IV. DISCUSSION OF EXPERIMENTS

To date there exist no experimental data in the
temperature range (T 0. 1 K) where—we expect our
theory to have quantitative validity. The most com-
plete experimental data on the determination of the
phase-separation curve do, however, extend down
to 0. 17 K. It is thus worthwhile to apply our theory
since a good determination of the phase-separation
curve would provide an experimental test of the
basic relation (17).

The phase-separation curve is found by equating
the He' chemical potential in the upper (small x, )
and lower (large x4) phases. Denoting the latter by
iL4 and using (35) together with the formula

pa(n4, T) =K& T[ln(noser) —n4Xr/2 '+ ~ ~ ~ ] (38)

m3 &n3
(31) we obtain

o o 7) '(KaT)'
n, ,= n, (n, ) —12, 1+—, 5n, ),12 &P ~tl3

(33)

so tha. t (28) becomes'

C = 'n K + —'v(0)v K T[l ——2. 5(1+ 42)x ] . (32)

The chemical potentials are found to be

x = (I/nX )(1+e 5~ a /2 ~ )e

Here n = n3+n4 and

(39)

m~qE. gT
(40)

is the thermal wavelength for the He4 (Iuasiparticle
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gas

& = &co(ns) —P4 .0 I (41)

The second term in brackets in (39) results from the
quantum correction Isecond term in brackets in
(38)] to the chemical potential of a noninteracting
Boltzmann gas. This correction is negligibly small
at very low temperatures, but with the figures we
obtain is alrealy=2. 2% at T=0. 2 K. According to
our theory it is the only correction when a& =0. It
is possible to write (39) as

r" ~ em( —e/xr),ln =& &
—ln 1+

1
2

1/T (K ")

FIG. 2. ln(T3 /z4) vs 1/T. The heavy dots denote
the experimental points and the line denotes our theoreti-
cal curve (&40= —6.61K, m4 =4. 5m4).

+ln
Sl 4

(42)

At very low temperatures a plot of the left-hand side
of (42) versus I/T should give a straight line from
which the parameters E4O and m~4 could be deduced.
Such a plot is given in Fig. 2 for the range of tem-
perature 0.17 K —T —0.5 K using the data of Ref. 2

on phase separation in dilute He mixtures. The
best fit with the right-hand side of (42), using for
y, , the computed values of Radebaugh, ' is obtained
for @40= —6.61 K and m 4 = 4. 5 m 4 (m, is the He' bare
mass). '8 It is remarkable that even at a temperature
as high as 0. 5 K the theory is in very good agree-
ment with the experimental results. This seems to
indicate that concentration and temperature-depen-
dent corrections to az are very small.

The values of &40 and m~4 differ from those ob-
tained earlier. ' But it should be noticed that the
previous value of &40 was obtained from specific-
heat measurements on a 4. 6% mixture at tempera-
tures higher than 0. 5 K and using for the excitation
spectrum one different from (19). Also the extra. -

polation of the phase-separation curve was at that
time more difficult because no experimental data
were available below 0.3 K. '

The phase-separation curve in the zero-tempera-
ture limit now becomes

0 85 y3/a -0.56/r (43)

In conclusion it appears that the theory developed
here is in very good agreement with experiment.
The parameters &40 and m~4 could be determined
with better accuracy (especially in the case of m*, )
if phase-separation measurements were extended
to lower temperatures.
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Relaxation Oscillations in Stimulated Raman and Brillouin Scattering'
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The equations describing the transfer of intensity from a pump beam simultaneously
to forward and backward stimulated scattered beams in an infinite medium are shown
to lead to pulsations similar to relaxation oscillations in the scattered intensities. The
period of the pulsations is simply re1ated to the gain length for the forward-scattered
beam, and may be much longer than the ordinary transient time (related to the damping
of material excitations) usually associated with stimulated scattering. Similar oscilla-
tions occur for backward scattering alone (stimulated Brillouin scattering) if the scatter-
ing medium is finite. In this case the period equals the photon round-trip time in the
medium if the latter exceeds the backward gain length. Both phenomena should be ob-
servab1e in scattering from gases such as N2 and H~ at high pressure, and may a1so
play a role in determining the temporal structure of 1ight scattered from the region of
a self-focus in liquids.

I. INTRODUCTION

The transient growth of light scattered inelasti-
cally from thermalor quantum fluctuations in a me-
dium has been examined theoretically by previous
authors in a variety of special cases. A typical
analysis begins with the set of coupled equations
describing the motion of a limited number of modes
of the optical radiation field and of the medium.
These are then simplified using various plausible
assumptions about the mechanisms responsible for
the particular phenomenon under investigation.
Thus Kroll' has analyzed the growth of stimulated
Brillouin scattering in the low conversion regime
where linearized equations are valid. Similar stud-
ies of stimulated Raman, thermal, and Rayleigh
wing scattering have appeared more recently. ~

Tang' has extended the Brillouin scattering analysis
to the nonlinear high conversion regime. Recently
Maier, Kaiser, and Giordmaine have investigated
transient solutions of nonlinear equations describing
the interaction of backward-Raman-scattered light
with the driving beam. In this paper we report the
results of a similar theoretical study in which it
was found that the backward-scattered beam experi-
ences transient behavior resembling relaxation os-
cillations, the duration of which may vastly exceed
the transient periods studied in the linear regime.

This behavior has nothing to do with self-focusing,
but occurs under very general conditions.

There are two related kinds of "relaxation" os-
cillations in stimulated scattering situations involv-
ing backward-scattered waves. Both are most con-
veniently observed in the time dependence of the
backscattered intensity at the entrance to the scat-
tering medium.

The simplest case is the finite cell oscilla-tion
which can occur whenever a forward-traveling pump
beam drives a stimulated scattered beam in the
backward direction in a finite medium. The period
is proportional to the sample length L, and there-
fore no oscillations of this type are observed if the
sample length is infinite.

In contrast, three-suave oscillations may be ob-
served even in a medium of infinite length, but
stimulated scattering must occur in the forward
as well as in the backward direction. These are
similar to the finite-cell oscillations in that the de-
pletion of the incident pump beam intensity by the
forward wave effectively truncates the region in
which the backward wave experiences gain. Thus
the period is proportional to the distance L& over
which the forward wave travels before growing to
an appreciable fraction of the pump intensity. (We
are assuming for simplicity that the pump intensity
remains constant at the cell entrance, after the


