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The classical and first quantum correction terms in a high-energy expansion of the viscosity
cross section Q & for a Boltzmann gas of hard spheres is derived. The first correction is found
to be proportional to (1/ko) 4 3, which is a term nonanalytic in I (i.e. , 5 3), and results from
scattering near the edge of the sphere. A bound is established showing the remainder of the
asymptotic series to be of 0[ln(40)/(ko) ]. This asymptotic formula is compared with calcula-
tions based on the exact phase-shift expressions and its range of validity is established. The
next correction terms are deduced to be proportional to (in@0)/(ko) and 1/(ko)2 which involve
I2lnI and I~, respectively.

INTRODUCTION

In both classical and quantum mechanics one
can, in a first-order Chapman-Enskog approxima-
tion, express the density-independent part of the
viscosity in terms of an integral involving a spe-
cialized two-body cross section Q' '. %bile the
latter admits of an exact quantum-mechanical
formulation in terms of phase shifts, it is by no
means trivial to extract from it an asymptotic ex-
pansion valid for high energies having the classical
result as the leading term. In fact, for the case
of a gas subject to Lennard-Jones forces, the
quantum-mechanical corrections to the classical
answer are still a subject under discussion. '

The development of a high-energy expansion is
important in that, by providing corrections to the
classical expression for the viscosity of light

gases, it establishes the domain of validity of the
classical term and provides simple formulas valid
for a wider range of temperature. It also enables
one to check the numerical work involved in evalu-
ating the phase-shift formulas. Finally, by re-
moving the values of these known terms from nu-
merical results, we might expect to find clues to
the analytical character of the remaining quantum-
mechanical effects.

In this paper we derive the first two terms
(classical and first quantum correction} of an ex-
pansion, valid at high energies, for the Boltzmann
part of the cross section Q' ' of a gas of hard
spheres. (Similar analysis should be possible
for the other Q'""s. ) For this simple potential
we can express phase shifts analytically in terms
of Hankel functions and derive our results by using
uniform asymptotic expansions for these functions.
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The procedure is very different from the WEB
method which yields the corrections for the Len-
nard-Jones potential as a power series in I .

The hard-sphere interaction has, of course, an
infinite discontinuity. Drawing upon the results
holding for the second virial coefficient, we an-
ticipated that this would result in a high-energy
dependence for the viscosity cross section which
would not be analytic in h~. This expectation,
which we verify in this paper, was one of our ma-
jor reasons for choosing this potential. Another
reason for studying hard spheres is the ease with
which it enables one to carry out wide ranging and

highly accurate numerical calculations. In addi-
tion, the reduction in the number of parameters
characterizing this potential leads to increased
possibilities for deriving analytical expressions
for the results.

ANALYSIS

For Boltzmann statistics, the phase-shift ex-
pression for Q

' reads

k' )=p 2l+3

tion. Certainly, for example, we would expect that
to obtain the classical answer we should be able to
replace the sum over l by an integral. Other sim-
plifications are possible as well, and we discuss
this in detail in Appendix A. We show there that
for the large x in which we are interested, we
can approximate Eq. (3) as

48 " v 1
'Q (x) 2 6 dv [H(l)( ) H(2)( )]2

+ r
0

We shall demonstrate that the integral term con-
tains the classical limit and the first correction,
and thus provides a correct and simple starting
point for developing an asymptotic series valid at
high energies.

We shall first show how one can obtain the clas-
sical expression. We note that for large order, the
Hankel function possesses the asymptotic expan-
sion

)/H(') (x) = ))'2 (x' -v')-'/'

x exp[i(x —v )'/ +iv sin '(v/x)] exp[-i-'w(v+-,')]

where 6, (k) is the phase shift for wave number k

and angular-momentum quantum number l, and the
sum extends over all positive integers. For the
case of hard spheres, the phase shift is given by
the expression

M 1

Z 2 X I'(m+-', )(-i) (x'-x') t' " O(x")),
m22O

(6)

where x&v&0 and

tan6, (k(/) =J.../2(k(/')/l)/. ../2(k(x),
bo=1 f),= —', —$(1-x'/v') ', . .. .

where J and N are, respectively, the Bessel and
Neumann functions of order /+-,' and argument t|o
with o being the hard-sphere diameter.

It was pointed out by Buckingham, Davies, and
Gilles' that Eq. (1) in this case can be written in
a mu"h more tractable form which, when divided

by the classical value for this cross section,
3m', is

The second Hankel function H„'2'(x) for real v

and x is the complex conjugate of H„"'(x), so
keeping only the leading term we find that, for
x&v,

H(')(x) H„"'(x)- (2/~)(x2- v') '" .
If we insert this in Eq. (4) and integrate from
v=0 to v=x, we obtain

~(2)( 6 g (l+1)(l+ 2)(2l+3)x, (, A)2 (x)A,'.,(x)

Here x=ko and

Al (x) (7l/2x) [J)+1/2(x) +l)/(x1/2(x)]

Expressed in terms of Hankel functions H,'"(x)
and H,' '(x), Eq. (2) becomes

Qg(2)(x)

(2)
Q (x)= 2 6 dvv (2)(x) 1 — — =1;~(2) 48 3 & 2

mx x

i.e. , we recover the classical result. The range
of integration can be understood by observing that

in the classical limit

v2 (l + 3)2 y2

x k'o o

24 g (l+1)(l+2)(2l+3)
1)' X 1 6 H)x) /2 (X)H(x', /2(X) H, xp/2(X)H„6/ 2 (X)

(3)
In examining this equation, one is led to ask how

much of the structure embodied in it is necessary
to yield the classical limit and the leading correc™

where b is the classical impact parameter, and

thus the above integral corresponds to those col-
lisions for which the impact parameter does not

exceed the diameter of the sphere. That is, we

have considered just the range of b which in clas-
sical mechanics would give a collision.
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Q*' '=(46/)/ x6) f dv —')) v e
0

(6)

One would be tempted to conclude at this point
that to obtain further corrections it would suffice
merely to keep additional terms in the asymptotic
developments of H„"'(x) and H( )(x) and not only to
integrate the resulting expressions from 0 to x,
but to carry out the equivalent procedure from x
to ~ also. This is unfortunately not true. It can
be seen by examining Eq. (6) that additional terms
will introduce singularities at x= v into the inte-
grand of Eq. (4), and thus will decrease the range
of its applicability. The range excluded, where
5 is near 0., turns out, as we shall see, to be just
that range in which we are most interested. One
is then driven to treat this transitional region using
expansions involving Bessel functions of order —,

(and ——,') or Airy functions. The whole procedure
becomes quite complicated.

Instead, we begin by subtracting the classical
contribution from the integral in Eq. (4). We then
use Langer's uniform asymptotic expansions for
the Hankel functions and proceed to a limit valid
for large k in a way developed by Hubinow and
Wu' in their study of the elastic scattering cross
section of cylinders and spheres. This procedure
will be found to yield the first correction term.

Setting x /v' —1 = &u2, the classical contribution
[Eq. (7)] can be written as

or

48
@&=1+ 2 2x J

0

1 1
d8 tan-1(g (I+(u2) (u —ta.n 1(d

1 r'
2 ~(1) g ~(2) 2 4

For large x, and fixed z, cg becomes small since

2 = [x/(I + (v2)'/2]((d —tan-'(d) .
Thus, for u &1,

CO

tan (o (1+(u ) (d —tan (u (d 3z

and, if we make this approximation for all z,
Eq. (12) becomes

48
(()& =1+ 2 4/, (3 )

7T x

Xl 2

J
22 2[H(l)( )H(2)( )]2 4 r ( )

where we have also let the upper limit x, which
we assumed to be large, go to ~.

We shall now show that Eq. (14), obtained by
keeping w small while letting x- ~, is correct to
order 1/x . Consider first the error resulting
from letting & become small:

We now break up the integral of Eq. (4) into two

parts,

t X 348 V 2 5 2
())& = 1 + 2 6 J

dv
[ (1)( ) (2)( )]2

—47( V (r)

0

(9a)

46El= 2 2 J
dZ

(d'
(tan-'(u)(I+(u )2((o -tan '(o)

1 m' '

Z2II"' Za'" ~ '

48
9&= -26

"x

V

[H(1)( ) H(2)( )]2 (9b)

H(1)( ) ~-1/2 (~ tan-1 ~)1/2H(1) (2) e(rr/6+ p(v-4/3)

H'"(x)=~ '
((d —tan ' )' H'"(2)e " '+O(v-"')

(10)
where z= v((d —tan-'(d). Equation (9a) therefore
becomes, keeping only the lowest-order term,

48
Q& =1+

mx
0

dv v' 1 w'
z &g. i &(2& 2 4

(11)

where in ())& we have made use of Eq. (6).
We examine Eq. (9a) first. This corresponds to

integrating over classical impact parameters less
than the sphere radius. We use the uniform asymp-
totic expansions of Langer suitable for x&v:

(()/(I+(d ) &tall (r) &(d (16a)

3(d /(1 + (r) ) & (d tall (r) & 3(r) (16b)

Equation (16a) can be verified for all values of &u

from the well-known expansions of~ tan '& while
Eq. (16b) can be shown to hold when a& is small.
One can then extend the validity of (16b) to all
values of + by noting that the differences in the
slopes of the terms are always positive.

Since we have

3(tan '(d)(l+(u )'((u -tan '(u) -(d'
(o'(tan '(d) (I+(u')'((d -tan '(d)

Note that we. take the absolute value of the terms
which are explicitly z dependent. Also, if we call
the factor within the large square brackets (which
contains the terms explicitly (d dependent) G(ur);
then G(&u) is & 0. This is shown simply by noting
the following upper and lower bounds:
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3 3
G((u) &

(1 @+ (18)

For large z, Hankel's asymptotic expansion' gives

we can expand the square in the numerator, use
the upper bound given by (16b) on the first term,
and group the results to yield

t
G (d

(u'(tan '(u)(1+(u ) ((u —tan '(u) (1+(u )

The first term here will vanish after applying the
appropriate bounds leaving

where now (u'= 1 —x /v and z = v(tanh '(u —(u).
Eciuation (9b) then takes the form

(22)

48 CO

Q& =
p 6 dvv

v x g (tanh (u —(u)2

1
([(1/v) I~»3(z)]'+ [I„,(z) +I „,(z)]2]'

)( ((1/)/) Hl/3(z) +3[I1/3(z) +I-1/3(z)]]'+ O() "'
)

1 C

z'[H"' (z) H"' (z)l' 4

where c is a constant, and thus, inserting Eqs.
(18) and (19) in (15), we obtain

(19) 48 t e2 1 1
tanh '(u (1 —(u )' (tanh '(u —(u)

22 dz
0

1
X

zB( /v) 1/3(z)] +II)/3(z)+I 1/3(z)] ) '2 2 2, (28)

The error in Q& due to neglecting the terms of
O(v 4/') of E(l. (10) in arriving at E(l. (11) is
evaluated in Appendix B and is shown there to also
be of O(1/x ).

%'e next consider the effect of extending the up-
per limit to infinity in E(1. ,14), and hence we must
estimate

1 3
tanh '(u (1 —(u ) (tanh '(d —(u)

which, as before, becomes

8/ 2 8( /8 )2/3 81/3 2/3 -2/3

(24a)

where we have neglected the terms O(v /') which
could be treated in a manner analogous to that used
in Appendix B. If we again take the limit x- ~,
then, for fixed z, ~ again is small and

2 2 4/3 z z 2[H(1) (z)H(2) (z)]2

(20)

If we now approximate the integrand of Q& in this
manner, we find

1 1
z'[H"' (z)H"' (z)]' -'z' (21)

Thus the integrand near the origin behaves as
z which poses no problem, and we have com-
pleted our analysis of E(l. (9a), showing that we
can replace it by E(l. (14) with errors no greater
than O(1/x ).

We now turn to E(i. (Qb), which corresponds to
integrating over impact parameters larger than
the sphere radius, a,nd proceed in an analogous
fashion. For x & v, the asymptotic expansions of
Langer are

H' '(x) = (u (tanh (u —(u)'

Using (19) we see that the integra. nd goes as
z ', and thus E2 is O(1/x ).

This analysis, of course, also shows that the
integral of E(l. (14) converges at the upper limit.
For small z, from the power-series expansion of
the Hankel functions, we obtain

48 1
4(3 3

-5/t'3

([(1/)/)Kl/3(z)] + [Il/, (z) +I,/, (z)] j'
(25)

(d/(1 —(d ) & tallll (d &(u~

(d /8(1 —(u ) & tallll (u —(u & 3(d

we find that

{26)

for large x. For small z the integrand behaves as
z ' ', and for large z the integrand decreases ex-
ponentially.

As before we can write an upper bound for the
error that we have committed by keeping ~ small.
Using the following bounds, which can be verified
by arguments analogous to those used for Eqs.
(16):

x O1/v) Xl/3(z) —3[I1/3(z) +I 1/3(z)] )+O(v ),
H'@( )=x(tanh ' —(u)

(d 1 1 3
(1 —(u ) tanh (u —(u

&0 . (27)
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48
za x3

Tt x
1 1

((( -t««)' (( —t«'))

1 1
X

8 ((I/7r) &g/3(x) + [&g/3(x) +Li/3(~)]q2 2 ~ (28)

Thus the error introduced in going from Eq. (23)
to (25) is

The change of variables is suggested by the be-
havior of the integrand which now becomes linear
in u and thus presents no difficulty. To evaluate
the Hankel functions in regions one and two, we re-
write the product in terms of positive fractional
order Bessel functions,

&i/'s (x)&i/s = I&i/3(x) 1'

To estimate this expression, we note that the in-
tegrand decreases exponentially (-e ') for large
z. Since we are interested in the large x behavior,
we let w approach zero as we did before. This
removes the x dependence from the integral and
the upper limit of the error Es is of order 1/x .

Our result is then

q+")(x) =1+(A+II)x-"'+O(1/x'),
where

48 &(3 &y3 1
3 3 d~~ 2 (1) (2) 3 4& y

+ 3[J,/3(z)+ 2J5/3(z) ——,' (1/x) zg/3(z))' (31)

and evaluate these by backward recursion. " Final-
ly, to evaluate the third region we use Hankel's
asymptotic series' for lz)»1, lz!»v, and we
obtain

1 r'
x2[ff (1) ( )If(2) ( )]2

+ ~ ~ ~ 32

dzz '~'
8= ~3

(soa)

tail= —3&&3' ' (1/x ')(1 —3/Sx2+ ~ ~ ~ ) . (33)

We can then integrate Eq. (soa) from an arbitrary
large value of z (=x) to ~. Calling this contribu-
tion the "tail, " we find

X— 1
{[(I/m)K& /g(Z)] + [Il /3(Z) +I 1 /3(Z)]9

(sob)

The first quantum correction term has thus been
obtained by finding limiting values for the integrals
when x is large and & remains small. Since the
quantity ~ is a relative measure of the deviation of
the classical impact parameter from the sphere
radius, we see that the first quantum correction
results from picking out for each energy those
angular momenta which result in collisions where
the impact parameter is near the sphere radius.
The coefficient A embodies a contribution in excess
of the classical term from just inside the sphere,
while B gives a contribution from just outside it.

CALCULATIONS

The next step is to evaluate the integrals associa-
ted with the coefficients A and B given by E(I. (30).
Numerical integration was used to accomplish this,
and a few comments are in order on the procedure
we have followed.

From a numerical point of view the A. integral
presents the following difficulties: (a) Its integrand
is proportional to z '/ near the origin; (b) for large
g the convergence is slow; and (c) we must produce
accurate values of the Hankel functions. To deal
with these problems we split the integration into
three regions: 0 to 1, 1 to x, and x to ~. For the
first region we change variables, letting g' '=u.

Q*'~'(x) = 1+10.376 805 x 4 3+ O(1/x2) . (34)

This contrasts with a dependence of x for the
first correction to the scattering cross section for
hard spheres (we recall that the leading term is
twice the classical value) and contrasts with an ex-
pansion in powers of 1/x for the derivative of the
second-virial-coefficient phase-shift sum for hard
spheres.

E(Iuation (34) has been compared with 15 digit
calculations of this cross section from E(Is. (1)
and (2), and the results are displayed in Fig. 1.
Good numerical agreement is attained at large
values of x. For example, E(I. (34) gives values
which are only 0. 55%%u() too high at x= 100, 0. 1/0
too high at x =1000, and 0. Ool%%uo too high at x = 4000.

A comparison of the deviations from the clas-
sical values, Q*( '(x) —1, provides a more sensi-

In our evaluation we let x= 40. 5.
Our value for A is then the sum of three num-

bers: 4. 332027, 2. 748426, and 0. 305664, so
A = V. 386 11V a 0.000 001 (or 2).

The 8 integral is treated similarly except that
owing to the exponential convergence of the inte-
grand there is no need for a third region. By
z = 6 the integral of the second region has converged
to eight figures and represents only a small frac-
tion of the contribution of the first region. We
find then that B = 2. 990688. Thus A. + 8
=10.376805+0.000001 (or 2), and we have the
final result
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) I

]
l

I

l
I, I 5

0* '(x)= —, —,(2 48 1
7F x

p 3

[a"'(x)a'"(x)]'

I.10—
44)

(3

1.05—

We start from the rigorous expression

@2,(2) 24
m'x'

(l + l)(l +2)(2l + 3)
)-2 aI,b2(x) aI")&2(x)aI!2&2(x)aI!42(x)

I

100
I

200
I

500 400 500
Let v=l+ —,'. Then we have

(A2)

FIG. 1. Q*' ){Q; solid line, calculated by the exact
phase-shift formula, Eq. {2); dot-dash line calculated
by the two-term asymtotic formula, Eq. {33).

tive test of the adequacy of Eq. (34) for represent-
ing the large-x behavior. We find that it gives a
value which is too high by less than 10%%uo at x-900,
and within 5%%u() at about 3500. The slope of the ac-
tual deviation on a log-log plot does not come with-
in 1% of —

2 until after x= 2500. This indicates a
slow rate of convergence for the asymptotic series
which has been borne out by fittings to a semi-
empirical series suggested by this work. This has
been carried out over a range from x= 30 to
4200 and gives a value of 10.3768055 with an es-
timated error of a 0. 000 000 2 for the coefficient
of x, thus verifying the result derived in this
paper quite convincingly. In addition, the error
estimates obtained here for the neglected quanti-
ties indicate that the next terms in the asymptotic
series should be proportional to (lnx)/x and
1/x'. These terms are supported by the least-
squares analysis of the phase-shift calculations,
and preliminary fittings indicate values of about

~-17.000 and + 25. 149, respectively, for their co-
efficients. More accurate fittings, including
higher terms, will be published separately together
with the exact calculations.

We wish to emphasize that Eq. (34) and its semi-
empirical extension, including as they do both
fractional powers of the energy and logarithmic
behavior, are not analytic in I2, nor in If, as wa, s
the case with the second virial coefficient of hard
spheres. This raises the possibility that non-
analyticities may also be present in the asymp-
totic expansion of the transport cross sections for
more realistic potentials.

APPENDIX A

v'x' „„,a„",'(x) a„".,'(x) a„".,'(x) a„'.",(x)

12
v'x' „„,a~",(x)a,",'(x) a„",,'(x) a„",,' (x)

(A3)

where the sum goes over odd half-integral values.
We begin by examining the first of the sums in

Eq. (A3), and we replace it by an integral using
the Euler -Maclaurin expansion":

Q" =
q 6 dnFyg +2F +F 2

3/2

~ Z A [4'"""( ) -4'" "(-')]}, (A4)
1

(2))2) I
m

where

z(n) = ~'/[a„",'(x) a",'(x) a'„'„'(x)a„',",(x)],
the B~'s are Bernoulli numbers, and the F' 's
are derivatives of F with respect to g. Our next
step will be to replace the differing orders of the
Hankel functions by their average value n and to
examine the error E4 introduced by this approxi-
mation:

48
v2x2 „„"a„",'(x) a„",'(x) a„",'(x) a„".,'(x)

3

drr( rr() rr()) ) (A4)

3/g

We estimate this error using the expansions
for Hankel functions of large order, and consider
first the lower part of the integrals (which we
designate E4&), where x & v & 0.

The expansion (Eq. 5)

We wish to show that when x is large, we can
write the reduced-viscosity cross section for hard
spheres to order 1/x as

a a ~/a
(1)( ) (2)( )

22(X ~ ) + 2

gives us

(A6)
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[H tl&( )H(2&( )]3 4 ( K + 2 y, e '"(1-e '")=0
x4 (All)

„+1
H„'J(x)H„".q(x)H~&(x) H„' &(x) 4 g x J

1 ——
~ 1+0 ~ . AV

We have thus shown that we can replace the or-
ders of the Hankel functions by their average
values and keep the error 0(1/x ).

We consider next the error introduced by al-
lowing the lower limit of the error integral Eq.
(A5) to go to zero. We can employ the expansion
of the Hankel function when the argument is very
large, and we have

Inserting in Eg. (A5) and integrating from —,
' to x

gives the result

Z„=0(1/x') . (A8)

For the upper part of our error integral equa-
tion (A5), where we integrate from x to ~, we use
the expansion for v &x & 0, 4

2
Hv (x)Hu ( ) 2i 2 2il/2-x)

x exp(2v[- (1-x'/v')'~'+ cosh '(v/x)]].

Z (- &)" z ": gs) (&9)
m=O

48
dnn —0(1)= 0 ~ . (A10)

For the range from b to infinity (E4 & „) we will
designate the argument of the exponential as
-vf(v) and replace it by —vf(b). We then obtain

48 I „2 2 1
E4)))~ g 4 l

dnn 4&&' (n x ) 1+0
7T x ln x)

where a„= 2 I'(&n + —,') b„and the b„are the same
as in Eq. (5).

The argument of the exponential is always posi-
tive in our range of integration. This is easily
seen by noting that both terms in the bracket are
zero at v =x, while the slope of the positive
cosh '(v/x) term with increasing v is always steep-
er than that of the negative term. Thus in the er-
ror integral we have a decreasing exponential which
goes to zero as v- ~.

We can get an upper bound to E4& by splitting it
into a lower and an upper part. For the lower
part of the range of integration (E4&,), we replace
the exponential terms by their largest value 1,
and integrate from x to a large upper limit b. Vfe
obtain

~'x' g
" [H„"'(x)H„'"(x)]'

48 m'x' ~, 1
p6 g dnn =0 4

7T x 2 x'
0

(A12)

Thus we can drop the lower limit of our integral
to zero and still retain the desired accuracy.

Next we must consider the values of E(n) and

its derivatives with respect to n at the two limits,
as they appear in Eti. (A4).

At the lower limit we have g «x, since we are
considering large values of x. In this case H„"'(x)
&&H„' '(x) = 2/(»x) so E(—,') is of order xo and its con-
tribution to 4&&*~2&(x) will be 0(1/x4).

At the upper limit ~, we have n» x, and in this
case we have

H„'"(x)H'"(x)= (2n/x)

E(n) = n'/G(n —1)G(n+1), (A13)

where G(n —1)=H„' &(x)H„','(x), etc. Then

dE( ) 3
( ) ( )

G ( + 1) G ( 1)
dn n G(n+ I.) G(n —1)

where G' is the derivative of G with respect to
n. The first term on the right-hand side of Eq.
(A14) is clearly of order 1/x lower than the order
of f, dn E(n) since we lose one power of x by
dropping the integration over dn, and one in dif-
ferentiating with respect to n.

To evaluate the second term in Eq. (A14) we
again use the expansion [Eq. (5)], since x»n,
and obtain

Hence, as n-~, E(n)= (x/2n)4" which goes to zero
very strongly as n- .

Thus E(~), and indeed, all of its derivatives
with respect to g will give no contribution to
q4c(2&(x)

Our last step is now to examine the derivatives
at the lower limit n= —,'. Let
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G' 1 dG 1
G G dn (1 -n'/x')

Thus the second term of Eq. (A14) is of order
(1/x ) lower than the order of E(n), and of order
(1/x') lower than that of the integral over E(n),
and we can drop the terms involving the derivatives
at the lower limit without introducing any errors
greater than O(1/x ).

The analysis of the second sum in Eq. (A3) pro-
ceeds as for the first sum. Because of the ap-
pearance of v instead of v' the contributions from
this term will be down by a factor of 1/x relative
to those arising from the first sum and so this sum

can be neglected.
We have thus shown that Eq. (AS) can be re-

placed by Eq. (Al) with errors no larger than or-
der (1/x3).

APPENDIX B

The expressions of Langer for the Hankel functions [Eqs. (10)] are the initial terms of a uniform asymp-

totic expansion derived by Olver:

H(1&, , 2 «/3 4( "' A1(e"' '&'"']) g ak(() „,/, Ai'(e ' '&/ 'f) g bk(5)
v5/3 vsa=o ~=0

(Bl)

H„' ' is the complex conjugate of this. For y & 1, our case, (- $)'/3= -', [(y3 —1)1/3 —cos-'(1/y)], and the a, 's

and b~'s are series in inverse fractional powers of ( with ao=1. Rewriting in our variables, x, z, and cg,

one has

H(1&( i ((0 —tan (0) H(1& ( )
(((/3 ~ ak(() 1

3 '
((d -tan (d)

' H3/3(z) «/3+ rr(1) I
CO f, P v - 2 8 n ~/Si,Z~

and a similar expression for H„' '(x).
The square of their product thus becomes

x(s —',, /g ",() (B2)

(B"'(x}tt'"(x)1' ( ) H (z~)H"'(z)( z ' ) I(+(—) ( )

H3/3(Z)e H3/3(+)e

H1/ 3(&) H1/3(Z) -' k=0 & k 0& =z (BS)

We shall first examine the terms in the summation over ak/v+. For b = 0 we have a0/v = 1 and this term

gives us Eq. (11) of the text. The next term, for k=1, is

a1 1 (0& —tan '0&) 81 482 385 14 „1 3 5 455

v z i 1152 (d3 (d4 0& 3(1152) (d 0&3 9(1152) (B4)

If we assume that & is small as we did when examining the contribution of the first term in the series,

Eq. (11), we can expand the &u —tan '0& terms in powers of (d, and we find that the coefficients of the first

few powers occurring (0&, (0, 0& } are identically zero. We can, therefore, neglect a1/&(3 (and higher-order

terms) in the "a"sum.
The first term in the sum over bk/v "is

which, for small & is
&

0 3"3((d —tan-'(0)1/3 72((0 —tan '0&} 24(d3 80&

b,/~0 = (2'"/ro} [1 —O(~')],

(B5)

and we can approximate this by the first term, a constant, and neglect higher terms in the summation.

Using these approximations for the sums, gak/v~ = 1 and gbk/v~= constant, we next show that the second

term in the curly brackets of Eq. (BS) becomes small compared to one when x is large. The quantity



FI RS T QUANTUM- ME CHAN IC AL CORRE C T ION. . . 1163

(&u -tan '+)4/'/g can be written z'/'(I+~ ) '/x '. Since &u remains less than 1 for even our largest values
of g =x, this quantity is small compared to 1 and at least of order (I/x).

The factor in the square brackets multiplying it can be shown to be bounded in our range of interest. At
small values of z we can expand the Hankel functions by their series expressions and we find that the ratios
go as z ' . This is cancelled out by the factor z' ' in front, leaving the second term in curly brackets of
order I/x4/'. For large z, the square-bracket factor approaches zero, so the second term vanishes.

Since the second term in the curly bracket of Eq. (B3) is small compared to one, we can substitute Eq.
(83) in Eq. (9a) and expand the denominator.

This will give us Eq. (11) plus a correction from the higher-order terms neglected there:

g&fs ~y+ a)ars i/a (~r|i ~ )
&is ~ra)( )

.e/3) I2/3 88 2/F88 (»)

When & is small, this becomes

-48x 3~/'
6 Vp 2 8/3

4
0

We can obtain an upper limit for this error by using the large argument expansions of the Hankel func-
tions which gives us

and we can thus neglect the higher-order terms in Eq. (10).
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