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Phase Shifts of the Static Screened Coulomb Potential
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Phase shifts and their weighted sums over angular momentum states have been obtained for
the static screened Coulomb potential (SSCP). Results are given for both an attractive and a
repulsive SSCP. A procedure is given for obtaining the phase shifts which uses direct numer-
ical integration near the origin and the first- and second-order WKB approximation at larger
distances. At high energy a simple asymptotic fit to the weighted phase-shift sums is obtained.
The results are applied to the calculation of the second virial coefficient of plasmas that have
no bound states and of those that do have bound states. Very good agreement with the Wigner-
Kirkwood expansion is found for a Boltzmann gas interacting through a repulsive SSCP, except
that at high temperature, in agreement with DeWitt, the Wigner-Kirkwood expansion is shown
to diverge for the SSCP.

I. INTRODUCTION D= [(4m/kr)g, p, e'Z,') (2)

A detailed study of the bound states of the static
screened Coulomb (Yukawa) potential has recently
been carried out by Rogers et al. ' (hereafter re-
ferred to as RGH). In this paper the results of a
similar study of the phase shifts and their weighted
sum over angular momentum states of the static
screened Coulomb potential (SSCP) will be given.
The purpose of the study is threefold. First, the
SSCP is a basic potential and its properties are of
general interest. Second, the effective many-body
interaction plasma potential reduces to this form
at high temperature and low density. Third, the
results will give insights, both fundamental and
numerical, which can be applied to the study of
other potentials.

The theory of the quantum-mechanical partition
function of dilute interacting gases was developed
by Uhlenbeck and Beth3 and by Gropper. 4 Its cal-
culation requires a knowledge of bound-state eigen-
values and the phase shifts of scattering states.
This theory has been applied primarily to the cal-
culation df the second virial coefficient for hard
spheres' and for He' and He . It has not been ap-
plied to a plasma potential such as the SSCP. The
results of RGH and the present study will be used
to calculate the second virial coefficient over a
wide range of temperature and screening length.

II. THEORY

A. Phase-Shift Problem

The problem here is to calculate the phase shifts
for the SSCP which is given by

V(r) = Ze, e, e " /r,

where Ze, =+Ze is the charge on particle a, e&=
+e is the charge on particle 5, and D is the screen-
ing length which in plasma theory is given by

where p& is the number density of particles of

types',

and eZ& is the charge. The work of
Jackson and Klein indicates that for low-lying
bound states a constant potential -e2/D should be
added to V(r) This.may affect the statistical
mechanics of the gas, but the solutions of the
Schrodinger equation are equivalent. The results
given here also apply to a gas of neutral particles
interacting through a Yukawa potential V(r)
=ge ""/r

The radial Schrodinger equation can be put into
dimensionless form with the substitutions

p= zr/a„, A.g)
= ZD/a~

q = 2p,a„E/Z S, U(p) = 2p, a„V(r)/Z'a',

where

a„=a'/p, e 2 and p, = m, /(1+m, /m~),

which results in

dR 1 dR 2 l(l+1)
( ) (4)

dp p dp p

At large p such that q»l(l +1)/p + U(p),

R- (1/p) sin[qp —aml +5&(q)) .

For a particle subject only to the centrifugal poten-
tial, 5, (q)=0. From Eqs. (4) and (5) it is clear
that 6, is positive for an attractive potential and
negative for a repulsive potential. The phase
shifts 5, are normally calculated by numerical in-
tegration of Eq. (4) or by an approximation method
such as the Born or the WKB approximation. A
combination of numerical integration and the %'KB

method will be used in this study.
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B. WKB Approximation for 5I

Any numerical integration will accumulate er-
ros with increasing distance from the origin, and
it is not always practical to numerically integrate
the Schrodinger equation out to sufficiently large
p = p0 such that the residual phase shift between

p0 and ~ is sufficiently small. This residual phase
shift can be calculated quite accurately with the
WKB method since the scattered wave is similar to
that of a free particle in this range. The WKB
approximation is found to work wel1. even in cases
where the residual phase shift is appreciable.

The WKB approximation is an expansion of the
Schrodinger equation in powers of S. The total
phase shift given by the first-order term~ in this
expansion is

f(f +I)
6&(q)= q'- ~ -U(p)

~

P )

—Jf (0' — ) dp, (6)

P0

where p0 is the classical turning point of a free

62( )
1

t d
4'"(q' -fi)+ 6f~"

l q 82J P (q2 f )5/2

4fo"(q' -fo) +6fo"
+82

J
dP

(
g f)/

P

where

l(l +1)fi= 2 +U(P)
P

l(l +1)
0 p2 (8)

As it stands Eq. (7) diverges. The correct ex-
pression for 5, (q) is obtained by integrating Eq.
(7) by parts, discarding all infinite parts of the
integrated terms until a convergent integral is
obtained. The result for cases in which f,' has no

singularity in the range of integration is given in
several places. 9'0 In the case where f,' has a
singularity the result is

particle and p& is the classical turning point of a
particle subject to the potential U(p). I.anger' has
shown that 5', is considerably improved if l(l + 1) is
replaced by (l +1/2)' in Eq. (6).

The phase shift due to the term in 5' is given by

2 m

l(q)
16[I(f I)]1/8

-f, 1 f,' 1 fj"
8(q2 f )3/2 +

48 (q2 f )s/2 24 ft(q2 f )1/2

s'

1 " '
(f,"'/f, -f,"/f, ' )dp

(q'-A)"'
Dj

+ (identical expressions with limits of
integration between p= p, +e and p=~).

It is clear that as E- 0 the divergence in the in-
tegral is canceled by the third term in brackets,
so that the phase shift across the singularity can
be made arbitrarily small.

If both the first- and second-order terms of the

WKB expansion are used to compute the phase
shift, then the replacement of /(I +1) by (I + —,')' is
no longer valid. This is easily seen by expanding
the first-order term of the free-particle expression

(I +-.')' &"'
P

P0

P0

l(l+1)
dp

JD P
0

1 t" dp
8 g p'[q'-l(I+1)/p']"'

D0

+ (higher -order terms). (10)

The first two terms in this expansion are exactly
those obtained in the first and second WKB approx-
imations using l(l +1). Therefore the replacement
(l .--,')' partly approximates the second-order WEB
term. Numerical integration of the WKB expres-
sions for the SSCP and comparison with the numer-
ical solutions of the Schrodinger equation verify
this result.

A comparison of the WKB expansion with the
numerical solution of the Schrodinger equation is
given in Fig. 1 for e, = —e„D=4.542s„/S, and

l = 1. The SSCP has one bound state of unit angular
momentum for this value of D, and the phase shift
should approach w rad as q- 0. It is apparent that
the second-order term greatly improves the agree-
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These discontinuities wouM extend to all the ther-
mal properties, such as pressure and specific heat.
However, if we integrate Eq. (11)by parts an in-
teresting fact becomes apparent. From Levinson's
theorem we know that the phase shift 5, (q) at q = 0
is given by n& m, where n& is the number of bound

states of angular momentum l. Thus Eq. (11)be-
comes

8& 2
——Q (2l +1)Q (e n2 —1)

0.2—

+ q2/gqGs(q) e ' i Odq,
OTTO

(12)

10'

FIG. 1. Comparison of the first- and second-order
WEB approximations for the phase shift with the numer-
ical solution of the Schrodinger equation for a particle of
unit angular momentum subject to an attractive SSCP
with D=4. 542a~/Z.

ment with the numerical solution, and that the
first two terms in the WEB expansion are sufficient
except at small values of q or if extreme accuracy
is desired, as in the present case.

C. Quantum-Mechanical Partition Function and
Second Virial Coefficient

The two-body interaction part of the partition
function of interacting Boltzmann particles is given
by11

where the double sum in the first term ranges only
over bound states, and Gs(q) = $, (2l +1)5, (q).

Equation (12) gives the complete interaction par-
tition function of the system, and can be used to
demonstrate two points. First, the zero-energy
part of the phase-shift contribution to the partition
function exactly cancels the zero-energy part of
the bound-state sum, removing the discontinuity,
so Z 1 t re mains continuous as a function of the in-
teraction strength. Second, there is an additional
important contribution from nonzero-energy phase
shifts.

This full form of the interacting-particle partition
function is essential to a complete and correct
calculation of the thermodynamic functions of the
system. Obviously, current methods which in-
clude only the bound-state sum in Eq. (12) are in
error, and introduce discontinuities into the ther-
modynamic-state function at those points where the
bound-state levels pass into the continuum. Ac-
curate thermodynamic results for such a system
require that the bound-state levels E„, and the
phase shifts 5, both be calculated in the same man-
ner and to the same degree of accuracy.

For identical particles the exclusion principle
modifies the weighting factors depending on whether
states have odd or even angular momentum. For
Fermi particles the partition function is 3

where To = 2i)a'n kT/k, and the E„, are the bound-
state energies.

In ionization-equilibrium calculations of gases at
low temperatures it is usually assumed that only
the first term of Eq. (11) is important, and the
phase-shift term is ignored. We wish to consider
the high-temperature case when the phase-shift
term is important, such as in the case of a hydro-
gen plasma. If one retains only the first term of
Eq. (11) for an attractive potential gu(r), as g is
decreased the bound states E„, below zero energy
move up into the continuum. As each state reaches
zero energy, a partition function which includes
only the bound-state sum will be discontinuous.

&„,=(s+1)(2s ~ 1) Z (21 ~ ))Z (e*. '" —1))
l, odd fl

~ s(2s+1) 2 (21+1)r (e * '" —1))
l, even n

+ qGn(q)e ' ~r odq, (13)
2(2s +1),2~r

7T 0

where Gz(q) =(s+1)Z, ada(2l+1)6, (q)+sf, ~ (2l+1)
&&6,(q). For a Bose gas the spin-weighting factors
in G~ are reversed.

The second virial coefficient is composed of the
ideal gas exchange virial B,„~, and the nonideal
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part due to the effective two-body interaction po-
tential 8,„&. It is given by

a', SENT'~ 'a', Z„t
exch tnt 2ZS(2 l) y2 j 2 Z2(2 l)2 2/2

(14)

where the minus sign in the first term is for a
Bose gas and the plus sign is for a Fermi gas.
The second virial coefficient for Boltzmann par-
ticles is contained in Eq. (14) in the limit of large
quantum numbers (s -~).

The second virial coefficient for a bvo-component
system is given by

B= X,B„+2N, Np B,q+Nq B~q,

vrhere N, and N& are the mole fractions of compo-
nents of type a and 5, respectively, and B„and
B th e d i '

1 ff' iets fp
ponents a and b. B,& is the second cx'oss virial
coefflc1ent 1 esultlng fl om Q5 interactions. The
screened second virial coefficient contains a sub-
stantial part of the corrections to the Debye-
Huckel term for a hydrogenplasma. '~ " The con-
nection with the known free energy and pressure of
a hydrogen plasma and the extension into regions
difficult to reach analytically will be made in a
later paper.

III. NUMERICAL METHOD

The numerical method used to integrate the
Schrodinger equation is the same as that described
in RGH, except that in the present problem a single

integration is required for each phase shift in con-
trast with the several integrations (iterations) re-
quired to isolate an eigenvalue. This saving in
computational requirement is in general more than
offset by the large number of states that must be
summed over to obtain accurate values of the phase-
shift sum. Extensive use of the %KB appx'oxima-
tion considerably reduces the amount of computer
time required for these calculations, while at the
same time providing greater accuracy than can be
obtained strictly from numerical integration.

The procedure is to integrate the Schrodinger
equation out to po/1t~=4/q' or to p,/An=12,
whichever is smallest. The residual phase shift
is calculated in the first and second %'KB approx-
imations where the integrals now extend from po
t . At th 1 t gi th p d i
used for all values of l. At a given energy the
phase shift decreases with increasing E, so that the
KB Rppl oximatlon becomes 1ncx'eRslngly Rccux'Rte

Rnd ln fRct ls Qlore RccurRte than the Rbove pl o-
cedure at high values of E. At constant l the phase
shift decreases with increasing energy, so that the
%'KB approximation becomes increasingly accurate
with increasing energy. At high energy it is found

that the %KB approximation can be used exclusively
except for a few of the lowest states. At inter-
mediate values. of the energy it is found that the
combination of numerical integration and the WKB
approximation is more accurate up to values of E

as high as 50.
At high energy the phase-shift sum for RQ types

of statistics has a simple asymtotic expansion
[see below, Eq. (16)], so that 1t is llot 11ecessa1'y

5.0

4.0

3.0
C
U
00

~~ 2.0

FIG. 2. Phase shift of a particle sub-
ject to an attractive SSCP with D= 24 a~jZ,
as a function of q for various values of
angular IDOTQentuID
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FIG. 3. Phase-shift sum
of a Boltzmann particle sub-
ject to an attractive SSCP as-
a function of q for various
values of the screening length
(in units of a~/Z).
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to calculate G at very high energies.
These calculations were performed on a CDC

6600 computer which is a 14-place machine. The

phase shifts are accurate to a relative error of
about 3x10 ' and/or to an absolute error of
about 1&10 ' rad.
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FIG. 4. Phase-shift sum as a
function of q for various values of
the screening length (in units a~/Z).
The scale on the right is for Boltz-
mann particles (solid lines) sub-
ject to an attractive SSCP. The
scale on the left is for Fermi par-
ticles (dashed lines) subject to a
repulsive SSCP. The dashed lines
labeled A and B delineate regions
of special interest.
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FIG. 5. Comparison of the phase-shift sum for Boltz-
mann and Fermi particles interacting through a repulsive
SSCP.

IV. RESULTS

A. Phase Shifts and their Weighted Sums

At very small q for the attractive SSCP the phase
shift for a given value of l, according to Levinson's
theorem, will approach n& ~, where n, is the num-
ber of bound states of angular momentum l. This
is shown in Fig. 2 for D = 24a„/Z. The number of
bound states for each value of l are the same as the
number given in Table III of RGH. For l = 2 the
phase shift increases with decreasing q, approach-
ing 6& = 3z rad until at q = 0.02 it drops sharply and

approaches 6& = 2m rad. This behavior is typical of
potentials which come near to forming a bound
state. This is the case here since Table III of
RGH indicates that at D = 25. 0 a~/Z an additional
bound state is formed for l = 2. Similar behavior
is shown by stateseof higher angular momentum but
at increasing values of q, as l increases due to the
increasing remoteness of bound states. As l and

q increase the phase shifts become more closely

spaced, and the phase-shift sum ranges over larger
values of l. For large D and q it was found neces-
sary to sum as high as l =1500. When the 5, be-
come closely spaced, the labor involved in the
calculations can be reduced by solving for only
part of the 6, 's and interpolating for the inter-
mediate values.

The sharp behavior of the phase shift at small
q for values of D near to where a bound state ap-
pears or disappears leads to corresponding rapid
changes in the phase-shift sum. This effect is
much more pronounced at small D. Figure 3 shows
the phase-shift sum at small q for l = 1 and for
values of D in the range 3-7 a, /Z. As D increases
from 4 to 4. 4 to 4. 53 to 4. 54 (in units of a„/Z),
there is an increasing sharp change in G from a
value = 2v to a value = 5m rad. At D = 4. 542a, /Z
the phase-shift sum approaches 5w rad as q ap-
proaches zero. This indicates that a bound state
is formed between D=4. 540 and D=4. 542a~/Z,
which agrees with the value 4. 541 a~/Z given in
Table III of RGH. This procedure can be used
to isolate to quite high accuracy the values of D
at which bound states are formed.

In RGH expressions are given for the total num-
ber of bound states n~ and the number of s states
g* in the SSCP as a function of D. Because of the
simplicity of the phase-shift method for counting
the number of bound states, we have checked these
expressions up to D= 1000 a, /Z, which has 500
bound states. There is exact agreement with the
expressions for z* and g* given in RGH, if they
are rounded to the nearest integer. The phase-
shift sums Gs and G~ (minus indicates an attractive
potential and plus indicates a repulsive potential)
are plotted in Fig. 4 for a wide range of screening
length. The scale for G~ is on the left and the
scale for G„' is on the right. We observe that
humps in G~ tend to move to lower q with increas-
ing D. Also, -G~ tends to coincide with G& at
decreasing q with increasing D. The plot of G~
can be considered in three parts. In the part to
the right of the line labeled A the phase-shift sum
increases rapidly with D and q, and is approxi-
mately of the form f(D) g(q). The region between
the lines 8 and A is characterized by rapid changes
in G&. The region to the left of the line B is char-
acterized as a region of very slowly varying values
of Gg.

The effect of spin on the phase-shift sum is shown
in Fig. 5. The difference between G~ and G& de-
creases slowly as q is increased. At high q this
difference decreases approximately as q

' ', and
is nearly independent of screening length for
D & 4a, /Z.

The relevant quantities for the calculation of
partition functions of a hydrogen plasma are the
sums G~ and G~. These quantities are given in
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PHASE SHIF TS OF THE S TATIC SC RE ENED ~ ~ ~

Tables I and II, for s = &, over a wide range of
screening length and a number of values of q
sufficient that the integral over G can be performed
accurately. At high q the phase-shift sum is
found to be given accurately for all types of sta-
tistics by

parts an additional time, and if use is made of
Levinson's theorem at q = 0. The contribution to
the second virial coefficient agrees in its logarith-
mic dependence on A.D with the third term given by
DeWitt .For the Fermi gas at very low q (less
than 10 for large Xz&) the following relation is seen
to be accurate:

2~Dq' ~D6=+ +
27Tq

(16) 2G ~ = 6, (q) = [0.096Xn/(A. n + 1)

where the top sign is for an attractive potential
and the bottom sign for a repulsive potential.
Equation. (16) agrees with G~ at decreasing energies
with increasing AD, the agreement being good almost
down to line A of Fig. 4.

The first term on the right of Eq. (16) is easily
derivable in the first Born approximation from an
expression given by Landau and Lifshiftz. If Eq.
(16) is substituted in the Boltzmann form of Eq.
(14), the result agrees exactly with the first two
terms of the high-temperature virial coefficient
given by DeWitt. An additional term in the series
at high q is approximately given by

+An(0. 246+0. 264 inks)]q. (17)

B. Partition Function and Virial Coefficient

In the case of Boltzmann particles interacting
through a repulsive potential there is a much sim-
pler way than that given above to calculate the
second virial coefficient down to low tempera-
tures. This is the %'igner-IQrkwood expansion.
The first five terms in this expansion have been
worked out by Kihora et a/. ' The first three
terms are

8" =2wN f (1 —e 0)p dp,
0

Note that the integral from q=0 to q=~ over this
term does not diverge if Eq. (12) is integrated by

Bl &-U/T0 012~2d~mN

6T0 „

TABLE III. Second virial coefficients for a Boltzmann and a Fermi gas interacting through a repulsive SSCP.

Ci
+int

1
&int

2
+int

D= a~/Z

+int, B +int, E

0.002
0.020
0. 200
0.600
2. 000
6.000

20. 000

0.002
0.020
0.200
0.600
2. 000
6.000

20. 000

0.002
0. 020
0. 200
0.600
2. 000
6. 000

20. 000

4.46151 + 2
1.49926+ 2
3.53922+ 1
1.52581 + 1
5.4439S+ 0
1.96978 + 0
6. 148 74 —1

1.49926+ 5
3.53922+ 4
5.443 99 + 3
1.969 78 + 3
6. 14874+ 2

2. 07815+ 2

6.26792+ 1

4. 22873 + 6
7.70744+ 5
9.57938 + 4
3.29018 + 4
9.99379+ 3
3.34422+ 3
1.00469+ 3

7.6975 + 3
3.3828 + 2
1.0612+ 1
1.7192+ 0
2. 0341 -1
2. 5979 —2
2. 5119 -3

3.3828 + 4
1.0612+ 3
2. 0341 + 1
2. 5979+ 0
2. 5119 -1
2. 8649 —2
2. 6054 —3

7.0887+ 4
1.6734+ 3
2. 3929+ 1
2. 8082+ 0
2. 5878 -1
2. 8972 —2
2. 6148 —3

—5.418 + 4
—3.128+ 2
—2. 604 + 0
-3.482 -1
—5. 071 —2
—l. 155 -2
—2. 877 -3

D=10a„/Z

-3.128 + 3
—2. 604+ 1
—5. 071 —1
-1,155 -1
-2.877 -2
—9, 016 -3
-2. 644 -3

D= 40a~/Z

-6.485 -2
—8.542+ 2
-3.257 + 0
—9.477 -2
—2. 683 -2
-8.799 —3
—2. 625 -3

-4. 603 96 + 4
1.75438 + 2

4. 34003 + 1
1.66290+ 1
5. 59669+ 0
1.98421 + 0
6. 145 09 —1

1.80627+ 5
3.64274+ 4
5.46382+ 3
1, 97226+ 3
6.15097 + 2

2. 07834+ 2
6. 26792+ 1

4. 29896+ 6
7.72409+ 5
S.58174 + 4
3.29045+ 4
9.99403 + 3
3.34424+ 3
1.00469+ 3

3.34758 + 3
3.52423+ 2
4. 35249 + 1
1.66076 + 1
5. 59683 + 0
1.98721+ 0
6. 16281 —1

1.81279 + 5
3.64275 + 4
5.46380 + 3
1.97225+ 3
6.15095 + 2
2. 07835+ 2
6.26805+ 1

4. 29902 + 6
7.72410+ 5
9.58171 + 4
3.29044 + 4
9.99399+ 3
3.344 24 + 3
1.00469+ 3

1.70799+ 3
2, 05086 + 2
3.48232+ 1
1.48094+ 1
5. 32179 + 0
1.94347+ 0
6.11634 —1

l. 661 68 + 5
3.59378 + 4
5.44874 + 3
1.96956 + 3
6.14731+ 2
2, 07792+ 2
6.26776 + 1

4. 28346 + 6
7.71917+ 5
9.58018 + 4
3.29017 + 4
9.99362+ 3
3.34420+ 3
1.00469+ 3

nIn units N(a~/Z) .
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TABLE IV. Individual terms of the partition function
and the second virial coefficient~ for an attractive SSCP.

TO
BS

+int
0

+int
CS+int

0.002
0.020
0 ~ 200
0.600
2. 000
6.000

20. 000

2. 929 +4
2. 797 +0
1.108 +0
1.035 +0
1.010 +0
1.003 + 0
1.001 +0

D= a„/Z
—1.000+0
—l. 000+0
-1.000 + 0
—1.000 +0
—1.000 +0
—l. 000+0
—l. 000 + 0

9.041 —1
7.564 —1
6. 258 —1
6.856 —1
9, 495 —1
1.477+ 0
2. 579+ 0

—7. 29385 + 9
—2. 010 62 + 4
-1.82802+ 2
-3.45284 + 1
-7.558 90 + 0
—2. 24393+ 0
-6.426 03 —1

D= 10a„/Z

0.002
0. 020
0. 200
0.600
2. 000
6.000

20. 000

9.882 + 176
5. 006 + 17
6. 935 +1
1.259+1
9.703 +0
9.211 +0
9.061 +0

9.000+0
9.000 +0
9 ~ 000+0
9.000 + 0
9, 000 + 0
9.000 +0
9.000+0

9.55840
1,379+1
2, 860+1
4. 607 + 1
8. 131 +1
1.392+ 2

2. 529 +2

—2.460 84 + 182
-3.94207 + 21
—2. 21509+4
—2. 38035 +3
-6.458 51 + 2
—2. 1]230 +2
-6.298 90 +1

0. 002
0. 020
0. 200
0.600
2. 000
6.000

20. 000

3.076
4.455
2. 007
7. 949
7. 362
7. 250
7. 215

D= 40a„/Z

+ 206 —7. 200+1
+ 20 —7. 200 +1
+2 —7. 200+1
+ 1 —7. 200 +1
+1 —7. 200+1
+1 —7. 200+1
+1 —7. 200+1

9. 010 +1
1.611 +2
4. 206 +2
7. 104+2
l. 283 +3
2. 215+3
4. 039+3

—7. 662 12 + 211
—3.507 93 + 24- l. 367 73 + 5
—3.44052 +4
—1.01193 +4
—3.358 11 +3
—1.005 94 +3

'In units ~/(a, /Z)'.

0 1 „2 1 U' 1 U'

The first three terms of the Wigner-Kirkwood
expansion of the second virial coefficient, their
total B„t,+„, B„,~, and B„t,~ of a repulsive
SSCP are given in Table III for several values of
screening length. At high temperature 8'„, and

B„tare practically independent of D, and vary
as I/T and 1/T, respectively. This behavior is
expected from Eqs. (18}at high temperature,
since the screening becomes ineffective and the
potential approaches a pure coulomb potential.
For D= 1 a„/Z and 10 a„/Z it is noted that the sum
of the first two Wigner-Kirkwood coefficients
agrees more closely with 8„t , than does the sum

of the first three coefficients. At D =40 a„/Z
this breaking down of the Wigner-Kirkwood expan-
sion with B„,& is seen to depend strongly on the
screening length. The potential varies more slow-
ly with increasing D so that the semiclassical ap-
proximation becomes more valid. At D = 40 a~/Z
the agreement is within a few parts in a million
over all temperatures above To= 0.002.

At very low temperature B,„,&=28„,~, since
only the lowest state is important. As the tempera-
ture is raised more and more states become im-
portant and the phase shifts become more closely
spaced, so that the spin-weighting factors become
less important and B„t~ approaches B„,~, as
shown in Table III. The difference between Boltz-
mann and Fermi statistics is nearly independent
of screening length except at low temperatures
and/or small screening lengths.

For an electrically neutral two-component
plasma (N, =N, ) the second virial coefficient is
related to the one-component second virial co-
efficients and the second cross virial coefficient
according to Eq. (15). After integration we see
that the contribution to 8 of the first term of Eq.
(16}is identically zero, a result of electrical
neutrality. The virial coefficients of the pure com-
ponents are given in Table III. The second cross
virial coefficient' B„,& is given in Table IV.
The cancellation of the XD term at high tempera-
tures is apparent.

Table IV also gives the bound-state part of the
partition function Z„t, the part due to the phase
shifts at zero energy Z„„and the nonzero-energy
phase-shift part [last term of Eq. (13)j Z,",„ for
several values of screening length. It is clear that

Z„, is the dominant contributor at low tempera-
ture, Zi, t is the dominant contributor at high
temperature, and that all three terms are neces-
sary at intermediate temperatures. The cancella-
tion of Z„, by Z,„t is apparent at higher tempera-
tures.
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The classical and first quantum correction terms in a high-energy expansion of the viscosity
cross section Q & for a Boltzmann gas of hard spheres is derived. The first correction is found
to be proportional to (1/ko) 4 3, which is a term nonanalytic in I (i.e. , 5 3), and results from
scattering near the edge of the sphere. A bound is established showing the remainder of the
asymptotic series to be of 0[ln(40)/(ko) ]. This asymptotic formula is compared with calcula-
tions based on the exact phase-shift expressions and its range of validity is established. The
next correction terms are deduced to be proportional to (in@0)/(ko) and 1/(ko)2 which involve
I2lnI and I~, respectively.

INTRODUCTION

In both classical and quantum mechanics one
can, in a first-order Chapman-Enskog approxima-
tion, express the density-independent part of the
viscosity in terms of an integral involving a spe-
cialized two-body cross section Q' '. %bile the
latter admits of an exact quantum-mechanical
formulation in terms of phase shifts, it is by no
means trivial to extract from it an asymptotic ex-
pansion valid for high energies having the classical
result as the leading term. In fact, for the case
of a gas subject to Lennard-Jones forces, the
quantum-mechanical corrections to the classical
answer are still a subject under discussion. '

The development of a high-energy expansion is
important in that, by providing corrections to the
classical expression for the viscosity of light

gases, it establishes the domain of validity of the
classical term and provides simple formulas valid
for a wider range of temperature. It also enables
one to check the numerical work involved in evalu-
ating the phase-shift formulas. Finally, by re-
moving the values of these known terms from nu-
merical results, we might expect to find clues to
the analytical character of the remaining quantum-
mechanical effects.

In this paper we derive the first two terms
(classical and first quantum correction} of an ex-
pansion, valid at high energies, for the Boltzmann
part of the cross section Q' ' of a gas of hard
spheres. (Similar analysis should be possible
for the other Q'""s. ) For this simple potential
we can express phase shifts analytically in terms
of Hankel functions and derive our results by using
uniform asymptotic expansions for these functions.


