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In this paper a many-variable form of the Mori continued-fraction technique is employed to
investigate the relaxation function of simple liquids. A general relationship between a trun-
cated-continued-fraction expression and the Zwanzig and Nossal variational result for the re-
laxation function is presented. In addition, a. specific example of this relationship is explored
to show the connection between the eigenvalues found from high-frequency hydrodynamic equa-
tions and those obtained from a variational method. The structure of the relaxation function
in the low-wave-vector limit is examined in considerable detail, and some comments are made
concerning the applicability of the variational method in the low-wave-vector and high-frequen-
cy regime.

I. INTRODUCTION

Recently there has been considerable interest
in the description of irreversible processes in
simple liquids. Much of the stimulus for research
in this area has been provided by the molecular
dynamics' calculations of correlation functions
and numerous neutron and light scattering experi-
ments performed on simple liquids. ' The mem-
ory function method of Zwanzig and Mori has
proved an extremely useful formalism to interpret
the results of these experiments. The basic at-
tractiveness of a description of simple fluids in
terms of collective excitations prompted the sug-
gestion by Zwanzig that one could construct col-
lective modes by a variational solution of the
Liouville equation. Subsequent work by Nossal and
Zwanzig' indicated how the use of basis functions
constructed from the conserved variables was able
to provide microscopic analogues of the modes ob-
tained by the use of linearized hydrodynamic equa-
tions. In addition, attempts were made to con-
struct the microscopic analogues of high-frequency
hydrodynamic modes by including the time deriva-
tives of the conserved variables in the basis set
for the variational calculation. "' The question
of whether such modes have physical significance
has been the subject of several recent investiga-
tions. ' ' Even if the lifetimes of these modes
are too short to have physical significance, a vari-
ational procedure can, in principle, provide a
convenient mathematical basis for the calculation
of the conserved variable correlation functions.

In this article we wish to discuss several aspects
of the variational solution to the Liouville equation
in terms of Mori's continued-fraction expansion
for correlation functions. ' In Sec. II the matrix

of the conserved variable correlation functions is
calculated by a variational procedure equivalent
to that of Zwanzig and Nossal, and the result is
found to correspond to a particular truncation of
the continued-fraction expression. In addition,
the use of an extended set of variables in the
framework of the generalized Langevin equation
is discussed in terms of the continued-fraction
expression and compared to the variational ap-
proach. In Sec. III we consider the Iow-k (wave
vector) limit of the equations explicitly in order
to obtain some information about the description
of simple fluids in terms of high-frequency long-
wavelength collective modes. The paper is con-
cluded with a brief discussion in Sec. IV.

II. GENERAL DISCUSSION

A. Relation between Variational Approach
and Continued-Fraction Method

In this section several aspects of the description
of simple fluids in terms of collective excitations
are discussed. It is illustrated how this topic can be
most easily described in terms of Mori's continued-
fraction representation of correlation functions.
In this section and Sec. III it is shown that this
formalism is especially convenient when one wishes
to define the frequencies and wave vectors which
are of interest.

Since in this paper we wish to explore the low-k
limit of the equations which are obtained, the set
of conserved variables takes on a fundamental
significance. In this limit, these variables are
strongly coupled and have similar time dependence.
Consequently, these variables are always treated
as a unit, and thus the Mori formalism will yield
matrix equations involving the hydrodynamic vari-
ables. (Although Mori's formulation in Ref. 16 was
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in matrix language, to our knowledge, the con-
tinued-fraction technique has not been applied to
fluids utilizing a set of variables. )

One of the aims of this section is to point out the
relation between the variational procedure of Zwan-
zig and Nossal and the continued-fraction expansion.
Zwanzig and Nossal pointed out that perhaps the
most straightforward way of constructing the col-
lective coordinates, which can then be used to
evaluate the pertinent correlation functions, is to
calculate the approximate eigenfunctions of the
Liouville operator by a variational technique. The
trial functions which they use are constructed from
the spatial Fourier transforms of the number, mo-
mentum, and energy densities and the time deriva-
tives of the latter two quantities. This approach
can easily be shown to correspond to a particular
truncation of the continued-fraction expansion. As
an example, the matrix of conserved variable cor-
relation functions is calculated by employing a
particular truncation scheme. It is shown that the
resulting matrix equation is equivalent to the one
obtained by a variational approach with trial func-
tions constructed from the conserved variables and
their time derivatives. Furthermore, it is shown
that this is in general not equivalent to the use of
high-frequency hydrodynamic equations proposed
by Nossal. This fact will be indicated in this sec-
tion, and discussed in more detail in Sec. III, which
will deal with the small-k limit.

Finally, the general question of the choice of
variables is discussed. It is demonstrated that ex-
tending the set of variables to include the time de-

I

rivatives of those variables already in the chosen
set is equivalent to a truncation of the continued-
fraction expansion of the original set one level
deeper. Since one would have to go to infinite order
in the expansion to compensate for the neglect of
one of the conserved variables, it is important
that none of these variables be omitted in the origi-
nal set. Since this section and Sec. III will utilize
the symbols introduced by Mori, we begin with a
brief review of his results and notation.

If one selects a set of variables {n„g~, e~), the
spatial Fourier transforms of the number density
being n„ the momentum density being g„and the
energy density being e~, and denotes this collection
of variables by the vector A,

(2. I)

Mori's expression for the corresponding relaxation
matrix can be written"

= (z)=(A(z)A ) (AA~) ' (2. 2)

00
zI —tMp+

( )
(2. 3)

In this and the subsequent equations A(z) is used to
denote the Laplace transform of A(t) while A=—A(t = 0)
and A~ is the adjoint of A. The continued-fraction
representation of:"o(z) is obtained when =,(z) is ex-
panded as

1
="i(z) =

zI —i(d)+ 1
8 I —ip+

zI —t(d„+ "„g(z)~k~y
(2. 4)

where

tope —-(,f q~f) (f )f J) ',

&g=&fgfg)(fg if'. i) ' (j'2),

(2. 5a)

(2. 5b)

= 'L, A,

f)=tLjfg i (j-'2) ~

(2. 'Ib)

(2. Vc)

:",(z)=(f, (z)f J)(f,f J) '. (2. 5c) f &=iL&f&,

where

(2. Vd)

The matrix n, o, is defined by

t ', =(f,(Of,')) (AA')-'. (2. 5)

fo=A, (2. 'Ia)

The random forces f
&

and their time derivatives
are defined by

Lg ——(I-Py s)L& s, Lo L——(2. 8)

and P, is the projector onto f &. As mentioned
earlier the var iational procedure described by
Zwanzig and Nossal employs trial functions con-
structed from the set fn» g„, e„g» e~J and sub-
sets of this set. One could of course include
higher-order time derivatives as we11, and in our
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notation the basis vectors including these higher-
order time derivatives would consist of the set
{A, A, A, .. . ]. Since a linear transformation of
the basis vectors will not affect the eigenvalues or
:- 0(z) found by the variational method, we can just
as well construct the trial functions from a new
set of basis vectors formed by Schmidt orthogonali-
zation of the vector of conserved variables and its
time derivatives. This new set of basis vectors
is just the set of random forces introduced by
Mori, {fp, f(, f 0, . . . ). ' Note that although A

is a three-dimensional column vector, f ( (i & 1) is
a two-dimensional column vector.

We now consider the calculation of the matrix of
conserved variable correlation functions by a vari-
ational solution of the Liouville equation which
employs the random forces as basis vectors.
The Laplace transform of the Liouville equation
for the vector of conserved variables can be written

canonical average leads to the set of coupled equa-
tions for the coefficient matrices:

The orthogonality properties of the random forces
and the definitions in Eq. (2. 5) can be used to sim-
plify the matrix elements. For i, j4:0, we have

I 5],q ),
((ff f,)fj)(fuff ) =~fw;, (2, 12)

(Af~)(f, f~) '= Q a,'" ()z){z(f,f ~)(f, f ~)
'

]eo

—((iLff()f))(ff() ]' (j =0, 1, 2, . . . , n)

A=(z-iL)A(z) .
The nth approximation to A(z) can be written

A(n)(z) g a ( )(zff) f

(2. 9)

(2. 10)

((IIfo)fj)(fsfj) =(fffIhg)

( (i~ f () f 0) (f pf 0) + & 5(( '

Equation (2. 11) can now be written

(2. 13)

(2. 14)

where the coefficient matrixes ap '(z) and a ("'(z)
(i&1) have dimensionalities 3x3 and 3x2, respec-
tively. Substitution of (2. 10) into (2. 9) and the

multiplication of the resulting equation by f &(f &f &)
'

from the left-hand side followed by an equilibrium

I

(100" 0)=[a(")(z)a '"'(z)" a ("'(z)]R

(2. 15a)
wlth20

I —i(f) p) 0 0

0

(z I —i(0 ()
2
2 (z I —i(d &) 0 (2. 15b)

0 0 0
2

(z I-i(d

From Eqs. (2. 10) and (2. 15) the nth approximation
to =,(z) can be obtained:

zI —gm& + 1
z I —z4)2 — + (2 17)

1
z I —z(d~

0
--1

:-()"'(z)=a,'"'(z) = zI —i(pp+ („)~f z

(2. 15)
with

This result corresponds to a particular truncation
of Eq. (2. 4), and allows one to associate a partic-
ular truncation of the continued-fraction expansion
with a particular variational solution of the Liou-
ville equation.

In order to illustrate these equations we now

specialize the above results and indicate how the
continued-fraction expansion leads to both the high-
frequency hydrodynamic results and the variational
results obtained by Nossal. To facilitate a direct
comparison with some of Nossal's results, we re-
strict the set of variables under consideration to
the longitudinal component of the momentum density
and the energy density:
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with

pi -i &pi (2. 19a)

X U

3 W O'I1
Ua I

~

I3 O'8

(2. 22)

The dispersion relations are found to be

where P is the volume and A3 and As are defined
by Nossal" (indicated by N in equation numbers) in
Eqs. (Nl. 9) and (N3. 4), respectively. For this
set of variables Eq. (2. 3) is altered somewhat.
Since we nom have a linearly independent set of
variables, only square matrices appear:

0(~) = [~ I-t~&+ =&(~)bi ] (2. 2o)

The dispersion relations obtained from Eq. {2.20)
when the time dependence of:-,(t) is ignored
[:-,(s) = s I]are identical to those obtained from
high-frequency hydrodynamic equations when density
fluctuations are neglected (N S. 14). This may be
easily shown by using the definitions introduced by
Nossal [Eq. (N3. 8)]; the matrices in Eq. (2. 20)
can be written

t/2

w wa && ~'&

(2. 23)

~high is identical to Eq. (N3. 14).
We nom consider a variational solution to the

Liouville equation where the trial function is con-
structed from the set of variables in Eq. (2. 18)
and their time derivatives. Using the procedure
outlined earlier, one finds

(2. 24)

o tCr/B

9/w where

. r tr x /w-(z v'-/w)r-r/B

(x - rr'/B)

. )' —))Y/W- (Z —U /W)V/8
(z —rj'/w)

+ U y+ Z XW —2UFWZ+ YBW)/H'

+ (Cr'r' 2Uyxz+ z-'x')/ff = o {2.26a)

H= WZBX —U BX-U TVZ+ U (2. 26b)

and the result agrees with Nossal' s Eq. (N S. IV).
It is clear that the approximations used for =,(z)
in arriving at the high-frequency hydrodynamic
results and the variational results are very dif-
ferent. As mentioned earlier, in ordex to obtain
high-frequency hydrodynamics, =q(t) was replaced
by its initial value

The dispersion relation can be calculated from the
condition

s'+ z'(ZX'B —ZX u'-afrV'XB

Equation (2. 24), on the other hand, is equivalent
to an exponential expression for this correlation
function

(t) 8+i cup i

The first result corresponds to a very short time
approximation while the latter result corresponds
to a much longer time approximation.

The above considerations shorn that the eigen-
values obtained via the variational equation are not
equivalent to those found from the high-frequency
hydrodynamic equations ignoring density fluctua-
tions. However, they mould be equivalent if the
correlation function

y—= ((1. Aq)A5*) (2. 29)

were equal to (X/W —U'/WB+ Z/B)U as conjectured
by Nossal. This form for Y implies ie&=0. It
appears however that this identification is not eor-
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rect. ' Similar conclusions can be drawn when the
full set of conserved variables [Eq. (2. 1)] is used.
Since the calculations are somewhat lengthy and
most of the necessary results have been given by
Nossal, we will not present these calculations here.
The important feature to note both in the simple
two-variable case with A = (d„, e~) and the result
for the full set of conserved variables is that iso,
is not zero, which causes the variational procedure
to yield results which are different from high-fre-
quency hydrodynamics. For large enough z the
variational results will certainly reduce to the
high-frequency hydrodynamic results. However,
if one is interested in the behavior of =p(z) in the
vicinity of its poles, then the results are not equiv-
alent and do not become equivalent even when k is
small (see Sec. 111).

In an earlier paper, Nossal and Zwanzig o found
a genuine equivalence between high-frequency
hydrodynamics with neglect of thermal conductivity
and a variational solution constructed from the set
(n~, g„, g, ]. The equivalence in this case is easy
to understand. If we let A in Eq. (2. 2) be given by

(2. 30)

(A) (2. 33)

The relaxation matrix =p(z) was calculated from

1
z I' —i(up+ y'(z)

with the aid of a Markov approximation for f(z).
The primed quantities have definitions similar to
those in Eqs. (2. 2) and (2. 5a) with A replaced by
A'. The damping matrix g'(z) is defined by

y'(z) =(f', (z) f,")(A'A") ',

(2. 34)

(2. 35)

whe . f& is the random force corresponding to A',

f'=iL[A'=i(1 P') pJA'-,

and Po is the projector onto A'. Once again we can
cons'. der an extension of this set of variables:

related to the variational solution and the compar-
ison ~f these approaches is best made via the con-
tinu '-f raction expansion. The calculation used
an extended set of variables equivalent to
(n„g„, e„g„, 8,] in Mori's generalized Langevin
equation. From the previous discussion it is clear
that .vis set is equivalent to

the corresponding random force is one dimensional
(see Ref. 17) and is given by

(2. 3V)

(gag-a)
m (n, n, ) "' ' (2. 31)

0" p(z) = z I —l(dp+
I

(2. 32)

Since the random force is one dimensional, i~& = 0
(this matrix can only contain off-diagonal elements
because of symmetry), and Eq. (2. 16) for this set
of variables reduces to

In this basis the relaxati. on matrix p(z) is block
diagonal with elements ",(z) 5&&, the matrix zI —imp

is identical to H in Eq. (2. 15b), and the damping
matrix has the form

which is equivalent to use of a high-frequency limit
for =,(z). The equivalence does not, of course,
hold when higher-order time derivatives are in-
cluded as can be seen from an examination of Eq.
(2. 1V) (set i&a„= 0 for this one-variable case). This
point will be discussed further in Sec. III. Once
the random forces become multidimensional the
results become qualitatively different even at the
level of including only first-order time derivatives
in the basis set. Since i~co & 0, the relaxation func-
tion is being studied over a larger frequency region
than is appropriate to high-frequency hydrody-
namics.

B. Choice of Variables

Recently Akcasu and Daniels have presented a
multidimensional analysis of Quctuations in a
simple Quid. Their analysis is actually closely

0

=-„., (II) A'., r

(2. 38)

If these expressions for the matrices along with

Eq. (2. 34) are used to solve for =p(z), we obtain
Eq. (2. 3) with:-, (z) replaced by Eq. (2. 4).

From the above considerations it is apparent
that if one starts with the vector of variables A and
makes a Markov truncation on the continued-frac-
tion expansion at the level n+ 1, this procedure is
equivalent to starting with the set A' [Eq. (2. 37)]
and truncating at the first level. One should note
that a variational procedure starting with the set
of variables A' would yield an identical result for
the relaxation matrix, but with the damping matrix
absent. As is well known, the level at which one
truncates determines the frequency regime of the
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relaxation function one is probing. For example,
at very low frequencies one should use A (i.e. ,
n» g„, e~ ) and truncate at the first level to obtain
the relaxation via the ordinary linearized hydrody-
namic equations. In essence, this says the group
of variables contained in A have similar decay
times which are much longer than those associated
with all the ~f, with n& 1. In a higher-frequency
regime, one is investigating the time decay of A
on the time scale of some', say f, . In this event,
one could start with the vector

and truncate after the first level, or equivalently
choose A and truncate at the second level. The
expression obtained for the relaxation function
would also reduce to the correct limiting form for
small z. At this point, though, one should note
that the use of the set

(Al
A rather than

would yield the low-z result, but only after the ap-
plication of considerable manipulations, since A(t)
contains a slowly decaying component.

g2 gt23 y& +, ~ ~

(S. 1)

0 0
det zI $&p+ . l! +1 O yz I —f(dg

(3.2)

do not reduce to those obtained from high-frequency
hydrodynamic equations,

, (OO&
det z I —j(go+ —

l =0, (3.3)

in the low-k limit. The dispersion relations to any
order in k can be evaluated by writing

where the superscript on the k-independent matrices
in the right-hand side of Eq. (3. 1) signifies the
power of k multiplying the matrix. These results
can be justified by using the fact that the time de-
rivatives of conserved variables are proportional
to k, and that any correlation function of an odd-
rank tensor is odd in k while the correlation func-
tion of an even-rank tensor is even in k. 3

It is now an easy task to show that the dispersion
relations obtained by the variational method using
the set of variables (A, f,),

III. LON-k LIMIT
z = g„c.„k", (3 4)

In Sec. II we did not consider the k dependence
of the relaxation function, or of the correlation
functions in terms of which it is expressed. Al-
though the results of Sec. II are valid for arbitrary
values of k, we will now investigate the structure
of:-0(z) in the limit of small wave vectors The.
motivation for such a study is twofold. First, we

wish to point out that even in the low-k limit the
calculation of:0(z) using high-frequency hydrody-
namic equations and the calculation employing the
variational method are not equivalent. The discus-
sion will, of course, exclude the special cases
mentioned in Sec. II where an equivalence does
exist. Second, we will discuss the applicability of
the variational method for small k. Also, since the
variational results are qualitatively altered when
time derivatives beyond the first order are included
in the calculation, we illustrate this behavior in the
low-k limit by treating explicitly the examples de-
scribed in Sec. IIA.

As a preliminary to this discussion we begin by
noting the k dependence of the matrices which appear
in the continued-fraction expansion. The leading
k dependence of these matrices is given by

(d = 2,~CO Q+ ~ o ~

0 k ((zI —g(dy ) j

Therefore, to order k,

( o o ) (o o)
~ (g) and

(3.5)

are identical, and it would appear that one could
k order

substituting Eqs. (3.1) and (3.4) into Eqs. (S. 2)
and (3.3), and equating the coefficients of each
power of k separately to zero. Both Eq. (S.2) and
Eq. (3.3) yield z-O(k). The corresponding nq co-
efficients are given by the above equations with each
matrix replaced by its leading k-independent matrix.
Because i&a, - O(k), it is not eliminated in this limit.
A specific illustration of this result is provided by
the example which was worked out in Sec. IIA where
A = (d~, e~) [compare Eqs. (2. 23) and (2. 26) to
lowest order in k]. This result might seem surpris-
ing since it is certainly true that 4
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f oo

l „(1)( )
1

and the results of the variational method and high-
frequency hydrodynamics would agree for small k.
However, it is easy to show that if the variational
method is used to compute the relaxation function
and if one is interested in values of z near the poles
of:-o(z), then the matrix

f0 0)
~„(()(z)

~

cannot be k ordered Usi. ng Eq. (3. 1) we can write

(3.6)

In the region where the dispersion relations hold
z-O(k), the series in Eq. (3.6) cannot be truncated
and hence the matrix cannot be k ordered in gener-
al.

Selwyn and Oppenheim have recently shown that
for small k one is able to obtain an expression for
"o(z) by k ordering the matrix

=-o(z) =

f 0 0
zI $(oo+ ( . [ [o](0)] (j 1 1

(S.8)

with the aid of the identity

satisfied for large k, for simple fluids gz(0) must
be large compared to iso& when k is small. This
can be seen by using the definition of:-z(z) in Eq.
(2. 5c) and the results in Eq. (3. 1). One may
readily show that the diagonal elements of this ma-
trix are of O(k ) while the off-diagonal elements are
of O(k). Since i(o, is of O(k), it is clear that for
small k one cannot neglect the damping term in
comparison to i~&. Thus we conclude that the
variational procedure may be of use in finding the
poles of the relaxation function only in a high-k
regime, i. e. , higher than the k region appropriate
to hydrodynamics. [One should note that in defining
the Markov approximation after Eq. (3.7) we have
implicitly ignored the off-diagonal elements of the
damping matrix. If one is interested in the roots
of the dispersion equation to order k, these ele-
ments must be retained. Since, however, in what
follows we will present dispersion relations cor-
rect to only order k, this definition will suffice. ]
Once damping is included the frequency region which
one is describing is also changed; then Eq. (S.7)
can be written as

0 0
=((o'(0)= Iim -=((z)=y (0).

«" Q k" Q

(3. 8)

The statements of the previous paragraph are not
in contradiction with their results. The inability
to k order

Hence, =,(i) can be formally written as

=-((&) = exp( —[="1"'(0)]'+i»)i (3.10)

-""o(z)=

( o o

,.y.(0)]' -'
(3. 7)

with the added condition that the damping matrix,

y, (0) = lim -=,(z)S,',
«~0ok" 0

be small compared to ice& and hence may be ne-
glected. While it is true that this condition may be

o 0)
(="1"'(z))~ —'

in this case is a direct result of the neglect of the
damping term. One can consider Eqs. (2. 16) and
(2. 17) with n= 1 as being obtained from the proce-
dure outlined in Sec. II 8 with use of Eq. (2. 33) and
a Markov approximation for the damping matrix,

det(z =1 '(0) + z[ I —:.1 '(0)(i(d(+ i(oo)] —i(do

+ "1' (0)(i(d(1(do+ n())= (3.11)

with the aid of Eq. (3.4). To low order in k the
results are

(e,eS) (eu )
""

zg g-+ok
mn0 Be0

and is now a decaying function. This behavior
should be contrasted with that in Eq. (2. 28) for the
case where damping is neglected. If we compute
the poles of:-o(z), given by Eq. (3.8), only two

propagating modes are found while the remaining
poles are real and O(k'). It is instructive to com-
pare the poles of =,(z) at high z when damping is
included to those with neglect of damping for the
two-variable case treated earlier, A =(do, eo).
When damping is included, the dispersion relations
can be calculated from
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~+ + BT——k — + a' + O(kz),
msp Bep np-

o V O(kz)83 4 g ~ + y

x (zI-z(u, )+(zl-z(uz) az] =O.

Using Eq. (3.4) we find to lowest order in k

—1 zr'2. =„a '~')') ") +0(a~)
tip

msp 88p

(s. 16)

z, = - (e„-e,)/~+ O(k') . (3.12)

&--&o+rG-= Vhm kz (f»f»&4 P . 1

R~O

(3. isa)

e —eo= lim
~~ (fzz f;z&

)r,"0

(s. lsb)

while the transport coefficients are defined by

uzi*+ g* =—lim lim, (f»(z)f fz &s" 0 If,"0
(3. 14a)

In these equations, T is the temperature, m is the
mass, p is the pressure, and ep and np are the
equilibrium energy and number densities, respec-
tively. The bulk moduli are defined by

zz, 4=+z[(~a )zz] +O(k ) ~

z, ,=+ z [( ~,"')„]'"+O(k') .

(s. 16)

Hence, when higher-order time derivatives are in-
cluded the number of propagating modes which are
proportional to k changes from 4 [Eq. (2. 26a)] to
2. The remaining roots are imaginary and k inde-
pendent in lowest order. A comparison of these
results with Eq. (3. 12) shows that even at this order
the variational method is not appropriate for the
description of:-o(z) at high z and low k. Although

the roots which are proportional to k might appear
to agree, note that the coefficient of k in z& 2 in

Eq. (3. 16) is zero while the corresponding coeffi-
cient in Eq. (3.12) is not. In addition, damped
microscopic modes similar to those in Eq. (3.12)
are not obtained.

~=
VT

lim Iim kz (fzz(z)fzz&,
z" 0 g" 0

(3. 14b)

where f„and f» are the components of f„
P = I/kzz T, and V is the volume. Note that the
starred transport coefficients defined by these equa-
tions differ from the usual shear-viscosity and
bulk-viscosity coefficients because of the subtrac-:
tive fluxes in the definition of the random force
f„. The definitions of the bulk moduli are the
same as those given by Nossal. " These results
should be compared with Eq. (2. 26a) where four
propagating modes were obtained. Hence, we see
that if additional modes exist at high s and low k
they are nonyroyagating and correspond to micro-
scopic relaxation processes. The truncation at
this level just corresponds to the use of exponen-
tially relaxing transport coefficients and is a com-
monly used procedure.

When the variational method is carried to higher
order by including derivatives of the conserved
variables beyond the first, the relaxation spectrum
of o(z) is qualitatively altered. This is because
higher-order ~LB matrices (n & 2) which are of O(ko)

now appear [see Eqs. (2. 16) and (2. IV)]. Once
again we will use as an example the case
A*= (d» ez). Setting n=2 in Eq. (2. 1'7), the dis-
persion relations for this case can be calculated
from

det( [(z I —i(uz)(z I —i(u, )+ hz ]

IV. SUMMARY

It has been demonstrated that using a many-
variable form of the Mori continued-fraction tech-
nique one is able to gain some insight into the nature
of the relaxation function with emphasis placed on
the low-k regime. In addition, several interrela-
tionships between seemingly different approaches
have been provided. First, a general connection
between the continued-fraction expression for the
relaxation function and the form obtained by a vari-
ational procedure was established. This connection
was used to demonstrate that the eigenvalues de-
rived from the variational procedure with the use
of the variables

are not equivalent to those found from high-fre-
quency hydrodynamic equations. Furthermore, it
was shown that these eigenvalues do not become
equivalent in the low-k limit. The question of the
choice of the starting set of variables used to cal-
culate the relaxation function was discussed. While
it was clear that neglect of the higher-order time
derivatives in the original set could easily be com-
pensated for by a finite higher-order truncation the
neglect of one of the conserved variables requires
that the expansion be carried to all orders.

Finally, the inappropriateness of the variational
technique in the low-k regime was demonstrated.
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By utilizing the exact relationship between the
variational technique and a high-frequency trunca-
tion of the Mori continued fraction, and a further
comparison between this latter truncation and the
corresponding Markov one, it was possible to
demonstrate the necessity of retaining the damping
term in the low-k region. This conclusion, of
course, was reached only if one is interested in
describing =o(s) in the vicinity of the hydrodynamic

poles.
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