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four Eqs. (4. 15) are closed equations with respect
to g' and g' in contrast to the hierarchy equations
such as (2. 6) from which they are derived. The
equations are highly nonlinear and non-Markovian.

However, fortunately for the purpose of formulating
transport coefficients, these equations can be
greatly simplified without the loss of rigor, which
will be discussed in the forthcoming papers.
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A derivation of exact expressions, given in terms of thermodynamic quantities, for the
s-wave parts of the He -He and He -He quasiparticle forward-scattering amplitudes in very
dilute solutions of He4 in liquid He3 is given. The result for the p-wave part of the Hes-He4

amplitude is related to the He quasiparticle effective mass. The associated Fermi-liquid
parameters are also derived.

I. INTRODUCTION a4, ——(I+ n)/v(0),

In this paper we use a Green's-function formal-
ism to derive exact equations for the He -He and
He4- He quasiparticle forward- scattering amplitudes
in dilute solutions of He in liquid He . The s wave
parts of the He -He and He -He amplitudes are
explicitly evaluated in terms of the thermodynamic
quantities, and the P-wave part of the He'-He am-
plitude is related to the He quasiparticle effective
mass. Only the cases of one and two He atoL-..s in
liquid He' at T=0 are considered. However, the
results should be useful at all temperatures a~d
He concentrations where a quasiparticle picture
is valid (i. e. , for T —0. 1 K in the one phase .egion
on the He rich side of the phase-separation c rve).
Qualitative arguinents leading to many of the re-
sults herein have been presented elsewhere. ' The
present work thus provides a quantitative justifica-
tion of these results within the limits of the quasi-
particle description.

The two major results of this work are those for
the s-wave parts of the He -He and He -He quasi-
particle forward-scattering amplitudes (a43 and a44,
respectively) for He quasiparticles on the Fe.mi
surface and He quasiparticles of very small mo-
menta. We find (see also Ref. 1)

044 = (2)

Here e is the fractional excess volume occupied by
a He atom in liquid He', and v(0) is the density of
He quasiparticle states at the Fermi surface. p, 3

and p, 4 are the He and He chemical potentials, and

e4 is the He number density. Using the result a.
= 0. 32, ' we obtain a4, = 0. 68/v(0). The analogous
quantities for parallel and antiparallel spin-quasi-
particle scattering in pure He are, respectively,
ao'=2. 9/v(0) and ao'= —1.1/v(0). It follows then
that the temperature range over which a quasipar-
ticle picture for He 's in He may be expected to be
valid is the same as that for He 's, namely, T —0. 1
K. a44 has been evaluated' using a rather plausible
assumption concerning the nature of the phase-sep-
aration curve as the He number concentration x
and T approach zero. The result is

a44 -—0 .0

It follows from (8) that the phase separation at
small x is closely related to that in a noninteracting
Bose gas.

Section II is devoted to a derivation of the exact
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integral equations relating the forward- scattering
amplitudes and their associated Fermi-liquid pa-
rameters. In Sec. III we evaluate the Fermi-liquid
parameters, and in Sec. IV we use these results
to obtain (1) and (2) as well as the P-wave part of
a43. In Sec. V we reproduce, for the sake of com-
pleteness, the arguments given in Ref. 1 leading
to (3) and give some further discussion of our the-
ory.

II. INTEGRAL EQUATIONS

Next, using (5) in (10), we arrive at

F,~(12, 34) = G' 4
+ ' G-, (53)G-, (46)

5Z( (12) 5Zg (12)

x s~s; Fz-, (84, 34) .

It follows directly from (5) and (I) that

F; (12, 34)=s, s I', (34, 12) .
Putting (9) into (6), we obtain

(12)

To derive the necessary integral equations we
consider the variations of the He and He self-en-
ergies, denoted collectively by ~~, in the presence
of a set of external nonlocal potentials V& coupled
to the various particle fields. The perturbing Ham-
iltonian is, then,

If,„,(t,)= Z,. f dt2 fd r, fd r~g, (1)g, (2)V&(12),

(4)

F„(12,34) = ' + ' — y(86)Gg(54)Fy (34, 34).5Z; (12) 5Z( (12)

(18)

After Fourier transforming in the variable differen-
ces 1 —2, 3 —4, and 4- 2 corresponding to the four-
momenta p, p', and k, Eq. (13) becomes

I';J(P, P'; k)= Iq~(P, P'; k)+ I)T(P, q+k; k)G-, (q)

where 1 =—(r» t, ), and the index i takes on three val-
ues corresponding to spin-up and spin-down He 's
and He 's. The i-j scattering amplitude is then
defined in terms of Z&, V&, and Green's function
G, as'

F(;(12, 34) = G j'(33) ' —G q' (44) .

x G~(q+k) F&&(q, p';k),

where to simplify notation we have defined

Io(12, 34) —= 5Z;(12)/5Gg(48) .
It is convenient to write (14) in matrix form as

I'(P, P'; k) = I(P, P'; k) +I(P, q+ k; k) G (q)

(14)

(15)

5Z( (12) 5Z( (12) 5G r(56)
5V, (43) 5G-, (56) 5V~(48)

'

Using the easily proven symmetry property

5G -, (56) 5G, (34)
5Vq(43) ' 5V)(65)

(6)

where s, =+ 1(- 1) for fermions (bosons) together
with the relation

Here we have introduced the convention that repeat-
ed barred variables are summed (or integrated)
over. The variational derivative is to be taken
holding V, constant for / &j and at H,„t=0.

Considering Z& to be a functional of the G&'s, we
next write

x G(q+k)F(q, p';k), (16)

where the product G (q)G (q+k) is to be interpreted
as the diagonal matrix

(&(q)G(q+k)5~=5~~G~(q)G~(q+k) .
Equation (16) has the easily understandable diagram-
matic form shown in Fig. 1.

We will be interested in the k = (k, ko) - 0 limit of
(16). As is well known, a study of this limit re-
quires some care since the product G(q)G(q+k) is
singular in this limit, the results depending upon
the limit which r -=1k l jko is allowed to take. We
have, in fact, for the He 's, for small k (o is a
spin index)'

G ( (11)5G t (12)G ( (22) = —5G ( (12)

and Dyson's equation

G, '(l2) =Go', (12)—V;(12)- Z((12),

(6)

(9)

G, (q) G, (q+ k) = G, (q) +
2mz3 k V,

F 0

where Go& is a free-particle Green's function, we
easily put (6) in the form

5Z;(12) 5Z((12)
( -) (-4)

5 V~(43) 5G, (56)

5Z ( (12) — 5Zq P4)+ G'(56) Gq(83)sgsq ~~ Gq(4, 4) .
(10)

P

P' p'+k

-p
p I

~ q ( &q'k
I'P

P —p'-k

FIG. 1. Graphical form for the integral equation for
the matrix scattering amplitude. The external prop-
agators are included for visual clarity.
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5 (tlo ~o) & ( lq I
P—p) (16)

Here VF is the Fermi velocity, PF is the Fermi
momentum, V, is the quasiparticle velocity, and

p 3 is the He' chemical potential. Since we consider
only the dilute limit for the He, we have

G4(W) G4(4 + &) = G4(e)

for small k; singular terms would come from the
presence of He 's in the ground state in the definition
of the Green's function. The function I= 6Z/ 5G is
not singular as k -0, as discussed in Ref. 5.

We now take the r -~, k - 0 limit of (16) to find

(Gap
fp~p~ l sn Pj ~P)p)1 j

(27)

From Eq. (26) we may then derive an equation for

~~~(P, Po) sE (P, Po)
pjpj +

snp p,p. BPo fp, ,;
p0=6p)

(26)

Denoting as usual the wave-function renormaliza-
tion constant by

F"(» P') = I(» P')+i(P, q) [G'(q)+R(&)] F"(q, P') .
» (p Po)

zfp 1
8po po=6p ) (29)

Here,
(2o) and assuming that z&p may be considered to be in-

dependent of p, we find

27iz3R- (&)= y~-(qo-vo)~(lql-P~)6-
F

(21)
, , ~F (»Po)

sn ~

pj
(3o)

F =[1—IG ]'I. (23)

R44(q)=0, I(P, P')=lim (P, p';k) .5Z

I-o &G

Taking the r -0, k -0 limit gives

F (P, P')= I(P, P')+ I(p, q)G (q) I (q, p') . (22)

It is convenient to eliminate G and I from the
two equations (20) and (22). Solving (22) symbolical-
ly, we have

Considering Z& as a functional of the Green's func-
tions, we write

5F (P)
Onp,.

»;(p, Po) 5G~(q)
5G -, (q) sn p,

(31)

Noting that, when the quasiparticle picture is val-
id, '

5G&(P) . o&&&(P)
=2viz(s(5;~5(po —sp))sp p +G(Slp) 5np

Doing the same with (20), and using (23),

1 = [1—IG ] 'I[1+Rl""]= 1'o+1" RF" .

Written in more complete form, (24') is

1'"(P,P') = F'(P, P')+ F'(P, q) R(q) 1'"(q,P'),

(24)

where s, =+1(-1)for fermions (bosons), Eq. (31)
becomes

~~;(P),. 6~~(P),»~(P)Go —~Fr(q)

(33)
(25)

the result at which we were aiming. j. and I'"
are (within constant factors) the Fermi-liquid fac-
tor and the quasiparticle forward-scattering ampli-
tude. We now turn to an evaluation of ~ .

III. EVALUATION OF FERMI-LIQUID FACTORS

Let us first evaluate 1"4,. This is most easily
done by directly deriving a matrix equation for con-
ventionally defined Fermi- liquid parameters. Re-
call that in the quasiparticle approximation the
quasiparticle energies are given by

Comparing (33) with the i-j element of (22), we see
that we have

sz;(P)/snp ——iz&s&r;&(P, P') l, (34)

since both sides of (34) satisfy the same integral
equation. Further, comparing (34) with (30), we

find

fp~, pg ~ t I j i j(Pr P ) I po=&p~spo=sp

For our purposes, (35) may be evaluated at zero
He4 concentration. In this case, fp, ,p.; is the same
as in pure He3. Also, because

p
2

+F~ (p &p;) .
t

(26)
fp4 p... sepal/snp. ~. =fp... p——4,

it is clear that at constant np4,

Denoting by np, the quasiparticle occupation num-

ber, we define the Fermi-liquid parameter as

1 l l
sep4—-Z fp4, p, .snp. ..=Z, , fp4, p, .enp, . ; (3V)

ppgp
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here we have noted that 5n~... is restricted to the
Fermi surface and have performed Legendre poly-
nomial expansions for both Snp.; and fp„p.... Since

fp4, p.;must be independent of o', (3V) reduces to

Since I'4, 4
=—I'43 is independent of the spin of the He3

atom, we may write (44) as

r43(p p')=r43(p, p')- ~
m Vp

1 g l5 =Q f~ 5 (38)
x ' I'+ P, q I"", q, P'. 45

For a uniform change in n3 we have 5n~~=5, 05n3
so that Here

~~&4 0
fp4 & pras

3 n4-"0

For small p, ~~4= p. 4, hence

(39)
oo J ~ oo

I"3 —= —~ ~ I", (45)

is the spin-symmetric part of the He -He scatter-
ing amplitude. Next, we use the Legendre poly-
nomial expansions

~94 o ofp4, pirs
3 n

r~ss4 r43(» pz) lpo=rp4 pL)=r(s 1

(4o)

where 'I'43 is used to denote the lth expansion co-
efficient of I'43 in a Legendre polynomial expansion.
Similarly, for small p and p',

p48
fp4ap'4 4 +44(p) p )I pp ep4 ~ pp =rp'4=

n4 n3

(41)
As one might expect, it is not difficult to relate
f& p... to the effective mass of a He (Iuasiparticle.
One can employ either a formalism based on the
use of the quasiparticle occupation numbers n~, or
a vertex-operator technique similar to that of Ref.
5. We merely quote the result of the calculation
without going into detail:

r„(p, q) =Q 'r~ (p)Z, (cosSps),
1=0

r„(q, P') =Q 'I'3 Pr(cos8;p. ),
tssO

(4V)

(45)

,"r,", -=x;/ (o),

a,',(p, p') = —is', 'r"„(p, p'),

and using the results of Sec. III, we obtain

and the addition theorem to put (45) in the form
~ 2l'r (3)='r' (1 —a(3)

Defining the quasiparticle scattering amplitude by

a4s(P) = iz433 'I
43 (P),

3mf m4 1
P4'P& m m* r (0)

(42)
A'

aa(3) ra(3) (1
—31'1=) . (so)

for small p.
This completes our discussion of I . We now

turn our attention to I'", the forward-scattering
amplitude.

IV. FORWARD-SCATTERING AMPLITUDES

Using the relations3

~(0) i&us „'
In the dilute limit the He scattering amplitudes

may be taken equal to those in pure He3. The
He -He scattering amplitude is, from (25), the
solution of the e(luation (all four-momenta are put
on the 4luasiparticle energy shell in this section)

together with (40) we arrive at the result (1):

a43(P=O)=(1+cr)/r(0) .

(52)

r". (p, p') = r'; (p, p')+ Z r' (p, q)R;;(q) r,-";(q,p') ~

(43)

Combining (50) and (42) with the known relations

ms/mg = 1 ——,Ar'

Using (21), we may do the integral in (43), finding

r~ (p p') = r4;(p, p') -
2 3 q' ss

7T p

gives

a (3=0)=3 a(1—m v(0

A completely parallel derivation yields

(s4)

& Z '& r4, (p, qr)r;";(qr, p').40-
4m'

(44) r
(p p, ) fr (p p, )

f43(p)a43(p')
2l+1 (ss)
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Finally, for small p and p' we may use (40) and (1)
to find (2):

to (&P,QS~)~s, r in the limit as x- 0, we immediately
arrive at

a'44(0, 0) =
984

(2)
0 3v T=0

(56)

We now turn to an explicit, albeit nonrigorous,
evaluation of a«.

V. EVALUATION OF a44 AND DISCUSSION

With the aid of a very plausible assumption con-
cerning the nature of the phase-separation curve,
we may evaluate a44. The assumption is that the
end point of the phase-separation line (at x= 0,
T= 0) is a consolute point in the sense that
(spgsn, )P r = 0 there. ' I' is the pressure.
In order to understand the import of this assump-
tion, let us examine the possible alternatives: (i)
The end point is neither a X point, nor a consolute
point. In this case there is a metastable region
at T = 0 and x4 0 in which we have a nonsuperfluid
gas of Bose quasiparticles. Also, in this region
(S&pen~)z r 0, which for small x is equal to
(sp. gsn4)„3 r.o, must be greater than zero. Thus,
from (2), a« is positive (the He'-He interaction
is then repulsive). Since existing theory indicates
that a dilute Bose gas with repulsive interactions
should be superQuid at T= 0, we reject alternative
(i). (ii) The endpoint is a X point and not a con-
solute point. In this case there will be some region
for small x and T where there exists a dilute solu-
tion of superfluid He in liquid He . Such a phenom-
enon has never been observed, and we will assume
that it does not occur. Finally, we call attention
to the calculation of van Leeuwen and Cohen on a
dilute gas model of He -He solutions which veri-
fies our assumption in a special case.

Proceeding on the assumption that the end point
of the phase-separation curve is indeed a consolute
point, and noting again that (s ppsn4)J, r is equal

This result is important since it implies that at
low temperatures there are, to order n4, no cor-
rections to the free Bose gas result for p. 4.' It
then follows that the phase separation, for small
x and T, is closely related to the X transition in
a free Bose gas. In fact, if (56) is correct, since
the fluctuations in number density in a free Bose
gas become infinite at its X line, the corresponding
line for very dilute solutions of He in liquid He
is spinodal line for the phase-separation transition
(insofar as spinodal lines may be assigned physical
meaning). The line is located within the two-phase
region and ends at the point x=0, T=O.

Finally, we must note the difference between

(56) and the corresponding nonzero result for dilute
solutions of He in superQuid He .'" This differ-
ence is a consequence of the differing roles of Bose
and Fermi statistics in the two cases. In our de-
rivation of (56) the fact that He 's obey Bose rather
than Fermi statistics has been of central impor-
tance. However, the He -He quasiparticle s-wave
forward-scattering amplitude in dilute solutions of
He in superfluid He is apparently (for opposite-
spin He 's) determined in large part by just the
difference between the masses of He and He

atoms.
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